杂志信息网-创作、查重、发刊有保障。

生物数学模型论文

发布时间:2024-07-04 22:14:32

生物数学模型论文

建模论文建模论文写作指导(一)、建模论文的标准组成部分建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力.一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成.现就每个部分做个简要的说明.1. 题目题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象.建议将论文所涉及的模型或所用的计算方式写入题目.如“用概率方法计算商场打折与返券的实惠效应”.2. 摘要摘要是论文中重要的组成部分.摘要应该使用简练的语言叙述论文的核心观点和主要思想.如果你有一些创新的地方,一定要在摘要中说明.进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%.”摘要应该最后书写.在论文的其他部分还没有完成之前,你不应该书写摘要.因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要.摘要一般分三个部分.用三句话表述整篇论文的中心.第一句,用什么模型,解决什么问题.第二句,通过怎样的思路来解决问题.第三句,最后结果怎么样.当然,对于低年级的同学,也可以不写摘要.3. 正文正文是论文的核心,也是最重要的组成部分.在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的.其中,提出问题、分析问题应该是清晰简短.而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确.在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升.4. 结论论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价.结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一.并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验.5. 参考资料在论文中,如果使用了其他人的资料.必须在论文后标明引用文章的作者、应用来源等信息.以下是我找的两篇获奖论文房贷应该怎么还才合理摘要及关键词:本论文主要讨论了怎样还房贷才合理。关键词: 房贷 本金 利率 等额本金 等额本息一.问题的提出随着经济的发展,金融正越来越多的进入普通人的生活;贷款,保险,养老金和信用卡;个人住房抵押贷款是其中重要的一项。当今社会中,热度最高的话题当属“买房子”。而北京目前房价都在3、4万一平米左右,使人们不得不选择进行贷款。而去银行贷款其实也是一门学问,究竟应该怎样还房贷才合适呢?下面数据为最近公布的银行贷款利率短期贷款: 中长期贷款:六个月以内(含六个月): 一至三年(含三年)六个月至一年(含一年) 三年至五年(含五年)五年以上二.模型的假设1.银行在贷款期利率不变2.在这段期间内不考虑经济波动的影响3.客户在还款期内还款能力不变,而且不提前还款三.模型建立符号规定A : 客户向银行贷款的本金B : 客户平均每期应还的本金C : 客户应向银行还款的总额D : 客户的利息负担总和α: 客户向银行贷款的月利率β: 客户向银行贷款的年利率m : 贷款期n : 客户总的还款期数 根据我们的日常生活常识,我们可以得到下面的关系:(1) (2) (3) 两种比较常见的还款方式(1)等额本息还款把按揭贷款的本金总额与利息总额相加,然后平均分摊到还款期限的每个月中。作为还款人,每个月还给银行固定金额。(2)等额本金还款又称利随本清、等本不等息还款法。贷款人将本金分摊到每个月内,同时付清上一交易日至本次还款日之间的利息。等额本息还款模型 (1)贷款期在1年以上:先假设银行贷给客户的本金是在某个月的1号一次到位的. 客户的合同里规定说,在本金到位后的下个月1号开始还钱,且设在还款期内年利率不变. 因为一年的年利率是β,那么,平均到一个月就是(β/12),也就是月利率α, 即有关系式: 设每月均还款总额是x(元) (i=1…n)是客户在第i期1号还款前还欠银行的金额 (i=1…n) 是客户在第i期1号还钱后欠银行的金额. 根据上面的分析,有第1期还款前欠银行的金额: 第1期还款后欠银行的金额: ……第i期还款前欠银行的金额: 第i期还款后欠银行的金额: ……第n期还款前欠银行的金额: 第n期还款后欠银行的金额: 因为第n期还款后,客户欠银行的金额就还清. 也就是说: ,即: 解方程得: 这就是月均还款总额的公式. 因此,客户总的还款总额就等于: 利息负担总和等于: 等额本金还款模型假设贷款期在1年以上.设客户第i期应付的金额为 (i=1…n) (单位:元)因此,客户第一期应付的金额为 : 第二期应付的金额为 : 那么,客户第n期应付的金额为 : 累计应付的还款总额为 :利息负担总和为 : 四.模型求解某一个人从银行贷款100万元,贷款期限为五年,即分60次还款,贷款利率为,每次还款金额见下表: 等额本息还款 元 等额本金还款第一次 第二次 第三次 第四次 第五次 第十次 第二十次 第三十次 第四十次 第五十次 第六十次 总还款金额 117 116万贷款二十年 等额本息还款 等额本金还款第一次 第二次 第三次 第四次 9575第五次 第十次 第20次 第50次 第80次 第100次 7375第150次 第180次 第200次 第210次 第220次 4625第230次 第240次 总还款 180万 166万贷款三十年 等额本息还款 等额本金还款第一次 第二次 第三次 第四次 第五次 第十次 8125第二十次 第五十次 第一百次 6750第一百五十次 第二百次 第二百五十次 第三百次 第三百一十次 第三百二十次 第三百三十次 第三百四十次 第三百五十次 第三百六十次 总还款 229万 199万五.模型分析等额本金还款:适合目前收入较高的人群。借款人在开始还贷时,每月负担比等额本息要重。随着时间推移,还款负担便会逐渐减轻。这种还款方式相对同样期限的等额本息法,总的利息支出较低。等额本息还款法的特点是每个月归还一样的本息和,容易作出预算。还款初期利息占每月供款的大部分,随本金逐渐返还供款中本金比重增加。等额本息还款法更适用于现期收入少,预期收入将稳定或增加的借款人,或预算清晰的人士和收入稳定的人士。六.模型应用该模型可在实践中应用,每一个贷款买房者可应用这个模型,并根据自己的条件和承受能力,对各种贷款方案进行优选。ETC收费与停车收费成本比较现在面对严重的高速公路堵车问题,我们真的手足无措吗?几年前,速通公司推出了ETC不停车收费系统,这本应该能很大程度上缓解高速公路收费站拥堵的情况,但实际效果却并不理想。我们觉得 主要原因是ETC成本太高,一台机器要450元钱,于是很多人宁可花时间在路上等。其实,如果我们仔细算一下成本,便会对这个问题有更新的认识。我们的几个平均参数:车重m=,轮胎与地面摩擦系数u=,汽油热值q= J/kg,93汽油价格元/升(元/千克),发动机空转功率p= 17 kw ,热效率为23%。一般汽车在出高速时,车道一般有几辆车在排队,我们平均为5辆。每辆车交费时间平均为10s。这样每辆车在收费时启动制动5次,等待50秒。每次启动速度由0到10mph,启动距离为5米。由此我们推算;1启动时耗油,设为 ,由能量守恒得到等式 ,代入数据后得到 =。2 等待10秒时油耗, = = 所以每次汽车出高速要消耗 =119g 汽油,约合元。如果按每周走一次高速算,一年52次就是元,6年下来花在高速收费站毫无意义的油钱就是元,而这钱已经够买一台ETM机了。除去油钱,每次交费时断断续续的启动和刹车,也会对发动机和刹车片造成不小的损耗,增加额外的维修费用。还有很重要的一点是浪费的时间,每次平均要50秒,如果遇上高峰期,几公里长的车队几米几米的向前动,耽误的时间就更别提了。所以综合以上因素考虑,如果汽车在六年内经常走高速的话,使用ETC的成本是要低于停车收费的。从车主的角度考虑,汽车配备了ETC机,可以在不太高的车速下完成交费。既省下了频繁启动和等待浪费的油钱,也减少了对发动机刹车片的磨损,还省下了很多时间。从路政部门的角度考虑,如果停车收费,需要在收费站投入大量的纸张、油墨和计算机处理系统并安排相应的工作人员,收上的钱还需要汇总转移一次才能存入银行,既耗材又麻烦。如果使用ETC系统,就可以无纸化收费,无需工作人员进行处理,车主交的钱可以直接与账户挂钩,省下了很多步骤。所以从这些方面考虑,ETC系统可以降低路政部门在收费站投入的成本。从环境的角度考虑,汽车在刹车和等待时会排放大量的尾气,达正常行驶时的几倍,尤其是在高峰期收费站拥堵时,几百两几千两汽车堵在几公里路上,尾气的排量和密度是大的惊人的。使用ETC系统可以很有效地缓解收费站拥堵的情况,从而减轻汽车尾气对收费站周围环境的影响。综合以上因素,无论从车主成本、路政部门还是环境角度考虑,使用ETC系统都会起到很大的积极作用。我们在ETC系统的购买上还有两个建议,就是路政部门是不是也可以帮车主分担些费用,因为这对双方都有利;或许政府还可以出台相关政策,在汽车出厂时就配备ETC机,把这笔钱算在购车成本里,并给予相应补贴之类的。总之越多的车辆配备了ETC机,高速收费站就会越畅通望楼主采纳。。。。。。。。。。。。。。。。。。。。。很辛苦的。。

