杂志信息网-创作、查重、发刊有保障。

关于通道蛋白的研究论文

发布时间:2024-07-02 08:07:20

关于通道蛋白的研究论文

编译 | 未玖

Science , 13 MAY 2022, VOL 376, ISSUE 6594

《科学》 2022年5月13日,第376卷,6594期

物理学 Physics

Quantum gas microscopy of Kardar-Parisi-Zhang superdiffusion

KPZ超扩散的量子气体显微镜

作者:DAVID WEI, ANTONIO RUBIO-ABADAL, BINGTIAN YE, FRANCISCO MACHADO, JACK KEMP, KRITSANA SRAKAEW, ET AL.

链接:

摘要:

Kardar-Parisi-Zhang(KPZ)普适性类描述了大量经典随机模型的粗粒度行为。令人惊讶的是,最近人们推测KPZ普适性也可用于描述一维量子海森堡模型中的自旋输运。

研究组通过多达50个自旋的自旋链畴壁弛豫,在冷原子量子模拟器中实验探测输运来验证这个猜想。他们发现,畴壁弛豫确实由KPZ动力学指数z=3/2控制,KPZ标度的出现需要可积性和非阿贝尔SU(2)对称性。

最后,研究组利用量子气体显微镜实现的单自旋敏感性探测,来测量基于自旋输运统计的可观测数据。该研究结果产生了一个明确的非线性特征,这是KPZ普适性的一个标志。

Abstract:

The Kardar-Parisi-Zhang (KPZ) universality class describes the coarse-grained behavior of a wealth of classical stochastic models. Surprisingly, KPZ universality was recently conjectured to also describe spin transport in the one-dimensional quantum Heisenberg model. We tested this conjecture by experimentally probing transport in a cold-atom quantum simulator via the relaxation of domain walls in spin chains of up to 50 spins. We found that domain-wall relaxation is indeed governed by the KPZ dynamical exponent z = 3/2 and that the occurrence of KPZ scaling requires both integrability and a nonabelian SU(2) symmetry. Finally, we leveraged the single-spin–sensitive detection enabled by the quantum gas microscope to measure an observable based on spin-transport statistics. Our results yield a clear signature of the nonlinearity that is a hallmark of KPZ universality.

Observing emergent hydrodynamics in a long-range quantum magnet

在长程量子磁体中观测新兴流体动力学

作者:M. K. JOSHI, F. KRANZL, A. SCHUCKERT, I. LOVAS, C. MAIER, R. BLATT, ET AL.

链接:

摘要:

确定非平衡量子态的普适性质是现代物理学的一个重大挑战。一个有趣的预测是,经典流体力学普遍出现在任何相互作用的量子系统演化中。

研究组通过实验探测了51个单独控制离子的量子动力学,实现了长程相互作用的自旋链。通过测量无限温度状态下的时空分辨关联函数,他们观测到了整个从正常扩散到反常超扩散的流体动力学普适性类家族,均由Lévy飞行描述。

研究组提取了流体力学理论的输运系数,反映了系统的微观性质。该结果表明,工程量子系统有潜力为量子物质非平衡态的普适性提供关键见解。

Abstract:

Identifying universal properties of nonequilibrium quantum states is a major challenge in modern physics. A fascinating prediction is that classical hydrodynamics emerges universally in the evolution of any interacting quantum system. We experimentally probed the quantum dynamics of 51 inpidually controlled ions, realizing a long-range interacting spin chain. By measuring space-time–resolved correlation functions in an infinite temperature state, we observed a whole family of hydrodynamic universality classes, ranging from normal diffusion to anomalous superdiffusion, that are described by Lévy flights. We extracted the transport coefficients of the hydrodynamic theory, reflecting the microscopic properties of the system. Our observations demonstrate the potential for engineered quantum systems to provide key insights into universal properties of nonequilibrium states of quantum matter.

材料科学 Materials Science

Highly enhanced ferroelectricity in Hf O2 -based ferroelectric thin film by light ion bombardment

轻离子轰击增强HfO2基铁电薄膜的铁电性

作者:SEUNGHUN KANG, WOO-SUNG JANG, ANNA N. MOROZOVSKA, OWOONG KWON, YEONGROK JIN, YOUNG-HOON KIM, et al.

链接:

摘要:

非易失和准同型的后摩尔电子器件的不断发展需要集成铁电材料和半导体材料。与原子层沉积兼容的氧化铪(Hf O2 )基铁电体的出现开辟了有趣且颇有前景的研究途径。然而,Hf O2 中铁电性的起源和控制途径仍然是个谜。

研究组证明了局部氦(He)注入可以激活这些材料中的铁电性。他们还分析了可能的竞争机制,包括He离子引发的摩尔体积变化、空位再分布、空位生成和空位迁移率的激活。

这些发现既揭示了该系统中铁电性的起源,也为纳米工程二元铁电体开辟了新途径。

Abstract:

Continuous advancement in nonvolatile and morphotropic beyond-Moore electronic devices requires integration of ferroelectric and semiconductor materials. The emergence of hafnium oxide (Hf O2 )–based ferroelectrics that are compatible with atomic-layer deposition has opened interesting and promising avenues of research. However, the origins of ferroelectricity and pathways to controlling it in Hf O2 are still mysterious. We demonstrate that local helium (He) implantation can activate ferroelectricity in these materials. The possible competing mechanisms, including He ion–induced molar volume changes, vacancy redistribution, vacancy generation, and activation of vacancy mobility, are analyzed. These findings both reveal the origins of ferroelectricity in this system and open pathways for nanoengineered binary ferroelectrics

Ultrafast water permeation through nanochannels with a densely fluorous interior surface

内表面致密氟纳米通道可超快渗透水

作者:YOSHIMITSU ITOH, SHUO CHEN, RYOTA HIRAHARA, TAKESHI KONDA, TSUBASA AOKI, TAKUMI UEDA, ET AL.

链接:

摘要:

水通道蛋白的疏水性内表面促进了水在其中的超快渗透。聚四氟乙烯有着致密的氟面,因此具有很强的防水性。

研究组报道了一系列内径为纳米的含氟低聚酰胺纳米环。这些纳米环在磷脂双层膜中进行超分子聚合,形成含氟纳米通道,其内壁被氟原子密集覆盖。直径最小的纳米通道的水渗透通量比水通道蛋白和碳纳米管的水渗透通量大两个数量级。

该研究所提出的纳米通道具有可忽略的氯离子(C l- )渗透性,这是由静电负氟内表面提供的强大静电屏障造成的。因此,这种纳米通道有望在脱盐过程中显示出近乎完美的阻盐。

Abstract:

Ultrafast water permeation in aquaporins is promoted by their hydrophobic interior surface. Polytetrafluoroethylene has a dense fluorine surface, leading to its strong water repellence. We report a series of fluorous oligoamide nanorings with interior diameters ranging from to nanometers. These nanorings undergo supramolecular polymerization in phospholipid bilayer membranes to form fluorous nanochannels, the interior walls of which are densely covered with fluorine atoms. The nanochannel with the smallest diameter exhibits a water permeation flux that is two orders of magnitude greater than those of aquaporins and carbon nanotubes. The proposed nanochannel exhibits negligible chloride ion (C l- ) permeability caused by a powerful electrostatic barrier provided by the electrostatically negative fluorous interior surface. Thus, this nanochannel is expected to show nearly perfect salt reflectance for desalination.

化学 Chemistry

Scalable processing for realizing all-perovskite tandem solar modules

可扩展处理实现效率的全钙钛矿串联太阳能模块

作者:KE XIAO, YEN-HUNG LIN, MEI ZHANG, ROBERT D. J. OLIVER, XI WANG, ZHOU LIU, ET AL.

链接:

摘要:

将全钙钛矿串联太阳能电池作为模块而非单结结构来制造面临诸多挑战,包括生长高质量的宽禁带钙钛矿,以及减缓互连触点处卤化物和金属互扩散造成的不可逆退化。

研究组展示了使用可扩展制造技术制备高效全钙钛矿串联太阳能模块。通过系统调节无甲基铵混合卤化物钙钛矿的铯比,他们提升了大面积刀片涂层薄膜的结晶均匀性。

研究组在互连的子电池间引入导电共形“扩散势垒”,以提高全钙钛矿串联太阳能模块的功率转换效率(PCE)和稳定性。

该串联模块获得了的认证PCE,孔径面积为20 c m2 ,在模拟1-太阳光照下连续运行500小时后仍保持75%的初始效率。

Abstract:

Challenges in fabricating all-perovskite tandem solar cells as modules rather than as single-junction configurations include growing high-quality wide-bandgap perovskites and mitigating irreversible degradation caused by halide and metal interdiffusion at the interconnecting contacts. We demonstrate efficient all-perovskite tandem solar modules using scalable fabrication techniques. By systematically tuning the cesium ratio of a methylammonium-free –electron volt mixed-halide perovskite, we improve the homogeneity of crystallization for blade-coated films over large areas. An electrically conductive conformal “diffusion barrier” is introduced between interconnecting subcells to improve the power conversion efficiency (PCE) and stability of all-perovskite tandem solar modules. Our tandem modules achieve a certified PCE of with an aperture area of 20 square centimeters and retain 75% of their initial efficiency after 500 hours of continuous operation under simulated 1-sun illumination.

地球科学 Earth Science

High-resolution mapping of losses and gains of Earth’s tidal wetlands

全球潮汐湿地消长的高分辨率绘图

作者:NICHOLAS J. MURRAY, THOMAS A. WORTHINGTON, PETE BUNTING, STEPHANIE DUCE, VALERIE HAGGER, CATHERINE E. LOVELOCK, ET AL.

链接:

摘要:

人们预期潮汐湿地会对全球环境变化做出动态响应,但湿地损失在多大程度上被湿地增加所抵消仍不清楚。

研究组对卫星数据进行了全球分析,以同时监测1999-2019年间三种高度互联的潮间生态系统类型——潮滩、潮沼和红树林的变化。

在全球范围内,13700 k m2 的潮汐湿地已经消失,但被9700 k m2 的湿地增加所抵消后,最终20年间净缩减4000 k m2 。

研究组发现,这些损失和增长中有27%与直接人类活动有关,例如转向农业和恢复失去的湿地。所有其他变化都归因于间接驱动因素,包括沿海过程和气候变化的影响。

Abstract:

Tidal wetlands are expected to respond dynamically to global environmental change, but the extent to which wetland losses have been offset by gains remains poorly understood. We developed a global analysis of satellite data to simultaneously monitor change in three highly interconnected intertidal ecosystem types—tidal flats, tidal marshes, and mangroves—from 1999 to 2019. Globally, 13,700 square kilometers of tidal wetlands have been lost, but these have been substantially offset by gains of 9700 k m2 , leading to a net change of 4000 k m2 over two decades. We found that 27% of these losses and gains were associated with direct human activities such as conversion to agriculture and restoration of lost wetlands. All other changes were attributed to indirect drivers, including the effects of coastal processes and climate change.