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。目录背景数学数学建模数学建模应用数学建模的意义数学建模应用数学模型过程模型准备模型假设模型建立模型求解模型分析模型检验模型应用起源进入西方国家大学在中国大学生数学建模竞赛全国大学生数学建模竞赛全国大学生数学建模竞赛章程(2008年)第四届全国大学生数学建模竞赛国际大学生数学建模竞赛数学建模资料竞赛参考书国内教材、丛书国外参考书(中译本)专业性参考书数学建模题目两项题四项题数学建模相关数学建模的意义数学建模经验和体会最新进展数学建模应当掌握的十类算法背景 数学 数学建模 数学建模应用数学建模的意义 数学建模 应用数学模型过程 模型准备 模型假设 模型建立 模型求解 模型分析 模型检验 模型应用起源 进入西方国家大学 在中国大学生数学建模竞赛 全国大学生数学建模竞赛 全国大学生数学建模竞赛章程(2008年) 第四届全国大学生数学建模竞赛 国际大学生数学建模竞赛数学建模资料 竞赛参考书 国内教材、丛书 国外参考书(中译本) 专业性参考书数学建模题目 两项题 四项题数学建模相关 数学建模的意义 数学建模经验和体会最新进展数学建模应当掌握的十类算法展开 编辑本段背景数学近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。数学建模数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。数学建模应用数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。编辑本段数学建模的意义数学建模数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。 数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。应用数学模型应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的一个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Spss,Lingo,Mapple,Mathematica,Matlab甚至排版软件等。

无忧在线有很多数学建模论文,你去搜一下就行

这个不用做题吧,一个队三个人,一个提供idea,一个编程,另一个写论文就很简单啊,另外你的知识要丰富,个人认为运筹学、线性规划还是要学一学的,另外看到问题你不一定会,关键看你查找资料和理解问题的能力

研究生论文做数学模型

如在别人建好的数学模型基础上增加某个变量(略修改),其结果比原数学模型要好,这就是你成果。如在他人的数学模型,带入自己的数据,不管答案不一样,这就有可能会算抄袭。

你可以把邮箱给我,我给你发一些写作模板。我刚参加完数学建模的国内赛和国际赛,有一定的经验哦

听数学建模课的感想今年,我选修了数学建模这门课,因为我感觉数学建模是非常有用的一门课,而且我对数学建模也非常感兴趣。在学习的过程中,我获得了很多知识,对我有非常大的提高。同时我有了一些感想和体会。数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。在学习中,我知道了数学建模的过程,其过程如下:(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。(2) 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。(3) 模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)(4) 模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。(5) 模型分析:对所得的结果进行数学上的分析。(6) 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。(7) 模型应用:应用方式因问题的性质和建模的目的而异。我还了解到学习数学建模的意义是:1、培养创新意识和创造能力2、训练快速获取信息和资料的能力3、锻炼快速了解和掌握新知识的技能4、培养团队合作意识和团队合作精神5、增强写作技能和排版技术6、荣获国家级奖励有利于保送研究生7、荣获国际级奖励有利于申请出国留学在学习了数学建模后,我有了很多体会,我认为数学建模带给我的是现在的指示,发散性思维,各种研究方法和手段。特别是对我们未来人生的奠基作用,毫不夸张地说,我们将在以后的人生享受它的思慧!通过数学建模,我学会了“我们”,培养了“三人同心,其利断金”的团队精神,数学建模教会了我顽强和忍耐,教会我做事谨慎,言如其实,教会我凡事要有自己的创新,不能局限于俗套,它还教会我踏踏实实做人,认认真真做事。是数学建模让我提高了自己,在今后,我会用数学建模的思想去思考问题。我相信,我会进步更多的!我永远不会忘了我的数学建模课!这是我写的,你看能不能用