(Cyclosporin A,CsA)滴眼液在小鼠角膜上皮愈合过程中上调水通道蛋白3(aquaporin protein 3,AQP3)表达的作用机制。方法:采用机械法刮除小鼠角膜上皮的方法建立模型,观察角膜上皮修复情况。取角膜行AQP3免疫组化染色,观察AQP3表达。结果:角膜上皮基底细胞层可见AQP3的表达。应用125,250,500,1000mg/L CsA滴眼液点眼后AQP3的表达呈递增趋势。角膜上皮损伤后用500mg/L CsA滴眼液点眼,损伤后6h实验组与对照组愈合面积比较无统计学差异,而损伤后12,18,24h比较均有显著统计学差异(P<)。结论:应用500mg/L CsA滴眼液点眼,可通过增加AQP3表达而加快小鼠角膜上皮损伤的修复。

研究蛋白质的论文

浅谈蛋白质折叠的有关问题 [关键字]生物 大分子 分子伴侣 蛋白质的折叠 识别 结合 生物大分子的结构与功能的研究是了解分子水平的先象的基础。没有对生物大分子的结构与功能的认识,就没有分子生物学。正如没有DNA双螺旋结构的发现,就没有遗传传达传递的中心法则,也就没有今天的分子生物学。结构分子以由第一分子进入对复和物乃至多亚基,多分子复和体结构研究。同时,过去难以研究的分子水平上的生命运动情况也随着研究的深入和技术手段的发展而逐渐由难点变为热点。蛋白质晶体学研究已从生物大分子静态(时间统计)的结构分析开始进入动态(时间分辨)的结构分析及动力学分析。第十三届国际生物物理大会的25个专题讨论会中有一半以上涉及蛋白质的结构与功能,而“结构与功能”又强调“动力学(Dynamics)”,即动态的结构或结构的运动与蛋白质分子功能的关系,以及对大分子相互作用的贡献。 蛋白质折叠问题被列为“21世纪的生物物理学”的重要课题,它是分子生物学中心法则尚未解决的一个重大生物学问题。从一级序列预测蛋白质分子的三级结构并进一步预测其功能,是极富挑战性的工作。研究蛋白质折叠,尤其是折叠早期过程,即新生肽段的折叠过程是全面的最终阐明中心法则的一个根本问题,在这一领域中,近年来的新发现对新生肽段能够自发进行折叠的传统概念做了根本的修正。这其中,X射线晶体衍射和各种波谱技术以及电子显微镜技术等发挥了极其重要的作用。第十三届国际生物物理大会上,Nobel奖获得者Ernst在报告中强调指出,NMR用于研究蛋白质的一个主要优点在于它能极为详细的研究蛋白质分子的动力学,即动态的结构或结构的运动与蛋白质分子功能的关系。目前的NMR技术已经能够在秒到皮秒的时间域上观察蛋白质结构的运动过程,其中包括主链和侧链的运动,以及在各种不同的温度和压力下蛋白质的折叠和去折叠过程。蛋白质大分子的结构分析也不仅仅只是解出某个具体的结构,而是更加关注结构的涨落和运动。例如,运输小分子的酶和蛋白质通常存在着两种构象,结合配体的和未结合配体的。一种构象内的结构涨落是构象转变所必需的前奏,因此需要把光谱学,波谱学和X射线结构分析结合起来研究结构涨落的平衡,构象改变和改变过程中形成的多种中间态,又如,为了了解蛋白质是如何折叠的,就必须知道折叠时几个基本过程的时间尺度和机制,包括二级结构(螺旋和折叠)的形成,卷曲,长程相互作用以及未折叠肽段的全面崩溃。多种技术用于研究次过程,如快速核磁共振,快速光谱技术(荧光,远紫外和近紫外圆二色)。 一、新生肽段折叠研究中的新观点 长期以来关于蛋白质折叠,形成了自组装(self-assembly)的主导学说,因此,在研究新生肽段的折叠时,就很自然的把在体外蛋白质折叠研究中得到的规律推广到体内,用变性蛋白的复性作为新生肽段折叠的模型,并认为细胞中新合成的多肽链,不需要别的分子的帮助,不需要额外能量的补充,就应该能够自发的折叠而形成它的功能状态。 1988年,邹承鲁明确指出,新生肽段的折叠在合成早期业已开始,而不是合成完后才开始进行,随着肽段的延伸同时折叠,又不断进行构象的调整,先形成的结构会作用于后合成的肽段的折叠,而后合成的结构又会影响前面已形成的结构的调整。因此,在肽段延伸过程中形成的结构往往不一定是最终功能蛋白中的结构。这样,三维结构的形成是一个同时进行着的,协调的动态过程。九十年代一类具有新的生物功能的蛋白,分子伴侣(Molecularchaperone)的发现,以及在更广泛意义上说的帮助蛋白质折叠的辅助蛋白(Accessoryprotein)的提出,说明细胞内新生肽段的折叠一般意义上说是需要帮助的,而不是自发进行的。 二、蛋白质分子的折叠和分子伴侣的作用 蛋白质分子的三维结构,除了共价的肽键和二硫键,还靠大量极其复杂的弱次级键共同作用。因此新生肽段在一边合成一边折叠过程中有可能暂时形成在最终成熟蛋白中不存在不该有的结构,他们常常是一些疏水表面,它们之间很可能发生本不应该有的错误的相互作用而形成的非功能的分子,甚至造成分子的聚集和沉淀。按照自组装学说,每一步折叠都是正确的,充分的,必要的。实际上折叠过程是一个正确途径和错误途径相互竞争的过程,为了提高蛋白质生物合成的效率的,应该有帮助正确途径的竞争机制,分子伴侣就是这样通过进化应运而生的。它们的功能是识别新生肽段折叠过程中暂时暴露的错误结构的,与之结合,生成复和物,从而防止这些表面之间过早的相互作用,阻止不正确的非功能的折叠途径,抑制不可逆聚合物产生,这样必然促进折叠向正确方向进行。(从哲学的观点说,似乎很容易驳斥自组装学说,它违背了矛盾的普遍性原理,试想,如果蛋白质的每一步折叠均是正确的,充分的,必要的,岂不是在无任何矛盾的前提下,完成了复杂的最稳定构象的形成,即完成了由量变到质变的伟大飞跃,从无活性的肽链变成有活性的功能蛋白,这显然是违背哲学基本原理的。换一个角度想,生物进化的过程本来就充满着不定向的变异,这些变异中有适应环境的,也有不适应环境的,“物竞天择”,自然的选择淘汰了那些不适应的,保留了那些适应的。蛋白质分子的折叠不也与此类似吗?我想,蛋白质的一级结构只是肽链折叠并形成功能蛋白的特定三维结构的内因,实际上,多肽链在形成活性蛋白的每一步,都有潜在的可能形成“不正确”的折叠,如果没有象分子伴侣或其它帮助蛋白等外部因素的作用,多肽链也永远不能折叠成为活性蛋百。) 三,分子伴侣的作用机制 分子伴侣的作用机制实际上就是它如何与靶蛋白识别,结合,又解离的机制。有的分子伴侣具高度专一性,如一些分子内分子伴侣,还有细菌Pseudomonascepacia的酯酶,有它自己的“私有分子伴侣”。它是由基因limA编码的,与酯酶的基因LipA只隔3个碱基,可能是进化过程中发生的基因分裂造成的。而一般的分子伴侣识别特异性不高,它是怎样识别需要它帮助的对象的呢?现在只能说分子伴侣识别非天然构象,而不去理会天然的构象。由于在天然分子中,疏水残基多半位于分子的内部而形成疏水核,去折叠后就可能暴露出来,或者在新生肽段的折叠过程中,会暂时形成在天然构象中本应该存在于分子内部的疏水表面,因此认为分子伴侣最有可能是与疏水表面相结合,如硫氰酸酶(Rhodanese)分子α-helix的疏水侧面。但是只有β-sheet结构的蛋白质才可为分子伴侣识别。 最近关于识别机制有较大的进展。Bip是内质网管腔内的分子伴侣,用一种affinitypanning的方法检查Bip与有随机序列的十二肽结合的特异性,结果发现,Hy-(W/X)-Hy-X-Hy-X-Hymotif与Bipj结合最强,Hy最多的是Trp、Leu、Phe,即较大的疏水残基。一般来说,2-4个疏水残基就足够进行结合。还有一种较普遍的说法是分子伴侣识别所谓熔球体结构(moltenglobule)。另一方面,分子伴侣本身与肽结合部位的结构分析最近也有些进展。譬如,PapD的晶体结构表明,多肽结合在它的β-sheet区。GroEL中,约40kD的153-531结构域是核苷酸的结合区。 分子伴侣作用的第二步是与靶蛋白形成复合物。非常盛行的一种模型认为分子伴侣常常以多聚`体形式而形成中心空洞的结构,用电子显微镜已经观察到由二圈层圆面包圈形组成的十四体GroEL分子和一个一层圆面包圈的七体GroES分子协同作用形成中空的非对称笼状结构(cagemodel),推测靶蛋白可以在与周围环境隔离的中间空腔内不受干扰的进一步折叠。但是不久前一个日本实验室发现GroEL的一个亚基,甚至其N端去除78个氨基酸残基的50kD片段,已经不能再组装成十四体结构,都有确定的分子伴侣功能。由此,我想:也许环状分子伴侣并非每个部位都是有效的结合部位,也就是说,该二层圆面包圈组成的十四体GroEL分子只有一个或若干个部位能够与疏水残基或所谓的熔球体结构结合,而其余部位起识别作用,就像一个探测器一样,整个十四体GroEL分子以圈层或笼状结构”包裹”在多肽链的主链上,以旋进方式再多肽链的链体上运动,一旦环状多聚体的某一识别部位发现疏水结构或所谓的熔球体结构等新生肽链折叠过程中暂时暴露的错误结构,经信号转导,多聚体的结合部位便与之结合,生成复合物,抑制不正确的折叠。以上完全是我个人的猜想,是基于上述两个试验现象的矛盾而试图作一番解释。至于为什么假设以旋进方式在多肽链上运动,我并没有相应的根据,只是觉得这应该是一个动态过程,因此作了一番狂妄的假想,另外,我觉得也许可以用X射线衍射来探测一下分子伴侣GroEL和GroES组成的笼状结构,看看它的a×b×c是否足以容纳多肽链的某一段,或者它的内部和外部的疏水性质和其他一些物化性质如何,也许可以找到支持或驳斥上述假设的证据。 以上谈的都是蛋白质的分子伴侣。不久前又出现了一个新名词“DNAchaperones”,DNA分子伴侣,这种分子伴侣是与DNA相结合并帮助DNA折叠的。在这种复合物中,DNA分子包围在蛋白质分子的表面,既是高度有序的,又是在一定程度上结构已有所改变的。DNA与蛋白的这种相互作用对DNA的转录,复制以及重组都十分重要;或如在核小体中,对DNA的包装是必须的。DNA在溶液中的结构有相当的刚性,必须克服一个能障才能转变成它的蛋白复合物中的结构,分子伴侣的作用就是帮助DNA分子进行折叠和扭曲,从而把DNA稳定在一个适合于和蛋白结构的特定构型中。这种结合是协同的,可逆的在形成复合物之后便解离下来。因此,不论是DNA分子伴侣还是蛋白分子伴侣,都与DNA和蛋白的相互作用有关,与基因调控有关,看来,分子伴侣确实与最终阐明中心法则当前主要问题有密切关系。 四、分子伴侣和酶的区别 与分子伴侣不同,以确定为帮助蛋白质折叠的酶目前只有两个,一个是蛋白质二硫键异构酶(proteindisulfideisomerase,PDI);另一个是肽基脯氨酸顺反异构酶(peptidylprolylcis-transisomerase,PPI)。以PDI为例,众所周知,蛋白质分子中的二硫键与新生肽段的折叠密切相关,对维系蛋白质分子的结构稳定性和功能发挥也有重要作用。PDI定位在内质网管腔内,含量丰富,催化蛋白质分子内巯基与二硫键之间的交换反应。同时,它是目前发现的最为突出的多功能蛋白,除了二硫键的异构酶的基本功能外,它还是脯氨酸-4-羟化酶的α亚基;又是微粒体内甘油三酯转移蛋白复合物的小亚基,还是一种糖基化位点结合蛋白(gkycisylationsitebindingprotein)等。其中,最引人注目的还是它有与多肽结合的能力,可以结合具有不同序列,长度和电荷分布的肽,特异性较低,主要是与肽的主链相作用,但对巯基尚有一些偏爱。按照分子伴侣的定义,一般认为PDI和分子伴侣是两类不同的帮助蛋白,但是我国上海生物物理研究所最近提出不同的看法,认为蛋白质二硫键异构酶也具有分子伴侣的功能。 蛋白质分子中天然二硫键的形成要求这些在肽链上往往处于不相邻位置的巯基,首先通过肽链一定程度的折叠,才能相互接近到可以正确形成二硫键的位置。肽链的自身折叠是一个慢过程,而蛋白质二硫键异构酶催化蛋白质天然二硫键的形成却是一个快过程。另一方面,蛋白质二硫键异构酶具有低特异性的与各种不同肽链相结合的能力,在内质网中以极高的浓度存在,又是是一个钙结合蛋白,是一个能被磷酸化的蛋白,这些都已经符合了分子伴侣的条件。因此他们推测蛋白质二硫键异构酶很可能首先通过它与伸展的,或部分折叠的肽段的结合,阻止错误的折叠途径,促进正确的中间物生成,帮助肽链折叠是相应的巯基配对,从而是正确的二硫键得以形成;然后催化巯基的氧化或二硫键的异构而形成天然二硫键。他们认为蛋白质二硫键异构酶的酶活性与它的分子伴侣功能不是相互排斥,而是密切相关,协调统一的。分子伴侣与帮助新生肽链折叠的酶之间,大概不应该,也不能够划一条绝对的分界线。我想:酶的最主要特性就是催化生化反应,分子伴侣的主要作用是与新生肽段的错误构象结合,从而阻止肽链不正确的非功能的折叠途径,促使其向正确的折叠方向反应,这难道不可以理解成间接的催化肽链的折叠吗?从表观上看,抑制不正确的折叠途径等于加快了正确反应的速度。所以,我本人也很赞成他们的观点。最近的试验已经为这一假说提供了很好的证据。PDI明显抑制变性的甘油醛-3-磷酸脱氢酶在复性股过程中的严重聚合,有效的提高它的复性效率,与典型的分子伴侣GroE系统对甘油醛3-磷酸脱氢酶复性的效应极其相似。 五、分子伴侣的结构 目前唯一解出晶体结构的分子伴侣是的PapD,帮助鞭毛蛋白折叠的分子伴侣。还有HSP70的N端结构域,即ATP结合域也以有晶体结构。用电子显微镜已经清楚的看到了GroEL的十四聚体和GroEL的七聚体的四级结构,象两个圆形中空的面包圈叠在一起,用NMR以及各种溶液构象变化是研究分子伴侣作用机制的有效手段。 六、分子伴侣研究的实际应用 分子伴侣的研究成果必然会大大加深我们对生命现象的认识,同时也一定会增加我们与自然斗争的能力和自身生存的能力。由于分子伴侣在生命活动的各个层次都具有重要作用,它的突变和损伤也必定会引起疾病,因此可以期望运用分子伴侣的知识来治疗所谓的”分子伴侣病”。另一方面,利用对分子伴侣的研究成果从根本上提高基因工程和蛋白工程的成功率,也必将对大幅度提高人类生活水平起重要作用。 [参考书目] 1.李宝健主编,面向21世纪生命科学发展前沿,广东科技出版社,1996年11月第一版:93-104页 2.郝柏林刘寄星主编,理论物理与生命科学,上海科学技术出版社,1997年12月第一版:29-58页 3.中国生物物理代表团,从第十三届国际生物物理大会看生物物理学研究的现状和趋势,生物物理学报,1999年第十五卷第四期:826-827页