奥运会临时超市网点设计模型(小三黑体,题目直接用竞赛试题题目,不必另起) 摘要 (一级标题,4号黑体,居中)(论文其他内容小4号宋体字,单倍行距,左侧装订)本文根据题目附录中提供的问卷调查数据,利用关系数据库查询语言,从不同侧面进行了准确统计,找出了运动会期间观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律:大部分(约72%)的观众坐公交和地铁出行;过半数(约52%)的观众选择西餐作为餐饮方式;绝大部分(约88%)的观众消费额在300以下,其中200到300之间人数约占44%。根据观众在出行方式、餐饮方式以及消费额(非餐饮)三方面所反映的规律,对不同消费档次(非餐饮)的观众进行统计,分别测算出题目(图2)中20个商区的人流量分布:A1: A2: A3: A4: A5: A6: A7: A8: A9: A10:: B2: B3: B4: B5: B6: C1: C2: C3: C4:在解决了问题1、2的基础上,对不同消费档次的观众赋予不同消费档次指数,然后,通过对综合购买力的分析以及对各消费档次观众的消费水平进行全面、综合考查,并以此为依据对问题3建立了线性优化模型,运用数学软件MATLAB编程对模型进行二维搜索,得到了模型最优解,设计出了各商区两种类型迷你超市网MS的分布方案: 商区网类型 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10小MS个数 5 4 4 4 5 8 4 3 3 2大MS个数 5 4 4 5 5 9 4 4 3 3 商区网类型 B1 B2 B3 B4 B5 B6 C1 C2 C3 C4小MS个数 2 3 4 3 4 6 2 2 4 3大MS个数 2 1 3 3 3 5 1 2 4 5最后,通过综合分析,我们建立的模型能够准确描述各商区消费水平,得出两种不同类型MS个数分布基本均衡,既满足了奥运会期间的购物需求,又考虑了商业赢利。关键词(一级标题,四号黑体,居中)人流量;二维搜索;消费档次指数;线性优化模型;综合购买力(3-5个)(第一页只有摘要和关键词,而且论文从这一页开始编页号,页码居中)一. 问题的提出(一级标题,四号黑体,居中)2008年北京奥运会的建设工作已经进入全面设计和实施阶段。奥运会期间,在比赛主场馆的周边地区需要建设由小型商亭构建的临时商业网点,称为迷你超市(Mini Supermarket, 以下记做MS)网,以满足观众、游客、工作人员等在奥运会期间的购物需求,主要经营食品、奥运纪念品、旅游用品、文体用品和小日用品等。在比赛主场馆周边地区设置的这种MS,在地点、大小类型和总量方面有三个基本要求:满足奥运会期间的购物需求、分布基本均衡和商业上赢利。图1给出了比赛主场馆的规划图。作为真实地图的简化,在图2中仅保留了与本问题有关的地区及相关部分:道路(白色为人行道)、公交车站、地铁站、出租车站、私车停车场、餐饮部门等,其中标有A1-A10、B1-B6、C1-C4的黄色区域是规定的设计MS网点的20个商区。为了得到人流量的规律,一个可供选择的方法,是在已经建设好的某运动场(图3)通过对预演的运动会的问卷调查,了解观众(购物主体)的出行和用餐的需求方式和购物欲望。假设我们在某运动场举办了三次运动会,并通过对观众的问卷调查采集了相关数据,参照采集的数据,请你按以下步骤对图2的20个商区设计MS网点:1. 根据附录中给出的问卷调查数据,找出观众在出行、用餐和购物等方面所反映的规律。 2. 假定奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。依据1的结果,测算图2中20个商区的人流量分布(用百分比表示)。3. 如果有两种大小不同规模的MS类型供选择,给出图2中20个商区内MS网点的设计方案(即每个商区内不同类型MS的个数),以满足上述三个基本要求。4. 阐明你的方法的科学性,并说明你的结果是贴近实际的。(图2,图3请见附录2)。二. 问题假设(一级标题,四号黑体,居中)1.奥运会期间(指某一天)每位观众平均出行两次,一次为进出场馆,一次为餐饮,并且出行均采取最短路径。2.观众在一天内的行程如下: 进场馆——>出场餐饮——>餐饮完回场馆——>出场馆且进场馆和出场馆路径相同,出场餐饮和餐饮完回场路径相同。3.出场餐饮与餐饮完回场馆时不考虑出行方式,只按餐饮方式采取最短路径。4.各场馆内进出口与看台一一对应(即进场时一个进口只能到达唯一确定看台,出场时一个出口对应唯一看台,看台之间不能相互跨越)。5.每位观众通过出行或餐饮路径上所有商区(包括看台出口所对的商区)。6.三个场馆人数固定(A区为10万人,B区为6万人,C区为4万人),每个看台人数固定,均为1万人(即商区A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、B1、B2、B3、B4、B5、B6、C1、C2、C3、C4对应的二十个看台每个均为一万人)。7.观众在奥运期间的出行方式、餐饮方式、消费额档次均不变,且服从问卷调查所得规律。三. 假设合理性分析及说明(一级标题,四号黑体,居中)根据最短路径原则,观众从各车站或停车场到场馆往返路径相同;同理,餐饮往返路径也相同。因此只须考虑观众看完比赛从场馆到车站或停车场的路径(下称第一类路径)以及观众出场馆到达餐饮地点的路径(下称第二类路径)即可。即对各商区人流量只须计算这两类路径的人流量,各商区总人流量为观众走这两类路径人流量的2倍。为方便计算,本模型中人流量仅为第一类和第二类路径人流量之和。从图2可以看出,各场馆到餐饮地点或者无车可乘或者相距很近无须乘车,故在观众出场馆餐饮时只根据餐饮方式采取最短路径,忽略出行方式。四. 符号约定(一级标题,四号黑体,居中)W: 出行方式为公交(东西);N: 出行方式为公交(南北);E: 出行方式为地铁东;R: 出行方式为地铁西;P: 出行方式为私车;T: 出行方式为出租;C: 餐饮方式为中餐;F: 餐饮方式为西餐;B: 餐饮方式为商场;五. 模型建立与求解(一级标题,四号黑体,居中)1. 问题1求解根据附录中给出的问卷调查数据,我们利用数据库编程(Visual Basic +SQL关系数据查询语言)首先统计得出了三次问卷调查中按年龄、出行方式、餐饮方式、消费水平分档的各类人数,如表1所示。……………………………………………………………………………………………………………………………………………..为了能清楚看出观众在出行、用餐和购物等方面反映的情况,用百分比表示各出行方式、餐饮方式、消费额档次人群的分布情况,如表2所示:(略)………………………………………………….………………………………………………………………………………………………………2.问题2求解商区人流量与平均购物欲望是影响商区选址的主要因素。各商区人流量与观众出行方式、餐饮方式有关。商区人流量的消费档次水平分布,体现了该商区人流的平均购物欲望。因此,以消费档次水平为划分标准,分别按出行方式及餐饮方式对人群进行统计,不同消费档次水平人数及百分比表示如表3所示:……………………………………………..……………………………………………...……………………………………………3.问题3求解…………………………………………..………………………………………….商区Z的综合购买力(百万元)H =商区Z各个消费档次购买力之和。各个消费档次购买力为:该消费档次人流量╳消费档次指数根据以上标准可以建立以总出售能力最小作为目标函数的模型: Min f=m1╳( + + )+m2╳( + + )约束条件为: ╳m1+ ╳m2>= (i=1,2……10) ╳m1+ ╳m2>= (j=1,2……6) ╳m1+ ╳m2>= (k=1,2,3,4) , , , , , >=1且为整数 m1=1 && m1<=4 m2=m1+; while m2<=7 s1=0;vlb=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];vub=[];a=[-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-m2];%b=[];b=[];c=[m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m1,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2,m2];[x,lam]=lp(c,a,b,vlb,vub) for i=1:20 s1=s1+x(i)*m1+x(20+i)*m2; end if min_value>s1 min_value=s1; t=x; p=m1; q=m2; end m2=m2+; end m1=m1+;endplot(j,x);附录2:图二图三

生活中的数学模型论文

数学源于生活,又广泛用于生活。在实际生活中运用所学数学知识,处理实际问题是中学生的数学素养之一。新课程标准强调数学教学要“从学生已有的生活经验出发”,“使学生获得对数学知识的理解”。因此,在数学教学中,如何结合学生的生活实际,使学生“领悟”数学知识源于生活,又服务于生活,培养学生用数学眼光去观察生活,运用数学知识解决实际问题的素养,是每位数学教师重视的问题。1挖掘教材中的生活资源。例如,在低年级的教学中,教师可以提出这样的问题:你今年几岁啦?多高呀?身体有多重?比一比你和你的同桌谁重?……这些都是小学生经常遇到的问题,而要准确地说出结果,就需要我们量一量、称一称、算一算,这些都离不开数学。再如,像水电费收取、储蓄利息的计算、日常购物等生活中常用的各种知识均发生在身边,我们买东西、做衣服、外出旅游,也离不开数学。2指导学生观察生活中的数学。让学生观察生活中的数学,既是积累数学知识,更是培养学生学习数学兴趣的最佳途径。如在长正方形认识时,从生活中观察哪些物体的表面是长方形的,用实物的表面在黑板上画出一个长方形。学生善于发现并研究生活中的数学,本身就是最好的学习方法。学生在研究中不断思考,不断尝试,并不断地体验成功。如布置学生用硬纸板做一个长方体模型,学生要思考观察什么物体的形状是长方体,长方体有什么特征,怎样做才美观大方。第二天学生带着自己制作的长方体模型到课堂时,每个学生根据已有体验与同学交流,各抒己见,这样的课堂能不充实、活跃吗?总之,数学教学让学生的生活经验走进数学课堂,为学生提供了亲身体验和动手操作的机会,指导学生更好的学习数学。在这方面,我受益良多,通过上学期的教学实践活动,我们班的学生学习数学的兴趣非常浓厚,改变了以往数学学习的枯燥乏味,学生在思想上有了从“要我学”-----到“我要学和我喜欢学”质的飞跃,学生变的喜欢学习数学。我的教学工作也变很顺利,学生中没有了见了数学就头疼的“老大难”,工作效率有了很大的提高,学生的学习成绩有明显的进步。新《课标》也给我们明确提出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动。使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学角度去观察事物,思考问题。激发对学习数学的兴趣,以及学好数学的愿望,树立学好数学的自信心。

抽屉原理和六人集会问题 “任意367个人中,必有生日相同的人。” “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” ...... 大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为: “把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。” 在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。 抽屉原理的一种更一般的表述为: “把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。” 利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。 如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述: “把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。” 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。 1958年6/7月号的《美国数学月刊》上有这样一道题目: “证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。” 这个问题可以用如下方法简单明了地证出: 在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD,CD3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。 六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。

数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。关键词:创新能力;数学建模;研究性学习。《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:(1)学会提出问题和明确探究方向;(2)体验数学活动的过程;(3)培养创新精神和应用能力。其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:现实原型问题数学模型数学抽象简化原则演算推理现实原型问题的解数学模型的解反映性原则返回解释列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。四、培养学生的其他能力,完善数学建模思想。由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:(1)理解实际问题的能力;(2)洞察能力,即关于抓住系统要点的能力;(3)抽象分析问题的能力;(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;(5)运用数学知识的能力;(6)通过实际加以检验的能力。只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。例2:解方程组x+y+z=1 (1)x2+y2+z2=1/3 (2)x3+y3+z3=1/9 (3)分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根t3-t2+1/3t-1/27=0 (4)函数模型:由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)平面解析模型方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题 审题 题设条件代入数学模型 求解选定可直接运用的数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题一次函数 成本、利润、销售收入等二次函数 优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数 细胞分裂、生物繁殖等三角函数 测量、交流量、力学问题等3.4加强数学运算能力。数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