蛋白质(protein)是生命的物质基础,没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的,即一个60kg重的成年人其体内约有蛋白质。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸按不同比例组合而成的,并在体内不断进行代谢与更新。被食入的蛋白质在体内经过消化分解成氨基酸,吸收后在体内主要用于重新按一定比例组合成人体蛋白质,同时新的蛋白质又在不断代谢与分解,时刻处于动态平衡中。因此,食物蛋白质的质和量、各种氨基酸的比例,关系到人体蛋白质合成的量,尤其是青少年的生长发育、孕产妇的优生优育、老年人的健康长寿,都与膳食中蛋白质的量有着密切的关系[编辑本段]蛋白质的生理功能1、构造人的身体:蛋白质是一切生命的物质基础,是肌体细胞的重要组成部分,是人体组织更新和修补的主要原料。人体的每个组织:毛发、皮肤、肌肉、骨骼、内脏、大脑、血液、神经、内分泌等都是由蛋白质组成,所以说饮食造就人本身。蛋白质对人的生长发育非常重要。比如大脑发育的特点是一次性完成细胞增殖,人的大脑细胞的增长有二个高峰期。第一个是胎儿三个月的时候;第二个是出生后到一岁,特别是0---6个月的婴儿是大脑细胞猛烈增长的时期。到一岁大脑细胞增殖基本完成,其数量已达成人的9/10。所以0到1岁儿童对蛋白质的摄入要求很有特色,对儿童的智力发展尤关重要。2、修补人体组织:人的身体由百兆亿个细胞组成,细胞可以说是生命的最小单位,它们处于永不停息的衰老、死亡、新生的新陈代谢过程中。例如年轻人的表皮28天更新一次,而胃黏膜两三天就要全部更新。所以一个人如果蛋白质的摄入、吸收、利用都很好,那么皮肤就是光泽而又有弹性的。反之,人则经常处于亚健康状态。组织受损后,包括外伤,不能得到及时和高质量的修补,便会加速机体衰退。3、维持肌体正常的新陈代谢和各类物质在体内的输送。载体蛋白对维持人体的正常生命活动是至关重要的。可以在体内运载各种物质。比如血红蛋白—输送氧(红血球更新速率250万/秒)、脂蛋白—输送脂肪、细胞膜上的受体还有转运蛋白等。4、白蛋白:维持机体内的渗透压的平衡及体液平衡。5、维持体液的酸碱平衡。6、免疫细胞和免疫蛋白:有白细胞、淋巴细胞、巨噬细胞、抗体(免疫球蛋白)、补体、干扰素等。七天更新一次。当蛋白质充足时,这个部队就很强,在需要时,数小时内可以增加100倍。7、构成人体必需的催化和调节功能的各种酶。我们身体有数千种酶,每一种只能参与一种生化反应。人体细胞里每分钟要进行一百多次生化反应。酶有促进食物的消化、吸收、利用的作用。相应的酶充足,反应就会顺利、快捷的进行,我们就会精力充沛,不易生病。否则,反应就变慢或者被阻断。8、激素的主要原料。具有调节体内各器官的生理活性。胰岛素是由51个氨基酸分子合成。生长素是由191个氨基酸分子合成。7、构成神经递质乙酰胆碱、五羟色氨等。维持神经系统的正常功能:味觉、视觉和记忆。8、胶原蛋白:占身体蛋白质的1/3,生成结缔组织,构成身体骨架。如骨骼、血管、韧带等,决定了皮肤的弹性,保护大脑(在大脑脑细胞中,很大一部分是胶原细胞,并且形成血脑屏障保护大脑)9、提供热能。[编辑本段]蛋白质的作用蛋白质在细胞和生物体的生命活动过程中,起着十分重要的作用。生物的结构和性状都与蛋白质有关。蛋白质还参与基因表达的调节,以及细胞中氧化还原、电子传递、神经传递乃至学习和记忆等多种生命活动过程。在细胞和生物体内各种生物化学反应中起催化作用的酶主要也是蛋白质。许多重要的激素,如胰岛素和胸腺激素等也都是蛋白质。此外,多种蛋白质,如植物种子(豆、花生、小麦等)中的蛋白质和动物蛋白、奶酪等都是供生物营养生长之用的蛋白质。有些蛋白质如蛇毒、蜂毒等是动物攻防的武器。蛋白质和健康蛋白质是荷兰科学家格里特在1838年发现的。他观察到有生命的东西离开了蛋白质就不能生存。蛋白质是生物体内一种极重要的高分子有机物,占人体干重的54%。蛋白质主要由氨基酸组成,因氨基酸的组合排列不同而组成各种类型的蛋白质。人体中估计有10万种以上的蛋白质。生命是物质运动的高级形式,这种运动方式是通过蛋白质来实现的,所以蛋白质有极其重要的生物学意义。人体的生长、发育、运动、遗传、繁殖等一切生命活动都离不开蛋白质。生命运动需要蛋白质,也离不开蛋白质。球状蛋白质(三级结构)人体内的一些生理活性物质如胺类、神经递质、多肽类激素、抗体、酶、核蛋白以及细胞膜上、血液中起“载体”作用的蛋白都离不开蛋白质,它对调节生理功能,维持新陈代谢起着极其重要的作用。人体运动系统中肌肉的成分以及肌肉在收缩、作功、完成动作过程中的代谢无不与蛋白质有关,离开了蛋白质,体育锻炼就无从谈起。在生物学中,蛋白质被解释为是由氨基酸借肽键联接起来形成的多肽,然后由多肽连接起来形成的物质。通俗易懂些说,它就是构成人体组织器官的支架和主要物质,在人体生命活动中,起着重要作用,可以说没有蛋白质就没有生命活动的存在。每天的饮食中蛋白质主要存在于瘦肉、蛋类、豆类及鱼类中。蛋白质缺乏:成年人:肌肉消瘦、肌体免疫力下降、贫血,严重者将产生水肿。未成年人:生长发育停滞、贫血、智力发育差,视觉差。蛋白质过量:蛋白质在体内不能贮存,多了肌体无法吸收,过量摄入蛋白质,将会因代谢障碍产生蛋白质中毒甚至于死亡。[编辑本段]必需氨基酸和非必需氨基酸纤维状蛋白质(二级结构)食物中的蛋白质必须经过肠胃道消化,分解成氨基酸才能被人体吸收利用,人体对蛋白质的需要实际就是对氨基酸的需要。吸收后的氨基酸只有在数量和种类上都能满足人体需要身体才能利用它们合成自身的蛋白质。营养学上将氨基酸分为必需氨基酸和非必需氨基酸两类。必需氨基酸指的是人体自身不能合成或合成速度不能满足人体需要,必须从食物中摄取的氨基酸。对成人来说,这类氨基酸有8种,包括赖氨酸、蛋氨酸、亮氨酸、异亮氨酸、苏氨酸、缬氨酸、色氨酸、苯丙氨酸。对婴儿来说,组氨酸和精氨酸也是必需氨基酸。非必需氨基酸并不是说人体不需要这些氨基酸,而是说人体可以自身合成或由其它氨基酸转化而得到,不一定非从食物直接摄取不可。这类氨基酸包括谷氨酸、丙氨酸、甘氨酸、天门冬氨酸、胱氨酸、脯氨酸、丝氨酸和酪氨酸等。有些非必需氨基酸如胱氨酸和酪氨酸如果供给充裕还可以节省必需氨基酸中蛋氨酸和苯丙氨酸的需要量。