男生追女生的数学模型论文

颁奖详情2012年4月7日晚,首届菠萝科学奖在杭州西湖文化广场浙江省科技馆举行颁奖典礼。主要奖项心理学奖颁给了中山大学美女教授,她研究三年的论文题:“数钱能减轻疼痛”,有数据有理论。以后有个头痛脑热,少吃药,直接数钱就好。化学奖瓦罐鸡汤为什么那么鲜?华中农业大学食品科学技术学院团队对这锅汤进行了主要滋味物质研究,告诉大家,瓦罐能保证内部环境相对平稳,并使鸡汤中的鲜美物质不被分解。数学奖哈工大机器人创新基地研发的机器人舞蹈首次登上了春晚舞台,科学家们通过神秘和精巧的算法,赋予了这一群机器人整齐划一的集体主义精神。 菠萝U奖针对食堂出现的“饭菜分量结构性短缺”现象,中国科学院长春应用化学研究所结合数学、物理、化学等跨专业知识和技能召开了一场别开生面的新闻发布会,促进了后勤单位的整改实施。主办方给的颁奖理由是:该事件有力地证明了”学好数理化,走遍食堂都不怕“的颠扑不破的真理。医学生物奖Y染色体鉴别曹操身世之谜!是复旦大学和中科院上海生命科学研究院计算生物学研究所的成果,下一步,他们将研究曹操、曹雪芹、曹云金之间是否有亲缘关系。菠萝Me奖浙大玉泉校区老生仪楼CCNT实验室里,一台饮水机每天通过微博发布水开和没热水时的状态,她就是@浙大CCNT实验室饮水机,大家再去调戏一番吧!物理学奖意识的本质是什么?如何利用意念发出的信号?浙江求是高等研究院“脑——机接口”研究团队运用信息技术提取猴脑运动皮层的神经元信号,指示机械手进行抓、勾、握、捏的动作,从而实现了猴脑控制机械手的任务。 幻想奖《小灵通漫游未来世界》的作者叶永烈先生如果自称神人第二,全中国估计没人敢称霸了。1961年写的书里就提及了气垫船、环幕立体电影、隐形眼镜、无线电话、电视手表、人造器官……如今几乎都变成了现实!这部小说充分证明:幻想是现实的强大引擎。 2013年4月7日晚,第二届“菠萝科学奖”在浙江杭州颁布,9项听起来这样“稀奇古怪”的研究、发明当选。 获奖奖项-心理学奖:中国人识别老板的脸更快(北京大学心理学系韩世辉、马燚娜)获奖理由:欧美人在心理实验中,识别自己的脸最快,而这项实验却打破了这个共识。-数学奖:男生追女生的数学模型(国防科技大学信息系统与管理学院周星、克居正)获奖理由:校园恋爱是与校方、家长间的“战争”,但这场战役在公式面前却迎刃而解。-生物学奖:围观江豚妊娠期的300天(安徽大学生命科学学院生物多样性与湿地生态研究所韩德民教授、束家宽、尚启亮;安徽省铜陵淡水豚国家级自然保护区郑邦友、蒋文华;安庆师范学院生命科学系于道平) 获奖理由:三百天如一日观察一只雌性江豚的孕产期,获得的数据填补了国内空白。-化学奖:公鹦鹉腚尖上的求偶利器(中国科学院动物研究所张健旭研究团队)获奖理由:一项虎皮鹦鹉腚尖的研究竟然还发现并分离出了虎皮鹦鹉界的古龙香水。-物理奖:假发顺滑度分级标准(西安工程大学纺织与材料学院孙润军、陈韦态) 获奖理由:让你的假发更飘逸。-幻想奖:《三体》(刘慈欣)获奖理由:这部小说提出了让外星人闻风丧胆的星际防狼术。 -发明奖:鼻涕收集器(赵尹龙)获奖理由:让广大爱好潜水、吸烟、宇航、接吻等各个人群不受鼻涕太多太堵的困扰。-菠萝U奖:12306(前铁道部)获奖理由:12306网站曾为无数参加春运的各省市群众提供了极大的便捷,催生了无数民间网络高手。-菠萝ME奖:川大教授劈砖(四川大学计算机科学系主任魏骁勇副教授)获奖理由:身体力行传授力学原理。 心理学奖:早撒谎的孩子更聪明 获奖团队:多伦多大学儿童研究所 李康团队研究内容:传统观念认为,撒谎的孩子都是坏孩子。来自多伦多大学儿童研究所的李康团队认为,撒谎是大脑的高级功能,孩子第一次撒谎,就和长出第一颗乳牙和学会走路一样珍贵,同样值得庆祝。颁奖词是这么说的感谢科学,让我们能客观看待孩子撒谎这件事儿。这是科学上的一小步,却是幼儿教育理念的一大步;据悉国家幼儿考试中心已着手定制撒谎六级考试标准和题库,早教培训机构对此表示欢迎。数学奖:数学焦虑四成天生获奖团队:俄亥俄州立大学心理学系 王喆团队研究内容:有些人对数学不感兴趣,而且还有焦虑倾向。俄亥俄州立大学心理学系的王喆团队发现,数学焦虑症40%和基因有关。菠萝U奖:吉大四行情诗大赛获奖团队:吉林大学汽车工程学院 王亚斌研究内容:诗人只能以本国的语言写诗,但是理工科生却能以全宇宙通用的语言来表达自己的内心。吉林大学南岭校区都是理工科学院,男女比例高达7:1,单身男青年王亚斌提出了四行情诗的想法,并收到来自六个校区的180多分投稿,其中来自这个校区的就占了一半多。这样一个积极发掘理科生浪漫情怀的男青年居然没有女朋友,这不科学,所以菠萝科学奖今年破例将菠萝U奖颁发给他。希望科学青年能在世界上更好地繁衍生息。医学生物奖:东亚人为什么爱出汗获奖团队:复旦大学现代人类学家教育部重点实验室研究内容:在隆重的场合,出汗往往被认为是很尴尬的事,但出汗是必要的生理功能,而且存在东西方的差异。来自复旦大学和中科院等机构的研究人员发现,大约在三万年前的中国中部,出现了一个基因变异,导致汗腺密度高了15%。大部分东亚人都携带了这个变异的基因。所以东亚人更爱出汗。俗话说,天才就是1%的灵感加上99%的汗水,那么对于东亚人来说,因为更能出汗,成为天才时流汗的时间或许可以少一些了。物理奖:92块钱的隐身衣获奖团队:浙江大学信息与电子工程学系 陈红胜团队研究内容:隐身是人人都有的梦想,科学家花费了大量人力物力想让物品隐身,但依然未能实现。浙江大学国际电磁科学院的研究团队利用光的折射原理,使用玻璃、直尺和量角器,制作出可以让小猫在自然光下消失的隐身装置。该项发明的用途非常广泛,可满足藏考卷、藏臭袜子、藏私房钱等日常需求。化学奖:果蝇的择偶偏好获奖团队:同济大学生命科学与技术学院 薛雷团队研究内容:为了探索“爱情”化学反应背后的真相,科学家们用果蝇做了实验。发现无论雌果蝇的年龄多大,雄果蝇都会选择与其交配。当把一只雄果蝇和两只年龄不同的雌果蝇放在一起时,雄果蝇就会优先选择年轻的雌果蝇一一这大概是所有动物的本能。幻想奖:《霹雳贝贝》获奖团队:《霹雳贝贝》剧组研究内容:1988年,中国第一部儿童科幻电影《霹雳贝贝》引起了一阵观影热潮。编剧张之路毕业于物理系,并且了解儿童心理,是难得一见的全能科学编剧;该剧组的拍摄态度认真严谨,对科学现象的细节严格推敲,让这部电影成为了一部既科学又好看的作品。《霹雳贝贝》之后25年,中国再也没有出现过如此优秀的原创儿童科幻电影,中国孩子的热情渐渐转向了恐龙特急克塞号、机器猫、 希瑞等国外儿童作品。希望看到更多类似《霹雳贝贝》这样的电影,让孩子们的好奇心和想象力像宇宙奇点一样暴涨。发明奖:山大机器驴获奖团队:山东大学机器人研究中心 荣学文团队研究内容:山东大学机器人研究中心有一群活跃开朗的年轻人,养了一头机器驴。他们赋予了机器驴强大的体能和内心。它可以适应多种地形、承载大量负重、抗侧向冲击,上山坡下雪地,穿树林越冰面。最重要的是,这头小驴拥有倔强呆萌的气质,坚定的身姿时刻体现出勇往直前不屈不挠的精神,足以成为今年的全民励志偶像。 菠萝Me奖:心狠手辣、人见人爱的杀手教授本奖项用于奖励上一年在科学传播上有突出贡献的人。中科大的一代神话“丁老怪”丁泽军教授在这事儿上闪耀无比。他的考试十分“残忍”:开卷、不限范围和时间,题目极多,传说有人考了6小时。但他又被学生深爱着。 医学生物奖:有血缘关系的猴长得更像(郑州大学生物多样性与生态学研究所路纪琪教授)路纪琪团队花五个月时间,为太行山三个母系的26只猴子拍摄了一系列面部照片,并运用数学方法进行了面部相似度的分析。数学奖:一个棒棒糖能舔多少次(纽约大学柯郞数学系黄金紫团队)研究团队把棒棒糖放在一根被水流冲刷的管道中,通过延时摄影拍下棒棒糖的溶解过程:不管棒棒糖原来是什么形状,水流速度多少,其在即将完全溶解时几乎都是月牙形的,而直径1厘米左右的棒棒糖,大约要1000次才能舔完。心理学奖:名字偏好与幸福感(中国科学院心理研究所行为科学重点实验室蔡华俭)通过对304对双胞胎进行“他们是否喜欢自己的名字和是否幸福”调查与研究发现,一个人的幸福与否与别人是否喜欢他的名字无关,但是与他自己是否喜欢自己的名字有关,并且,二者在一定程度上受共同基因影响。物理奖:蚊子为什么不会被雨滴砸死(佐治亚理工学院生物力学实验室首席科学家胡立德博士)胡立德用水枪模拟雨滴,用高速摄像机拍下了蚊子被砸的过程。蚊子拥有强壮的外骨骼,在飞行中会顺势跟雨滴一起落下,因此受到的冲击力较小,不会被比其重50倍的水滴砸死。化学奖:章鱼胺决定饥饿(浙江大学生命科学研究院王立铭)感到饥饿时想进食与四处寻找食物是两套不同的神经机制,当果蝇无法合成章鱼胺就不会主动外出觅食,直到饿死为止。发明奖:可以发电的纹身(美国加州大学圣地亚哥分校约瑟夫·王)这种能发电的纹身贴的发电材料是汗液中的乳酸。在不考虑身体极限的前提下,让一个成年人快速蹬6个小时的自行车,可以使手机续航时间延长足足1秒。菠萝U奖:《美丽化学》(“美丽化学”团队)菠萝Me奖:一坨肉的365天(张弘弢)从2014年1月1日到2014年12月31日,张弘弢持续观察一块肉在常温下的腐败过程,同时在社交网络上坚持图文直播。语言学奖:“呵呵”的网络功能研究(华东师范大学汪奎)“呵呵”这个网络用语是带有强烈负面感情色彩的。 主题“再见地球”,主要活动内容包括行星际旅行推介会(科学集市)、研讨会(科学论坛)和 2016 菠萝科学奖颁奖典礼等。心理学奖:加薪有助于戒烟(奥多明尼昂大学杜娟等)在大家的观念里,戒烟需要超强的意志力。他们的研究发现,男性或未接受高等教育或有吸烟经历的人群中,低收入会导致吸烟率的增加。加薪10%会减少男性的吸烟率,减少低教育水平人群的吸烟率。生物医学奖:苍蝇通过搓手洗澡(胡立德博士及佐治亚理工学院生物力学实验室)佐治亚理工学院的胡立德就通过对动物细致入微的研究和彻夜不眠的思考,最终分析总结出了动物的8种清洁方式,其中包括刷掉脏东西、分泌液体清洁、用毛的弹性弹灰尘、甩(高速震动)、改变风向躲避灰尘(睫毛)、莲叶效应,足够多的表面纹路等。数学奖:婚礼份子钱公式(台湾长庚大学助理教授/数学作家赖以威)台湾学者赖以威用统计学“回归分析”的方法,依照台湾的5个地区、5种餐厅等级、3种参与人数(不出席、1人、2人)以及4种交情关系(不熟朋友、普通亲友、世交、公司主管或兄弟姐妹等),设计出一个数据对照表格,通过建立数学模型得出了台湾地区婚礼份子钱该送多少的问题。发明奖:精子运动捕捉器(加州大学洛杉矶分校苏亭伟等)加州大学洛杉矶分校的苏亭伟等人发明了一种全息影像技术,用一个红蓝两种LED灯从不同方向照精子,使精子头部水平移动和垂直移动时产生的阴影能被芯片记录。由此,他们成功发现了精子的4种移动方式——普通型、文艺螺旋型、狂野型和狂野螺旋型。化学奖:航天员的体味研究(北京化工大学及中国航天员科研训练中心祁欣等)幻想奖:真空管道高温超导磁悬浮列车(西南交通大学超导与新能源研究开发中心,磁浮技术与磁浮列车教育部重点实验室)物理奖:屁味来源自动定位法(天津大学机器人与自主系统研究所李吉功博士)国际友谊奖:黑客的情人节研究( Moran Cerf教授)菠萝Me奖:《博物》杂志官方微博:博物君菠萝U奖:柯洁叫战阿法狗