膜蛋白的研究论文

约30%的编码基因编码的膜蛋白(MPs)在众多生理过程中起着至关重要的作用。膜蛋白是超过FDA批准药物一半的靶标药物。需要在近乎生理条件下对功能性膜蛋白进行高分辨率的结构研究,以提供深入的机理理解并促进药物发现。随着单粒子冷冻显微镜(cryo-EM)的分辨率革命,分离的膜蛋白的结构阐明已取得了快速进展。下一个挑战是保留电化学梯度和膜曲率,以便对膜蛋白进行全面的结构阐明,而膜蛋白的生物学功能依赖于这些化学和物理特性。2020年7月17日,颜宁团队在PNAS 在线发表题为“Cryo-EM analysis of a membrane protein embedded in the liposome”的研究论文,该研究以特征明确的AcrB为原型,提出了一种方便的工作流程,用于对嵌入脂质体中的膜蛋白进行冷冻-EM结构分析。结合优化的蛋白脂质体分离,冷冻样品制备和有效的颗粒选择策略,以的分辨率获得了嵌入脂质体中的AcrB的三维(3D)重建。该研究方法可广泛应用于具有独特可溶域的膜蛋白的冷冻EM分析,为功能受跨膜电化学梯度或膜曲率影响的整体或外围膜蛋白的冷冻EM分析奠定了基础。生物膜包围着拓扑隔离的隔室,包括细胞和细胞器,并为各种完整的和外围的膜蛋白(MP)提供了栖息地。这些物理屏障使生命必需的电化学梯度得以生成和维持,这是由于离子和化学物质在整个不可渗透膜上的不对称分布所致。各种生理过程都取决于这些梯度,例如由质子梯度(质子动力)驱动的三磷酸腺苷(ATP)合成和依赖跨膜电场存在的动作电位。因此,许多膜蛋白,例如电压门控离子通道(VGIC)以及一级和二级活性转运蛋白,都依赖于跨膜电化学梯度来执行其生物学功能。除了驻留在膜的内部或表面之外,膜蛋白与膜之间的相互作用也对细胞寿命产生了深远的影响。例如,许多外周膜蛋白定义了细胞器形成的膜轮廓。FoF1 ATP合酶的二聚化在塑造线粒体cristate中起着重要作用。机械敏感通道通过部分由膜变形施加的机械力控制。当X射线晶体学是确定结构的主要方法时,解析膜蛋白的结构曾经极具挑战性。必须从破裂的膜中纯化出高度均质的膜蛋白,并用精心选择的去污剂取代以结晶。自2013年以来,冷冻电子显微镜(cryo-EM)单颗粒分析(SPA)已成为膜蛋白高分辨率结构解析的主流手段。已应用多种试剂将膜蛋白溶解为单个颗粒以进行分析。除了去污剂微团外,两亲,纳米圆盘和苯乙烯-马来酸脂质颗粒(SMALP)封闭的带有天然膜的纳米圆盘也已用于成功的膜蛋白冷冻-EM结构分析 。尽管取得了这些进步,但所有上述膜蛋白分离方法都破坏了膜的拓扑结构,即使在SMALP环绕的带有天然膜片的纳米盘的情况下,也消除了任何现有的电化学梯度和膜曲率。为了保留这些重要特性,使用电子冷冻断层扫描(cryo-ET)的原位结构分析可能是最终的解决方案。然而,当前的技术障碍阻止了使用cryo-ET的高分辨率原位结构测定。另一种替代策略是研究嵌入脂质体中膜蛋白的结构,该结构已广泛用于膜蛋白的功能分析。尽管使用蛋白脂质体进行了广泛的功能表征,但仅有有限的尝试将这种系统用于膜蛋白的结构阐明。在过去的十年中,已经开发了诸如随机球形约束(RSC)之类的方法来研究具有改进SPA策略的蛋白脂质体系统。但是,要在两个报告中执行精确的角度分配或信号减法,目标蛋白脂质体必须是接近完美的球体,这是很难获得的前提条件。两种方法都还需要对原始图像进行额外的预处理步骤。为了将cryo-EM用于嵌入或附着在脂质体上的膜蛋白的结构分析,有必要为膜蛋白掺入,冷冻样品制备和cryo-EM数据处理开发高度可重复且方便的工作流程。为此,研究人员选择了来自大肠杆菌的经过充分研究的耐多药转运蛋白AcrB作为方法开发的原型。质子梯度驱动的AcrB是一种三聚体,分子量约为350 kDa。它是即使在低纯度和低浓度下也最易于结晶的膜蛋白之一。因此,AcrB的结构是在早期确定的。到目前为止,在蛋白质数据库(PDB)中使用X射线晶体学和单颗粒冷冻EM方法测定的AcrB结构超过100种,为结构验证提供了极好的参考。在这项研究中,报告了一种工作流程,该流程具有优化的脂质体分离,低温样品制备,深层二维(2D)分类,用于数据处理。使用该研究的简化方法,获得了分辨率的蛋白脂质体中AcrB的重建。该工作流程可轻松推广到蛋白脂质体中膜蛋白的结构测定中,并为使用蛋白脂质体系统在受控的电化学势或膜曲率存在下膜蛋白的结构分析奠定基础。

分子生物学(molecular biology) 在分子水平上研究生命现象的科学。研究生物大分子(核酸、蛋白质)的结 构、功能和生物合成等方面来阐明各种生命现象的本质。研究内容包括各种生命过程如光合作用、发育的分子机制、神经活动的机理、癌的发生等。 从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学。自20世纪50年代以来,分子生物学是生物学的前沿与生长点,其主要研究领域包括蛋白质体系、蛋白质-核酸体系 (中心是分子遗传学)和蛋白质-脂质体系(即生物膜)。 生物大分子,特别是蛋白质和核酸结构功能的研究,是分子生物学的基础。现代化学和物理学理论、技术和方法的应用推动了生物大分子结构功能的研究,从而出现了近30年来分子生物学的蓬勃发展。分子生物学和生物化学及生物物理学关系十分密切,它们之间的主要区别在于:①生物化学和生物物理学是用化学的和物理学的方法研究在分子水平,细胞水平,整体水平乃至群体水平等不同层次上的生物学问题。而分子生物学则着重在分子(包括多分子体系)水平上研究生命活动的普遍规律;②在分子水平上,分子生物学着重研究的是大分子,主要是蛋白质,核酸,脂质体系以及部分多糖及其复合体系。而一些小分子物质在生物体内的转化则属生物化学的范围;③分子生物学研究的主要目的是在分子水平上阐明整个生物界所共同具有的基本特征,即生命现象的本质;而研究某一特定生物体或某一种生物体内的某一特定器官的物理、化学现象或变化,则属于生物物理学或生物化学的范畴。 发展简史 结构分析和遗传物质的研究在分子生物学的发展中作出了重要的贡献。结构分析的中心内容是通过阐明生物分子的三维结构来解释细胞的生理功能。1912年英国 .布喇格和.布喇格建立了X射线晶体学,成功地测定了一些相当复杂的分子以及蛋白质的结构。以后布喇格的学生.阿斯特伯里和.贝尔纳又分别对毛发、肌肉等纤维蛋白以及胃蛋白酶、烟草花叶病毒等进行了初步的结构分析。他们的工作为后来生物大分子结晶学的形成和发展奠定了基础。50年代是分子生物学作为一门独立的分支学科脱颖而出并迅速发展的年代。首先是在蛋白质结构分析方面,1951年.波林等提出了 α-螺旋结构,描述了蛋白质分子中肽链的一种构象。1955年F.桑格完成了胰岛素的氨基酸序列的测定。接着 .肯德鲁和.佩鲁茨在X射线分析中应用重原子同晶置换技术和计算机技术分别于1957和1959年阐明了鲸肌红蛋白和马血红蛋白的立体结构。1965年中国科学家合成了有生物活性的胰岛素,首先实现了蛋白质的人工合成。 另一方面,M.德尔布吕克小组从1938年起选择噬菌体为对象开始探索基因之谜。噬菌体感染寄主后半小时内就复制出几百个同样的子代噬菌体颗粒,因此是研究生物体自我复制的理想材料。1940年.比德尔和.塔特姆提出了“一个基因,一个酶”的假设,即基因的功能在于决定酶的结构,且一个基因仅决定一个酶的结构。但在当时基因的本质并不清楚。1944年.埃弗里等研究细菌中的转化现象,证明了DNA是遗传物质。1953年.沃森和.克里克提出了DNA的双螺旋结构,开创了分子生物学的新纪元。在此基础上提出的中心法则,描述了遗传信息从基因到蛋白质结构的流动。遗传密码的阐明则揭示了生物体内遗传信息的贮存方式。1961年F.雅各布和J.莫诺提出了操纵子的概念,解释了原核基因表达的调控。到20世纪60年代中期,关于DNA自我复制和转录生成RNA的一般性质已基本清楚,基因的奥秘也随之而开始解开了。 仅仅30年左右的时间,分子生物学经历了从大胆的科学假说,到经过大量的实验研究,从而建立了本学科的理论基础。进入70年代,由于重组DNA研究的突破,基因工程已经在实际应用中开花结果,根据人的意愿改造蛋白质结构的蛋白质工程也已经成为现实。 基本内容 蛋白质体系 蛋白质的结构单位是α-氨基酸。常见的氨基酸共20种。它们以不同的顺序排列可以为生命世界提供天文数字的各种各样的蛋白质。 蛋白质分子结构的组织形式可分为 4个主要的层次。一级结构,也叫化学结构,是分子中氨基酸的排列顺序。首尾相连的氨基酸通过氨基与羧基的缩合形成链状结构,称为肽链。肽链主链原子的局部空间排列为二级结构。二级结构在空间的各种盘绕和卷曲为三级结构。有些蛋白质分子是由相同的或不同的亚单位组装成的,亚单位间的相互关系叫四级结构。 蛋白质的特殊性质和生理功能与其分子的特定结构有着密切的关系,这是形形色色的蛋白质所以能表现出丰富多彩的生命活动的分子基础。研究蛋白质的结构与功能的关系是分子生物学研究的一个重要内容。 随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。 发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。 蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。 遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。 基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。 蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。 1972年提出的流动镶嵌模型概括了生物膜的基本特征:其基本骨架是脂双层结构。膜蛋白分为表在蛋白质和嵌入蛋白质。膜脂和膜蛋白均处于不停的运动状态。 生物膜在结构与功能上都具有两侧不对称性。以物质传送为例,某些物质能以很高速度通过膜,另一些则不能。象海带能从海水中把碘浓缩 3万倍。生物膜的选择性通透使细胞内pH和离子组成相对稳定,保持了产生神经、肌肉兴奋所必需的离子梯度,保证了细胞浓缩营养物和排除废物的功能。 生物体的能量转换主要在膜上进行。生物体取得能量的方式,或是像植物那样利用太阳能在叶绿体膜上进行光合磷酸化反应;或是像动物那样利用食物在线粒体膜上进行氧化磷酸化反应。这二者能量来源虽不同,但基本过程非常相似,最后都合成腺苷三磷酸。对于这两种能量转换的机制,P.米切尔提出的化学渗透学说得到了越来越多的证据。生物体利用食物氧化所释放能量的效率可达70%左右,而从煤或石油的燃烧获取能量的效率通常为20~40%,所以生物力能学的研究很受重视。对生物膜能量转换的深入了解和模拟将会对人类更有效地利用能量作出贡献。 生物膜的另一重要功能是细胞间或细胞膜内外的信息传递。在细胞表面,广泛地存在着一类称为受体的蛋白质。激素和药物的作用都需通过与受体分子的特异性结合而实现。癌变细胞表面受体物质的分布有明显变化。细胞膜的表面性质还对细胞分裂繁殖有重要的调节作用。 对细胞表面性质的研究带动了糖类的研究。糖蛋白、蛋白聚糖和糖脂等生物大分子结构与功能的研究越来越受到重视。从发展趋势看,寡糖与蛋白质或脂质形成的体系将成为分子生物学研究的一个新的重要的领域。 理论意义和应用 分子生物学的成就说明:生命活动的根本规律在形形色色的生物体中都是统一的。例如,不论在何种生物体中,都由同样的氨基酸和核苷酸分别组成其蛋白质和核酸。遗传物质,除某些病毒外,都是DNA,并且在所有的细胞中都以同样的生化机制进行复制。分子遗传学的中心法则和遗传密码,除个别例外,在绝大多数情况下也都是通用的。 物理学的成就证明,一切物质的原子都由为数不多的基本粒子根据相同的规律所组成,说明了物质世界结构上的高度一致,揭示了物质世界的本质,从而带动了整个物理学科的发展。分子生物学则在分子水平上揭示了生命世界的基本结构和生命活动的根本规律的高度一致,揭示了生命现象的本质。和过去基本粒子的研究带动物理学的发展一样,分子生物学的概念和观点也已经渗入到基础和应用生物学的每一个分支领域,带动了整个生物学的发展,使之提高到一个崭新的水平。 过去生物进化的研究,主要依靠对不同种属间形态和解剖方面的比较来决定亲缘关系。随着蛋白质和核酸结构测定方法的进展,比较不同种属的蛋白质或核酸的化学结构,即可根据差异的程度,来断定它们的亲缘关系。由此得出的系统进化树,与用经典方法得到的是基本符合的。采用分子生物学的方法研究分类与进化有特别的优越性。首先,构成生物体的基本生物大分子的结构反映了生命活动中更为本质的方面。其次,根据结构上的差异程度可以对亲缘关系给出一个定量的,因而也是更准确的概念。第三,对于形态结构非常简单的微生物的进化,则只有用这种方法才能得到可靠结果。 高等动物的高级神经活动是极其复杂的生命现象,过去多是在细胞乃至整体水平上研究,近年来深入到分子水平研究的结果充分说明高级神经活动也同样是以生物大分子的活动为基础的。例如,在高等动物学习与记忆的过程中,大脑中RNA和蛋白质的组成发生明显的变化,并且一些影响生物体合成蛋白质的药物也显著地影响学习与记忆的能力。又如,“生物钟”是一种熟知的生物现象。用鸡进行的实验发现,有一种重要的神经传递介质(5-羟色胺)和一种激素(褪黑激素)以及控制它们变化的一种酶,在鸡脑中的含量呈24小时的周期性变化。正是这种变化构成了鸡的“生物钟”的物质基础。 在应用方面,生物膜能量转换原理的阐明,将有助于解决全球性的能源问题。了解酶的催化原理就能更有针对性地进行酶的人工模拟,设计出化学工业上广泛使用的新催化剂,从而给化学工业带来一场革命。 分子生物学在生物工程技术中也起了巨大的作用,1973年重组DNA技术的成功,为基因工程的发展铺平了道路。80年代以来,已经采用基因工程技术,把高等动物的一些基因引入单细胞生物,用发酵方法生产干扰素、多种多肽激素和疫苗等。基因工程的进一步发展将为定向培育动、植物和微生物良种以及有效地控制和治疗一些人类遗传性疾病提供根本性的解决途径。 从基因调控的角度研究细胞癌变也已经取得不少进展。分子生物学将为人类最终征服癌症做出重要的贡献。[编辑本段]分子生物学的应用 1,亲子鉴定 近几年来,人类基因组研究的进展日新月异,而分子生物学技术也不断完善,随着基因组研究向各学科的不断渗透,这些学科的进展达到了前所未有的高度。在法医学上,STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继RFLPs(限制性片段长度多态性)VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、强奸杀人案、碎尸案、强奸致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。

膜蛋白质在基础生理过程(如分子转运、信号转导、能量利用以及细胞和组织结构的维护)具 有及其重要的作用.基因组序列中大约有30%的基因编码的是膜蛋白质,其中50%是目前已知 药物的靶点.然而目前我们对膜蛋白质的结构和功能在分子水平上的了解还远不及可溶性蛋白 质.目前PDB数据库中膜蛋白质的三维结构数量仅仅占所有结构的1%.而目前市场上超过50%的药物是通过膜蛋白质发挥作用的. 膜蛋白质在天然生物体中的数量是非常低的.因此一般的天然生物体不太适合作为制备膜蛋白质的原材料. 由于表达的目标蛋白质缺乏足够的插膜及折叠过程,或者缺少翻译后修饰,异原过表达的膜蛋白质经常表达量较低或者无活性.此外,过表达的膜蛋白对细胞还有毒害作用.因此,对膜蛋白质的表达、纯化和分析遇到了极大的挑战.出人意料的是,迄今为止大量的膜蛋白质,尤其是细菌来源的膜蛋白质,已经被成功的过表达、分离纯化并在分子水平上加以鉴定.而且,科学家们对几个来源于不同组织的膜蛋白质组的鉴定工作也已经完成.目前世界上有许多膜蛋白质实验室正在辛勤的劳动,对膜蛋白质进行遗传操作也已经开始出现.这些策略对于进行膜蛋白质研究是非常有用的.

蛋白酶研究论文

植物保护专业本科毕业论文(设计)开题报告

紧张又充实的大学生活即将结束,大学生们马上就要开始最难熬的毕业设计阶段,而我们做毕业设计之前要先写好开题报告,快来参考开题报告是怎么写的吧!以下是我整理的植物保护专业本科毕业论文(设计)开题报告,欢迎大家借鉴与参考,希望对大家有所帮助。

毕业论文题目:

菌寄生真菌纤细齿梗孢蛋白酶基因的克隆与表达

姓名: xx 学号: xxxx

年级: xxx 专业: 植物保护

指导教师:姓名 xxx 职称 教授

学科 植物病理

山东农业大学教务处

20XX年x月x日

一、选题依据(拟开展研究项目的研究目的、意义)

菌寄生(Mycoparasitism)是发生在菌寄生真菌与寄主真菌之间的一种寄生方式,是自然界普遍存在的一种真菌与真菌之间的相互作用。一直以来,生物间相互作用及信号传导的分子机制,是当今生命科学研究的热门。利用菌寄生真菌与寄主真菌作为研究的模式系统来揭示生物相互之间的相互作用机制有重要理论和实践意义。李多川(Li,1996)先生发现纤细齿梗孢(Olpitrichum tenellum)和串珠镰刀菌(Fusarium moniliforme)的菌寄生关系以来,我们实验室试图通过研究纤细齿梗孢和串珠镰刀菌,来建立菌寄生真菌与寄主真菌相互作用机制研究的模式系统,从而揭示菌寄生真菌与寄主真菌之间相互作用的分子机制。纤细齿梗孢(Olpitrichum tenellum)是串珠镰刀菌的一种重寄生真菌,该菌是一种接触性活体重寄生菌,离体试验发现其分生孢子只有在串珠镰刀菌细胞壁提取物刺激下才能萌发。这说明两者之间的重寄生关系是建立在二者识别与互作的分子机制上的(Li,2004)。在纤细齿梗孢和串珠镰刀菌相互作用过程中,几丁质酶、蛋白酶等细胞壁裂解酶可能起到重要作用。其中,蛋白酶在木霉属菌寄生真菌中的功能已经得到初步证明,而纤细齿梗孢的蛋白酶的研究还未见报道。因此,克隆纤细齿梗孢蛋白酶编码基因对于从分子水平上研究重寄生真菌和寄主识别和互作机制有着重要的意义。

二、文献综述内容(在充分收集研究主题相关资料的基础上,分析国内外研究现状,提出问题,找到研究主题的切入点,附主要参考文献)

纤细齿梗孢(Olpitrichum tenellum)是李多川教授分离得到的一种活体营养接触型菌寄生真菌[1~3],其寄主包括Fusarium moniliformeAlternaria alternata等。近年来,我们实验室一直在努力以其为基础研究菌寄生真菌与寄主真菌之间的相互作用的分子机制。经过多年的研究,人们渐渐认识到真菌细胞壁蛋白在细胞与外界的相互作用过程中扮演着重要的角色。细胞壁蛋白研究已经成为生物间相互识别机制研究的热点。鉴于以上原因,我们实验室成功分离纯化了纤细齿梗孢的寄主之一Alternaria alternata菌丝细胞壁上的一种特异性糖蛋白——凝集素,并初步证明其在和孢子吸附过程中起到识别因子的作用[4]。近年来,菌寄生真菌细胞壁裂解蛋白酶在菌寄生过程中的作用被人们逐渐重视起来。克隆和表达菌寄生真菌的蛋白酶编码基因变得很有意义。本研究试图以菌寄生真菌纤细齿梗孢(Olpitrichumtenellum)作为研究材料克隆了其蛋白酶基因。根据氨基酸的保守序列设计兼并引物,然后采用RT-PCR和RACE是一个较为快速、简单和高效的方法。本实验根据同源保守序列设计兼并引物,通过RT-PCR及RACE-PCR的方法,克隆了蛋白酶的编码基因的全长cDNA序列,并对该基因进行了序列分析,为后续试验打下了基础。

由于Olpitrichum tenellum在离开寄主的人工培养基中很难生长,纯化其蛋白酶变得非常困难。因此,我们需要使用外源蛋白表达系统得到蛋白,进一步研究其性质,从而搞清楚其在重寄生过程中的作用。在过去的几十年间,随着DNA重组技术的不断发展,通过构建遗传工程菌株,人们可以较容易地使各种各样的天然酶的基因在微生物系统中高效表达,从而在很大程度上摆脱对天然酶源的依赖。

基因工程的表达系统有原核表达系统和真核表达系统两大类。在原核表达系统中,大肠杆菌表达系统是目前了解最深入,实际应用最为广泛的表达系统。与其他表达系统相比,大肠杆菌表达系统具有遗传背景清楚、目标基因表达水平高、培养周期短、抗污染能力强等特点。在基因表达技术中占有重要的地位,是分子生物学研究和生物技术产业化发展进程中的重要工具[5]。

Pichia pastoris基因表达系统经过十几年发展,已基本成为较完善的外源基因表达系统,具有易于高密度发酵,表达基因在宿主基因组中稳定整合,能使产物有效分泌并适当糖基化,培养方便经济等特点。利用强效可调控启动子AOX1,已高效表达了HBsAg、TNF、EGF、破伤风毒素C片段、基因工程抗体等多种外源基因[6],证实该系统是高效、实用、简便,能提高表达量并保持产物生物学活性的外源基因表达系统。表达系统在生物工程领域将发挥越来越重要的作用,促进更多外源基因在该系统的高效表达,提供更为广泛的基因工程产品[7]。

我们已经分离到蛋白酶的编码基因,本研究中将该基因的去掉信号肽序列的正确阅读框融合于原核表达载体pET-22b(+)和毕赤酵母表达载体pPIC9K上,分别转化 BL21及Pichia pastoris GSxx5,以期在这些菌株中有效表达该基因的编码产物,从而为以后功能研究打下基础。

1 李多川.1998.菌寄生真菌分子生物学研究进展.吉林农业大学学报,20:37~65.

2 21.李多川.1998.菌寄生真菌分子生物学研究进展.微生物学通报,25:345~347.

3 .李多川,沈崇尧.1997.菌寄生菌物与寄主菌物相互作用的研究进展.西北农业学报,6:94~98.

4 张成省,李多川,孔凡玉. alternata菌丝细胞壁凝集素的纯化与特性研究.植物病理学报,35(2):141~147.

5 .xx.何诚,朱运松.1998.甲醇营养型酵母表达系统的研究进展.生物工程进展,18:7~xx.

6 彭毅,杨希才,康良仪.2000.影响甲醇酵母外源蛋白表达的因素.生物技术通报,4:33~36.

7 韩雪清,刘湘涛,尹双.2003.毕赤酵母表达系统.微生物学杂志,3:35~40.