男生追女生,对男生来说最重要的是学习、爱情两不误。因此我们引进男生的学业成绩函数Y(t)。

首先,我们不考虑男生的追求攻势,则影响该函数的因素主要是两个人的关系程度。为了便于分析,我们将两人的关系简化为女生对该男生的疏远度,于是引入疏远度函数X(t)。

问题就转化为求解Y(t)和X(t)的相互作用关系。利用微分,很容易就可以求出两者的关系。但现实中男生可能会对该女生发起一轮轮的追求攻势,因此还要考虑到追求攻势对模型的影响。而追求攻势又与女生的疏远度有关,可以简化地将两者看成是正比关系。将追求攻势加入到模型中,就可以找出攻势与Y(t)和 X(t)的关系了。

由假设4和假设5,就得到了学业与疏远度在无外界干扰的情况下互相作用的模型:

{dX(t)/dt=aX-bXY;dY(t)/dt=cXY-eY} 其中c=αb. (1)

这是一个非线性自治系统,为了求两个数X与Y的变化规律,我们对它作定性分析。令{aX-bXY=0;cXY-eY=0} 解得系统(1)的两个平衡位置为:O(0,0),M (e/c,a/b)。从(1)的两方程中消去dt,分离变量可求得首次积分:

F(X,Y)=cX-dln|X|-aln|Y|=k (2)

容易求出函数F(X,Y)有唯一驻点为M(e/c,a/b)。再用极值的充分条件判断条件可以判断M是F的极小值点。同时易见,当X→∞(B女对A君恨之入骨)或Y→∞ (A君是一块只会学习的木头)时均有F→∞;而X→0(A君作了变形手术,B女对他毫无防备)或Y→0(A君不学无术,丝毫不学习)时也有F→∞。

由此不难看出,在第一象限内部连续的函数z=F(X,Y)的图形是以M为最小值点,且在第一卦限向上无限延伸的曲面,因而它与z=k(k>0)的交线在相平面 XOY的投影F(X,Y)=k (k>0)是环绕点M的闭曲线簇。这说明学业成绩和疏远度的指数成周期性变化。

从生态意义上看这是容易理解的,当A君的学习成绩Y(t)下降时,B女会疏远 A君,疏远度X(t)上升;于是A君就又开始奋发图强,学习成绩Y(t)又上升了。于是B女就又和A君开始了来往,疏远度X(t)又下降了。与B女交往多了,当然分散了学习时间,A君的学习成绩Y(t)下降了。

然而我们可证明,尽管闭轨线不同,但在其周期内的X和Y的平均数量都分别是一常数,而且恰为平衡点M的两个坐标。事实上,由(1)的第二个方程可得: dY/Ydt=cX- e,两端在一个周期时间T内积分,得:

∫(dy/Ydt)dt=c∮Xdt-dT (3)

注意到当t经过一个周期T时,点(X,Y)绕闭轨线运行一圈又回到初始点,从而:∫(dY/Ydt)dt=∮dY/Y=0。所以,由(3)式可得: (∫Xdt)/T=e/c。

同理,由(1)的第一个方程可得:(∫Ydt)/T=a/b。

考虑到追求攻势对上述模型的影响。设追求攻势与该时刻的疏远度成正比,比例系数为h,h反映了追求攻势的作用力。在这种情况下,上述学业与疏远度的模型应变为:

{dX/dT=aX-bXY-hX=(a-h)X-bXY;dY/dt=cXY-eY-hY=cXY-(e+h)Y} (4)

将(4)式与(1)式比较,可见两者形式完全相同,前者仅是把(1)中X与Y的系数分别换成了a-h与e+h。因此,对(4)式有

x’=(∫Xdt)/T=(e+h)/c,y’=(∫Ydt)/t=(a-h)/b (5)

利用(5)式我们可见:攻势作用力h的增大使X’增加,Y’减少。

考试期间,由于功课繁忙,使得追求攻势减少,即h减小,与平时相比,将有利于学业成绩Y的增长。这就是Volterra原理。 此原理对男生有着重要的指导意义:强大的爱情攻势有时不一定能达到满意的效果,反而不利与学业的成长;有时通过慢慢接触,慢慢了解,再加上适当的追求行动,女生的疏远度就会慢慢降低。学习成绩也不会降低!