三、研究方案(主要研究内容、目标,研究方法、进度):

1、研究内容:

本课题选择纤细齿梗孢(Olpitrichum tenellum)做为研究对象,通过RT-PCR及RACE技术分离克隆了其丝氨酸蛋白酶基因,并进行原核及真核表达,并对其的性质进行了研究,为进一步的研究工作打下基础。

2、研究的目标:

克隆了纤细齿梗孢(Olpitrichum tenellum)的丝氨酸蛋白酶基因,进行原核及真核表达,并对其的性质进行了研究。

3、研究方法:

将纤细齿梗孢(Olpitrichum tenellum)接种到LB培养基上,培养14个小时后,收集菌丝,然后采用总Trizol法提取RNA。再从GenBank数据库中搜索到大量的蛋白酶氨基酸序列,并根据同源性进行分类,分别设计兼并引物。再通过RT-PCR、3’-RACE、5’-RACE获得全长cDNA、DNA克隆,并将其连接到载体上,然后采用电击法将将重组质粒转入到全长cDNA、DNA克隆中,通过透析纯化蛋白酶,最后研究其特性。

四、研究进度:

20xx年5月23日~20xx年5月29日 整理收集资料,并跟着研究生学习基本实验技术。

20xx年5月30日~20xx年6月18日 提取RNA,设计引物、全长cDNA、DNA克隆 。

20xx年6月19日~20xx年7月15日 转化大肠杆菌、毕赤酵母表达,获得纯纯产物,并研究其特性。

20xx年3月~20xx年6月 对实验结果不理想的实验重做,整理实验数据,完成毕业论文,并准备毕业答辩。

五、技术路线:

收集菌丝

总RNA提取

同源序列 设计引物

特性研究

RT-PCR、

3’-RACE、5’-RACE

纯化表达产物

全长cDNA、DNA克隆 转化大肠杆菌、毕赤酵母

四、进程计划(各研究环节的时间安排、实施进度、完成程度)

20xx年5月23日~20xx年5月29日 整理收集资料,并跟着研究生学习基本实验技术。完成实验的1%。

20xx年5月30日~20xx年6月18日 提取RNA,设计引物、全长cDNA、DNA克隆。完成实验的50%。

20xx年6月19日~20xx年7月15日 转化大肠杆菌、毕赤酵母表达,获得纯纯产物,并研究其特性。完成实验的95%。

20xx年3月~20xx年6月 对实验结果不理想的实验重做,整理实验数据,完成毕业论文,并准备毕业答辩。完成100%。

五、导师对文献综述的评语

签字:

20xx年xx月xx日

六、专业意见

专业主任签字:

20xx 年 月 日

七、学院意见

学院(章): 负责人签字:

20xx年xx月xx日

摘要:

针对目前浙江农林大学植物保护研究法实验教学方法、内容及手段等方面存在的一系列问题,提出了相关改革对策:优化实验课程内容,整合实验模块,学生自行设计实验方案等教学方法和手段的改革,以及课程考核方式和时间安排的调整,旨在培养学生的科研兴趣及创新能力。

关键词:

植物保护论文

目前,国内外很多农业院校的植物保护专业均开设了昆虫研究法和植病研究法课程。为优化本科培养方案,浙江农林大学通过调整教学大纲,将植病研究法、昆虫研究法和农药研究法合并成一门植物保护研究法课程。植物保护研究法是植物保护专业重要的专业限选课程之一,是植物保护研究的重要组成部分,也是培养和提高学生专业实验技能和学习兴趣的重要课程,是一门专业性、实践性很强的实验学科。通过这门课程的教学,能使学生掌握植物保护研究的基本方法及基本原理,培养植物保护研究常规操作能力,以及查阅资料、设计实验方案和实际操作能力,提高学生的逻辑思维、整理资料、总结归纳和论文撰写的能力。笔者分析了浙江农林大学植物保护研究法实验教学中存在的问题,提出教学改革内容,并总结了改革成效。

1.实验教学存在的问题

传统实验教学的弊端传统实验教学的主要特征是“灌输式”“填鸭式”,学生在2个小时的实验过程中就是简单地按照实验指导书和实验大纲中的实验方法和步骤依葫芦画瓢,实验完成后,又按照统一的模式填写实验报告。在整个实验过程中,学生无需独立思考和分析,更谈不上发挥创新能力了。因此,很难让学生对实验产生兴趣,培养学生的创造性思维就更无从谈起了。虽然这种传统实验模式简明、清晰,有利于学生对相关结论的认可、理解和记忆,也有利于教师对整个教学过程的控制,教师和学生很轻松愉快地就能完成实验教学任务。学生走上工作岗位后,传统实验教学的弊端立即显现。学生缺乏设计实验的能力,在实验过程中缺乏发现问题、分析问题和解决问题的能力,实验后缺乏正确分析实验结果的能力。因此,传统的实验教学模式急需改革。

实验教学内容系统性不强植物保护研究法是植物保护专业本科学生的一门专业课程,其涉及的内容有昆虫研究法、植病研究法和农药研究法。在以往的实验课程中,只是简单地把这3门课的实验合在一起上,并没有把内容紧密联系在一起,如昆虫实验时,指导教师一般是教授昆虫学科的教师;而在进行植病实验时,则由讲授植病学科的教师指导。这样的实验模式难以使植物病虫害系统联系起来,学生学习专业知识不够系统和深入,容易造成理解上的片面性和孤立性,不利于掌握该专业的系统知识和技能。

实验考核不科学以往实验课程成绩评定的主要依据是实验报告,而每次实验课结束后,学生递交的实验报告只是把实验大纲(包括实验口的、原理、仪器与试剂、内容及方法)原文不动地抄一遍,实验结果更是千篇一律,这样实验就变成了预演过程,学生在实验中缺乏思考,不利于培养发现问题、提出问题、分析问题和解决问题的能力,背离了实验课教学的初衷。同时,还会导致每位学生的实验成绩差异微乎其微,不具有良好的区分度。

2.教学改革内容

重视教学环节在以往的实验课程中,实验教学所需要的实验用具和材料大多数都是实验教辅人员提前准备,导致他们的工作量非常大。让学生参与实验材料的准备和管理,一方面提高了教辅人员的工作效率;另一方面可以让学生对实验过程有全面了解,获得整个科研实践过程的训练,从而养成好的实验习惯,在未来的科研工作中做到计划周密、有条不紊地安排和实施实验计划。同时,在实验教学过程中,必须教育学生认真操作、仔细观察、实事求是地记录实验结果,并对实验进行科学分析。一日_发现弄虚作假的学生,一定要严厉批评,同时帮助他们分析失败的原因,找出解决的方法,有条件的情况下,让其重新做实验,让学生充分意识到科学研究允许失败,但是不能有半l从虚假。提高学生的实践能力实践教学是培养和训练学生实践操作能力,独立分析问题、解决问题能力的重要手段,尤其对于学生创新能力的培养,具有其独特的地位和作用。该项口分别以某种农作物病虫害为主轴展开一系列的实践性实验教学,要求学生自主设计实验和执行各项实验内容,指导教师负责答疑和提供技术帮助。学生通过自己分组、调查、取样、鉴定、查阅资料、讨论制订实验方案和动手实验等一系列步骤,不仅可以很好地将课堂上所学的理论知识与实践相结合,而且还有助于提高自学能力、实践能力和团队协作能力,进一步培养科学思维和创新能力。优化实验教学内容结构将整个实验课程设置成一个综合性的大实验:分别以某个农作物上的病虫害发生规律及防治措施贯穿整个课程。将口前昆虫研究法的昆虫标本的采集与制作、昆虫人工饲养技术、昆虫生态学研究方法、昆虫生理生化研究方法、昆虫分子生物学研究方法和害虫综合治理研究方法5个实验和植病研究法的植物病害调查、植物病原菌分离与鉴定技术、植物病原菌分子生物学鉴定技术、植物病原真菌遗传转化技术和植物病害综合治理技术5个实验合并成1个综合性大实验,将植物病虫害研究以故事的形式紧密地整合在一起,让学生将课堂知识与田间实际应用有机地联系在一起,加深对理论知识的理解,提高学习兴趣。整个实验就是以具体的作物病虫害发生为时间轴,具有很强的连贯性和系统性,学生只有认真完成每一个实验,才能很好地保证后续实验的顺利进行,有助于增强学生的责任感和团队合作精神,同时也改变了学生实验报告千篇一律的`现象。改革成绩评定方式实验课成绩一方面是对学生实验完成好坏的肯定,另一方面也对学生起到了一定的督促作用。为了做到对学生的全面评价,实验成绩除实验报告和考勤成绩外,应将实验过程中学生的学习主动性、动手操作能力、实验结果记录规范性量化纳入成绩考核。在实验过程中,教师应主动观察并记录每个学生的实际动手、操作能力,量化后按一定比例记入总成绩,对那些既有独立操作能力,又有创新意识的学生,适当给予创新学分。实验过程中,学生是否遵守实验室规则、是否具有团队合作精神,实验结束后,学生是否打扫卫生、是否清洗实验器材等,这些看似小问题,但也体现着一个人的品质和素养,做得好的学生也可以适当加分。

3.改革成效

提高学生的专业技能及其对专业知识重要性的认识学生能在同一时间完成植病研究法、昆虫研究法和农药研究法3门实验课程,体现了实验课程很强的连贯性和系统性。学生在实践过程中将这3门课程的相关内容紧密、有机地联系起来,对植物病虫害防治有了更深入的认识,同时也提高了学生的专业技能及其对专业知识重要性的认识。在实验的过程中,强调把学生的动手能力放在首位,让学生更多地参与到实验中,切身体会到所学专业的意义。

培养学生发现、提出、分析和解决问题的能力植物保护研究法实验教学模式具有系统化和整体化特点,同时涉及昆虫研究法、植病研究法、农药研究法等相关学科课程。在实验过程中,学生在对病虫害的认知及其防治等问题的处理上始终处于主体地位,在独立思考、查找资料、咨询专业教师、综合分析之后,拟定出具体的处理方案,能够融会贯通地掌握植物保护学科的理论知识和基本实践技能。

提高指导教师的业务水平新的实验教学模式综合运用了3门相关课程的理论知识,加强了课程的综合实践环节,因此指导教师自身的知识面、操作技术、实践应用和协调能力都需要提升。所以,这种实验教学模式促使教师在教学过程中同学生一起不断学习,丰富专业理论知识,完善专业实践体系,提高发现、提出、分析和解决问题的能力,了解和掌握学科及相关学科的发展动态、研究的新进展、出现的新技术,从而提高了指导教师的业务水平。

4.结语

植物保护研究法在植物保护专业2013级和2014级本科生实验课程教学中进行了实践,通过问卷调查,95%的学生认为在实验过程中有较多的动手机会,激发了自己对实验的兴趣,提高了自己分析和解决问题的能力。因此,认为该教学方法可以发挥学生的主观能动性、拓展学生的科研思路、激发学生的创新创造力和提高学生的独立应用实践能力,具有良好的教学效果。

大家好,本期为大家带来的是Nature集团旗下的子刊Nature Communications,专门发表生物学、物理学和化学等各领域的高质量研究论文,2020年的影响因子为.

1

Cryo-EM structures of human A2ML1 elucidate the protease-inhibitory mechanism of the A2M family

人 A2ML1 的冷冻电镜结构阐明了 A2M 家族的蛋白酶抑制机制

A2ML1 是一种单体蛋白酶抑制剂,属于蛋白酶抑制剂和补体因子的 A2M 超家族。该研究中,作者研究了人类 A2ML1 的蛋白酶抑制机制,并确定了其天然和蛋白酶切割构象的结构。 A2ML1 的功能抑制单元是一种单体,它依赖于蛋白酶的共价结合(由 A2ML1 的硫酯介导)来实现抑制。与将蛋白酶捕获在由四个亚基形成的两个内室中的 A2M 四聚体相比,在蛋白酶切割的单体 A2ML1 中,无序区域围绕捕获的蛋白酶并可能阻止底物进入。在天然 A2ML1 中,诱饵区域穿过疏水通道,这表明诱饵区域切割对这种排列的破坏会触发广泛的构象变化,从而导致蛋白酶抑制。与补体 C3/C4 的结构比较表明,A2M 蛋白质超家族具有这种机制,可触发蛋白水解激活后发生的构象变化。

2

Origins of glycan selectivity in streptococcal Siglec-like adhesins suggest mechanisms of receptor adaptation

链球菌 Siglec 样粘附素中聚糖选择性的起源表明受体适应机制

细菌与宿主受体的结合是共生和发病机制的基础。 许多链球菌使用 Siglec 样结合区 (SLBR) 粘附在细胞表面表达的蛋白质附着碳水化合物上。 识别的精确聚糖库可能决定生物体是否是严格的共生体而不是病原体。 然而,目前尚不清楚是什么驱动了受体选择性。 该研究中,作者使用了五个具有代表性的 SLBR,并确定了序列和结构高变的受体结合位点区域。 结果表明,这些区域使用嵌合发生和单个氨基酸取代来控制首选碳水化合物配体的身份。 作者进一步评估了首选配体的身份如何影响与人类唾液和血浆样品中糖蛋白受体的相互作用。 由于点突变可以改变首选的人类受体,这些研究表明链球菌如何适应环境聚糖库的变化。

3

Computationally designed hyperactive Cas9 enzymes

计算设计的高活性 Cas9 酶

改变活细胞基因组的能力是了解基因如何影响生物体功能的关键,并且对于修改生命系统以达到有用的目的至关重要。 然而,这一目标长期以来一直受到基因工程所涉及的技术挑战的限制。 基因编辑的最新进展绕过了其中一些挑战,但结果并不理想。 该研究中,作者使用 FuncLib 计算设计具有显着更高的不依赖于供体的编辑活性的 Cas9 酶。 作者使用与酵母细胞存活相关的遗传回路来量化 Cas9 活性并发现工程区域之间的协同相互作用。 这些过度活跃的 Cas9 变体在哺乳动物细胞中有效发挥作用,并将更大、更多样化的插入和缺失池引入目标基因组区域,为增强和扩展基于 CRISPR 的基因编辑的可能应用提供了工具。

4

Modular (de)construction of complex bacterial phenotypes by CRISPR/nCas9-assisted, multiplex cytidine base-editing

通过 CRISPR/nCas9 辅助、多重胞苷碱基编辑对复杂细菌表型进行

模块化(去)构建

CRISPR/Cas 技术构成了基因组工程的强大工具,但它们在非传统细菌中的使用取决于宿主因素或外源重组酶,这限制了效率和通量。该研究中,作者通过为革兰氏阴性菌开发广泛适用的基因组工程工具集来减轻这些实际限制。该挑战通过定制 CRISPR 碱基编辑器来解决,该编辑器能够以 >90% 的效率实现单核苷酸分辨率操作 (C·G T·A)。此外,将 Cas6 介导的guide RNAs 处理整合到用于质粒组装的流线型协议中,支持多重碱基编辑,效率 >85%。该工具集用于构建和解构土壤细菌恶臭假单胞菌中的复杂表型。芳香化合物生产表型的单步工程和复杂氧化还原代谢的多步解构说明了该工具箱提供的多重碱基编辑的多功能性。因此,这种方法克服了以前技术的典型局限性,并赋予了迄今为止遥不可及的革兰氏阴性细菌工程计划。

5

Improving recombinant protein production by yeast through genome-scale modeling using proteome constraints

通过使用蛋白质组约束的基因组规模建模提高酵母的重组蛋白产量

真核细胞被用作细胞工厂来生产和分泌大量重组药物蛋白,包括目前最畅销的几种药物。 由于分泌途径的重要作用和复杂性,传统上通过代谢工程改进重组蛋白生产相对临时。 并且需要一种更系统的方法来产生新颖的设计原则。 该研究中,作者提出了酵母酿酒酵母 (pcSecYeast) 的蛋白质组约束的基因组规模蛋白质分泌模型,这使得能够模拟和解释由有限的分泌能力引起的表型。 作者进一步应用 pcSecYeast 模型来预测生产几种重组蛋白的过表达目标。通过实验验证了许多预测的 α-淀粉酶生产目标,以证明 pcSecYeast 作为计算工具在指导酵母工程和改进重组蛋白生产方面的应用。

6

An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae

一种在酿酒酵母中高水平表达的体内基因扩增系统

由于基因表达水平不足导致的代谢途径瓶颈仍然是使用微生物细胞工厂进行工业生物生产的一个重大问题。增加基因剂量可以克服这些瓶颈,但目前的方法存在许多缺点。该研究中,作者描述了 HapAmp,一种使用单倍体不足作为进化力量来驱动体内基因扩增的方法。 HapAmp 可实现异源基因拷贝的高效、可滴定和稳定整合,将多达 47 个拷贝传递到酵母基因组中。该方法以代谢工程为例,可显着提高倍半萜橙花油、单萜柠檬烯和四萜番茄红素的产量。柠檬烯滴度在单个工程步骤中提高了 20 倍,在烧瓶培养中 1 g L -1 。作者还展示了酵母中异源蛋白质产量的显着增加。 HapAmp 是一种快速解锁代谢瓶颈的有效方法,用于微生物细胞工厂的发展。

7

Discovery and characterization of a terpene biosynthetic pathway featuring a norbornene-forming Diels-Alderase

发现和表征具有降冰片烯形成 Diels-Alderase 的萜烯生物合成途径

周环酶,即催化周环反应的酶,形成了具有生物催化效用的不断扩大的酶家族。尽管发现了越来越多的周环酶,但令人惊讶的是,环戊二烯和烯烃亲二烯体之间的 Diels-Alder 环化反应形成降冰片烯,这是合成化学中研究最好的环加成反应之一,迄今为止还没有相应的酶促反应。该研究中,作者报告了以降冰片烯合酶 SdnG 为特征的途径的发现,该途径用于生物合成 sordaricin - 抗真菌天然产物 sordarin 的萜烯前体。sordaricin 生物合成的完全重构揭示了 Nature 使用的一种简洁的氧化策略,用于将完全碳氢化合物前体转化为 SdnG 的高度功能化底物,用于分子内 Diels-Alder 环加成。SdnG 生成 sordaricin 的降冰片烯核心并加速该反应以抑制活化的亲双烯体的宿主介导的氧化还原修饰。这项工作的发现扩大了周环酶催化反应和 P450 介导的萜烯成熟的范围。

8

Rationally engineering santalene synthase to readjust the component ratio of sandalwood oil

合理改造檀香合成酶调整檀香油成分比例

植物精油 (PEO) 广泛用于化妆品和保健品行业。 PEO的成分比例决定了它们的质量。在PEO生物技术平台的建设中,控制组分比例是一项挑战。该研究中,作者通过多尺度模拟 探索 产物混杂和产物特异性檀香烯合酶(即 SaSSy 和 SanSyn)的催化反应途径。 SanSyn 的 F441 被发现是限制中间体构象动力学的关键残基,因此一般碱基 T298 的直接去质子化主要产生 α-檀香烯。随后对该塑料残基的诱变导致产生突变酶 SanSynF441V,该酶可产生 α-和 β-檀香烯。通过代谢工程的努力,檀香萜/檀香酚滴度达到 mg/L,成分比与 ISO 3518:2002 标准非常匹配。本研究代表了通过代谢和酶工程相结合构建具有理想组分比例的 PEO 生物技术平台的范例。

蛋品卵黄磷蛋白的研究进展论文

。蛋类在我国人民膳食中构成中占,是优质蛋白质的主要来源。蛋类制成的蛋制品有皮蛋、咸蛋、槽蛋、冰蛋、全蛋粉、蛋白粉、蛋黄粉等。2、蛋的营养价值(1)蛋壳蛋壳含有丰富的碳酸钙,非常容易消化吸收,是补充钙质的最佳来源.在正常情况下,每天取约2公克的蛋壳研成粉状食用,可预防因钙质不足、骨量减少而导致的腰酸背痛、容易骨折或罹患骨质疏松症.(2)蛋黄蛋黄含有丰富的蛋白质、脂肪、钙、卵磷脂和铁质等营养成分,其中卵磷脂被肠胃吸收之后,可促进血管中胆固醇的排除,有预防动脉粥样化的功用,且卵磷脂经消化吸收之后,可生成胆碱,这种物质与脑部的神经传达作用有关,可促进学习、记忆的能力,达到预防老人痴呆的功效。胆碱还可预防肝脏积存过量脂肪,避免形成脂肪肝及改善肝脏机能。而蛋黄所含的铁质,利用率最高,是最补血的天然食品.(3)蛋白蛋白中含有一种叫白蛋白的蛋白,具有清除活性氧的作用,可增强人体免疫力,达到防癌的功效,且蛋白中的卵白蛋白,经消化酵素分解之后,可以产生一种溶解酶,可活化巨噬细胞,抵抗外来病菌的入侵,提高身体的免疫力.(4)蛋系带蛋黄左右有两条白色的索状物,就是蛋系带,它是蛋白的一部分,也是优质蛋白质的来源。它还含有一种燕窝也有的成分,叫「涎酸」,具有抗氧化作用,可与侵入人体的病毒结合,进而消灭病毒,防止感染的产生,并且有预防癌变的作用. 此外,中医药古籍《本草纲目》记载:蛋性味甘平,能安5脏、安心神;能定惊、安胎,具有养阴、健脾、补肺等作用,且补而燥,常吃能去病延年,最适合成长中的儿童、青少年。3、加工烹调对营养价值的影响一般烹调加工方法,如煮整蛋、油煎、油炒、蒸蛋等,除维生素B2少量损失外,对其它营养成分影响不大。烹调过程中的加热不仅具有杀菌作用,而且具有提高其消化吸收率的作用,因而生蛋清中存在抗微生物素和抗胰蛋白酶经加热后被破坏,蛋白质的消化吸收和利用更完全,因此,不宜生吃鲜蛋。蛋类包括鸡蛋、鸭蛋、鹅蛋、鹌鹑蛋、鸽蛋、鸵鸟蛋、火鸡蛋、海鸥蛋及其加工制成的咸蛋、松花蛋等。蛋类的营养素含量不仅丰富,而且质量也很好,是一类营养价值较高的食品。蛋类的主要营养成分一、蛋白质蛋类蛋白质含量一般在10%以上。全鸡蛋蛋白质的含量为12%左右,蛋清中略低,蛋黄中较高,加工成咸蛋或松花蛋后,变化不大。鸭蛋的蛋白质含量与鸡蛋类似。蛋白质氨基酸组成与人体需要最接近,因此生物价也最高,达94%,是其他食物蛋白质的  倍左右。蛋白质中赖氨酸和蛋氨酸含量较高,和谷类和豆类食物混合食用,可弥补其赖氨酸或蛋氨酸的不足。蛋中蛋白质中还富含半胱氨酸,加热过度使半胱氨酸部分分解产生硫化氢,与蛋黄中的铁结合可形成黑色的硫化铁。煮蛋中蛋黄表面的青黑色和鹌鹑蛋罐头的黑色物质来源于此。二、 脂类蛋清中含脂肪极少,98%的脂肪存在于蛋黄当中。蛋黄中的脂肪几乎全部以与蛋白质结合的良好乳化形式存在,因而消化吸收率高。鸡蛋黄中脂肪含量约28%~33%,其中中性脂肪含量约占62%~65%,磷脂占30%~33%,固醇占4%一 5%,还有微量脑苷脂类。蛋黄中性脂肪的脂肪酸中,以单不饱和脂肪酸油酸最为丰富,约占 50%左右,亚油酸约占10%,其余主要是硬脂酸、棕榈酸和棕榈油酸,含微量花生四烯酸。蛋黄是磷脂的极好来源,所含卵磷脂具有降低血胆固醇的效果,并能促进脂溶性维生素的吸收。胆固醇含量极高,主要集中在蛋黄,加工成咸蛋或松花蛋后,胆固醇含量无明显变化三、碳水化合物鸡蛋当中碳水化合物含量极低,大约为1%左右,分为两种状态存在,一部分与蛋白质相结合而存在,含量为 %左右;另一部分游离存在,含量约 %。后者中 98%为葡萄糖,其余为微量的果糖、甘露糖、阿拉伯糖、木糖和核糖。这些微量的葡萄糖是蛋粉制作中发生美拉德反应的原因之一,因此生产上在干燥工艺之前采用葡萄糖氧化酶除去蛋中的葡萄糖,使其在加工储藏过程中不发生褐变。五、矿物质蛋中的矿物质主要存在于蛋黄部分,蛋清部分含量较低。蛋黄中含矿物质 %~%,其中磷最为丰富,为240mg/l00g,钙为112mg/100g。蛋黄是多种微量元素的良好来源,包括铁、硫、镁、钾、钠等。蛋中所含铁元素数量较高,但以非血红素铁形式存在。由于卵黄高磷蛋白对铁的吸收具有干扰作用,故而蛋黄中铁的生物利用率较低,仅为3%左右。六、维生素蛋中维生素含量十分丰富,且品种较为完全,包括所有的B族维生素、维生素 A、维生素 D、维生素 E、维生素 K 和微量的维生素 C。其中绝大部分的维生素 A、维生素 D、维生素 E 和大部分维生素 B1都存在于蛋黄当中。鸭蛋和鹅蛋的维生素含量总体而言高于鸡蛋。此外,蛋中的维生素含量受到品种、季节和饲料中含量的影响。七、蛋类的合理食用在生鸡蛋蛋清中,含有抗生物素蛋白和抗胰蛋白酶。抗生物素蛋白能与生物素在且肠道内结合,影响生物素的吸收,食用者可引起食欲不振、全身无力、毛发脱落、皮肤发黄、肌肉疼痛等生物素缺乏的症状;抗胰蛋白酶能抑制胰蛋白酶的活力,妨碍蛋白质消化吸收,故不可生食蛋清。烹调加热可破坏这两种物质,消除它们的不良影响。但是至不宜过度加热,否则会使蛋白质过分凝固,甚至变硬变韧,形成硬块,反而影响食欲及消化吸收。蛋黄中的胆固醇含量很高,大量食用能引起高脂血症,是动脉粥样硬化、冠心病;疾病的危险因素,但蛋黄中还含有大量的卵磷脂,对心血管疾病有防治作用。因此,吃鸡蛋要适量。据研究,每人每日吃1~2个鸡蛋,对血清胆固醇水平既无明显影响,可发挥禽蛋其他营养成分的作用。希望可以帮到你

以前的物质生活比较匮乏,能够吃上鸡蛋是一件比较奢侈的事情。

随着时代的发展,人们的生活水平逐渐提高,人们的观念也发生了很大的转变。越来越多的人开始有 养生 的概念,鸡蛋成为每个家庭餐桌上常见的食物。

与此同时,人们对鸡蛋产生了不同的看法。有些人认为鸡蛋黄中含有大量的 胆固醇 ,吃多了对 心血管不好 ,也有些人认为常吃鸡蛋可以达到 养生 的效果。那么事实上 每天一个鸡蛋,是“ 养生 ”,还是“损坏心血管”呢?

据《英国医学杂志·心脏》研究显示,与不吃或者很少吃鸡蛋的人相比之下, 健康 成年人每天吃1个鸡蛋,有助于降低患上心血管疾病的风险,并不会损坏心血管 。这一研究结果为推荐 健康 的成年人摄入鸡蛋量提供了科学依据。

在《鸡蛋黄中蛋白质研究进展》研究表明,鸡蛋黄中富含 蛋白质 ,蛋白质占蛋黄总重量17%,并且其蛋白质的种类繁多。

蛋黄中主要包括卵黄免疫球蛋白、蛋黄低密度脂蛋白、蛋黄高密度脂蛋白以及卵黄高磷蛋白等,只有鸡蛋黄中富含蛋白质吗?蛋清中也富含着不同的蛋白质,在蛋清中主要包括卵白蛋白、卵转铁蛋白、卵类黏蛋白、卵黏蛋白、溶菌酶、卵糖蛋白等。

早在1973年,联合国粮农组织和世界卫生组织在 氨基酸平衡理论 的基础上,提出利用 氨基酸模式 来评价蛋白质营养价值。在 蛋白质中必需氨基酸的构成比例与人体氨基酸模式越接近,它的营养价值就越高。

据《鸡蛋营养品质评价的研究进展》表明,鸡蛋蛋白质含量高达%, 它属于完全蛋白,同时也是属于最接近人体的氨基酸模式蛋白质之一。鸡蛋中氨基酸比例均衡,它有利于促进 胃肠道吸收 。由此可见,鸡蛋的 营养价值很高 。

一个鸡蛋里并不仅仅富含着蛋白质,同时还含有脂质成分,尤其蛋黄中更是如此。据《鸡蛋营养品质评价的研究进展》表明鸡蛋的 脂肪 几乎都位于蛋黄中,在蛋黄里含有99%以上的脂类成分,分别有 真脂、磷脂和胆固醇 脂类成分。

其中真脂约占蛋黄总量的20%,占脂肪总量的% ;磷脂占蛋黄总量的10%,占脂肪总量的% ; 而胆固醇占脂肪总量的%。由此可见,在蛋黄中含量最多的是 真脂, 其次是磷脂和胆固醇。

蛋黄主要由 三酰甘油、磷脂和游离胆固醇 脂质组成, 其中包含丰富的 磷脂 和 不饱和脂肪酸 。

人体必需的脂肪酸主要分为两种,一种是 ω⁃3系列的α⁃亚麻酸 ,一种是 ω⁃6系列的亚油酸 。其中 α⁃亚麻酸 可以使人体血液中胆固醇和低密度脂蛋白胆固醇的浓度 降低 ,减少与炎症相关分子和物质的产生,从而起到减少患上的心脏病等 慢性病、癌症和关节炎 的发生率,达到一种 预防 的作用。

此外,在流行病学中研究表明,大量消耗 ω⁃3脂肪酸 的人群患上 乳腺癌,前列腺癌和结肠癌 的几率较低。大量研究还证明, 亚油酸 可以使胰岛素敏感性增强 ,从而有效降低 心血管疾病 的发病率。这说明,在人们的饮食中脂肪酸组成对人体 健康 是有一定的影响,必需脂肪酸的含量可作为评价鸡蛋营养水平的重要指标。

在日常生活中,鸡蛋常被认为是多种维生素的良好来源。鸡蛋中除了含有 维生素C 以外, 其蛋黄中还包含着 维生素A、D、E、烟酸、叶酸和泛酸 等。根据美国第三次全国 健康 和营养调查数据显示,按营养素总摄入量的百分比来计算,食用一个鸡蛋里可以提供9%的维生素B6,17%的叶酸、2%的维生素A、25%的维生素E、25%的维生素B12 。

在蛋黄中富含的 维生素A ,它不仅在维持人 正常视觉、上皮细胞完整 等方面起到重要作用,而且在抑制人体的 肿瘤 方面也起到一定的作用。

通常,在一个鸡蛋里约含有的维生素E,这个维生素E含量相当于每天标准推荐量的。维生素E可以有效地对抗自由基,它起到 延缓衰老、改善人体血液循环、软化血管、降血脂 等作用。

而烟酸属于一种B族维生素,它是人体里一种不可缺失的营养成分,对人体的生长发育起着非常重要的作用。

鸡蛋除了是多种维生素的来源之一,同时也是 矿物质 的良好来源。在蛋黄里约含有1%的各种矿物质。其中最为丰富的矿物质含量是 磷 ,超过60% 磷存在卵磷脂中。

在蛋清中主要为 硫、钾、钠和氯等 矿物质, 其次是 磷、钙、镁和硒 。这些微量元素是构成人体内各种酶、激素、维生素等物质的重要部分,对维护人体内 正常新陈代谢以及及生命活动 起到至关重要的作用。鸡蛋营养如此丰富,那么对于孕妇、小孩、胆囊患者是否可以多吃鸡蛋呢?

根据《中国居民膳食营养素参考摄入量(2013版)》中推荐,孕产妇在 不同孕期阶段 需要增加不同的 蛋白质摄入量, 孕早期中每天增加克,孕中期每天增加15克,孕晚期每天增加30克,产妇乳母每天增加25 克,而一个鸡蛋约含有克蛋白质。

因此,在摄入其他动物性食物量不过多的前提之下, 孕中、孕晚期阶段的产妇 可多吃一个鸡蛋。

在鸡蛋里富含着 卵磷脂、胆碱及维生素 ,这些营养成分有助于孩子的发育。孩子的蛋白质需要量低于一个成年人,并且孩子的胃容量是比较有限。如果吃太多的鸡蛋会占用到孩子的胃容量,导致孩子摄入其他辅食量减少。

因此 孩子不需要吃太多的鸡蛋,每天吃一个鸡蛋就足以满足幼儿补铁的需要 。 如果孩子吃其他动物性的食物不多的话,可以吃两个鸡蛋,这样可以更多地补充其他有益的营养成分。

很多人对于蛋黄的喜爱都止于 胆固醇,那么蛋黄要不要吃呢? 事实上,食物中的胆固醇并没有那么可怕。

胆固醇属于人体内所需要的重要成分,在人体里各组织里都含有它,它是合成维生素D3及胆汁酸的前提。人体里有 合成胆固醇的能力 ,人体 每天合成胆固醇的量远远大于通过食物摄入胆固醇的量 ,大部分 健康 的人体里可有效地调节吃进去和合成的胆固醇,使人体内保持一种 平衡 的状态。

在《中国居民膳食营养素参考摄入量(2013版)》中,已经取消了对于膳食胆固醇的限制。这说明,一个蛋黄还是可以吃的。 但是取消胆固醇上限,这并不代表着可以随意吃蛋黄。

对于一些患有 代谢性疾病 的人群而言,由于他们的体内合成胆固醇和外界摄取胆固醇的平衡能力有一定 影响 ,如果额外地多摄入的胆固醇可能会影响他们体内的血脂代谢,从而引起 高血脂 等症状。因此, 不建议患有代谢性疾病的人群摄入过多的蛋黄 。

那么对于患有胆囊炎疾病的人群而言,是否能吃鸡蛋呢? 胆囊炎患者的饮食要求低脂,不能摄入过多的胆固醇。

低脂饮食虽然限制了胆囊疾病患者食用蛋黄,但是蛋清还是可以食用的。因为在鸡蛋的蛋清中几乎不含有脂肪,也不含有胆固醇,同时也几乎没有蛋黄中的其他多种维生素和微量元素,没有膳食纤维,没有卵磷脂,对胆囊疾病患者来说是比较友好的。

此外,我们建议胆囊疾病患者吃 豆类及其豆制品 来补充蛋白质。因为豆类及其豆制品里富含着 膳食纤维和豆固醇 ,这些营养成分可以有利于胆囊疾病患者降低身体对胆固醇的利用。

鸡蛋营养丰富,物美价廉,它主要由 蛋白质及氨基酸、脂肪酸、维生素、矿物质、生物活性物质等组成 ,有益于人们的身体 健康 。

鸡蛋在人的体内容易消化、吸收,在全世界范围内,鸡蛋都是公认的营养食品。在基于摄入其他动物性食物量不过多的前提之下,处于孕中、孕晚期阶段的产妇以及小孩可多吃一个鸡蛋。

鸡蛋里富含着胆固醇,虽然在《中国居民膳食营养素参考摄入量(2013版)》中取消了对膳食胆固醇的摄入量上限,但仍然建议 胆囊炎患者 控制蛋黄的摄入量,过多的摄入会影响 胆囊炎患者 体内的血脂代谢,从而引起 高血脂 等症状。建议注意混合其他饮食搭配,保持营养均衡,更有助于身体 健康 。

参考文献:

【1】《鸡蛋营养品质评价的研究进展》中国食物与营养 2022,28(1)45-50

【2】《鸡蛋黄中蛋白质研究进展 》中国家禽2012年第34卷第21期

【3】《研究称每天吃鸡蛋可能有助降低心血管疾病风险》食品工业2018 年第39卷第 7 期

蛋含有蛋的全息全部营养成份是和人体最接近的优质蛋白含卵磷脂补充大脑和全身营养而蛋制品经过加工损矢很多营养成份还附加其它成份和添加剂毎人每天最好吃一个煮鸡蛋营养丰富

相关百科