首先你自己足够的优秀 ,能配得上学霸女生,这样才能有足够的心理去追学霸女生,然后用真诚的心告诉学霸女生我爱你,如果学霸女生也喜欢你,看你也非常优秀,那你们会在一起的 ,祝你为了幸福加油。

引言 某节目上,面对一位位男嘉宾,24 位单身女生要做出不止一次“艰难的决定”:到底要不要继续亮灯?把灯灭掉意味着放弃了这一次机会,继续亮灯则有可能结束节目之旅,放弃了未来更多的选择。每一个女生都渴望找到自己心中的白马王子,找到自己一生的幸福。但是面对追求者们,女生应该是选择还是拒绝,怎样才能以最大的可能找到自己的Mr. Right呢 如果遇到了一个优秀的男生,应该接受还是拒绝呢?如果接受了他,万一下一个更好的话那可就亏大了;可如果为此而拒绝掉一个又一个好男人,也会面对着“过了这个村就没这个店”的风险。说不定白马王子们都已经擦肩而过,到最后就只剩下。。。,当初的拒绝明显得不偿失。 由于没人能知道真正的缘分何时到来,没人能知道下一个来表白的男生会是什么样子,接受表白的时机早晚实在很难决定。而运用数学中概率论的知识对女生选择追求者的这一过程进行数学建模,得到女生的选择的最优策略以作参考。模型假设(Geng 和 Flood)假设一个女生愿意在一段时间中和一位男生开始一段感情,并且在这段时间中有N个男生追求这位女生。说明:这里的N不是事先确定的,每个女生根据自身条件,并结合以往的经历和经验,猜测确定这个数字N。比如其它各方面都相同的两个女生,一般来说,PP气质佳的女生就要比不PP的女生N值相对要大一些。在适合这个女生的意义上,假设追求者有好有坏,任何两个男生都是可以比较的,而且没有相等的情况。这样我们对这N个男生从1到N进行编号,其中数字越大表示越适合这个女生。这样在这段时间中,女生的Mr. Right就是男生N了。现在问题变成面对这N个追求者应该以怎样的策略才能使得在第一次选择接受的男生就是N的可能性最大,注意到这N个男生是以不同的先后顺序来追求这位女生的。为了将实际复杂的问题进行简化,我们做出下面几条合理的假设:1、 N个男生以不同的随机顺序向女生依次表白,即在任一时刻不存在两个或两个以上 的男生向这位女生表白的情况的发生,而且任何一种顺序都是完全等概率的。2、 面对表白后的男生,女生只能做两种:接受和拒绝,不存在暧昧或者其它选择。3、 任一时刻,女生最多只能和一位男生谈恋爱,不存在脚踏多船的情况。4、 已经被拒绝的男生不会再次追求这位女生。基于上述假设,我们想要找到这样一种策略,使得女生以最大的概率在第一次选择接受的那个男生就是N=Mr. Right。模型建立先考虑最简单的一种策略,如果一旦有男生向女生表白,女生就选择接受。这种策略下显然女生以1/N的概率找到自己的Mr. Right。当N比较大的时候,这个概率就很小了,显然这种策略不是最优的。基于上面这些假设和模型,聪明的 MM 会想到一个好办法:先和前面几个男生玩玩,试试水深;大致摸清了男生们的底细后,再开始认真考虑,对于最先表白的M个人,无论女生感觉如何都选择拒绝;以后遇到男生向女生表白的情况,只要这个男生的编号比前面M个男生的编号都大,即这个男生比前面M个男生更适合女生,那么女生选择接受,否则选择拒绝。从数学模型上说,就是先拒掉前面M个人,不管这些人有多好;然后从第M+1个人开始,一旦看到比之前所有人都要好的人,就毫不犹豫地选择他。不难看出,k 的取值很讲究,太小了达不到试的效果,太大了又会导致真正可选的余地不多了。这就变成了一个纯数学问题:在男生总数N已知的情况下,当M等于何值时,按上述策略选中最佳男生的概率最大?下面以N=3为例说明:三个男生追求女生,共有六种排列方式:1 2 3,1 3 2,2 1 3,2 3 1,3 1 2,3 2 1如果女生采用上述最简单的策略,那么只有最后两种排列方式选择到Mr. Right,概率为2/3!=1/3。如果女生采用上面我们提出的策略,这里我们取M=1,即无论第一个人是否优秀,女生都选择拒绝。然后对于之后的追求者,只要他比第一个男生更适合女生就选择接受,否则拒绝。 基于这种策略,“1 3 2”、“2 1 3”、“ 2 3 1”这三种排列顺序下女生都会在第一次做出接受的选择时遇到“3”,这样我们就把这种概率增大到3/3!=1/2。现在我们的问题就归结为,对于一般的N,什么样的M才会使这种概率达到最大值呢?(在这种模型中,前面M个男生就被称为“炮灰”,无论他们有多么优秀都要被拒绝)根据上面的模型假设,我们先找到对于给定的M和N(1,女生选择到Mr. Right的概率的表达式。把1到N个数字进行排列共有N!种可能。对于某个固定的M,如果最适合的人出现在了第P个位置(M< P≤N),要想让他有幸正好被MM选中,就必须得满足前P-1个人中的最好的人在前M个人里,这有M/(P-1) 的可能。即可归纳为下面的亮点:当数字N出现在第P位置(M≤N),如果使上述策略在第一次选择接受时遇到的是N,排列需要满足下面两个条件:1、N在第P位置2、从M+1到P-1位置的数字要比前M位置的最大数字要小 考虑所有可能的P,我们便得到了试探前M个男生之后能选中最佳男生的总概率P(M):模型求解这个问题可以方便的通过计算机进行数值求解。用 x 来表示 M/N 的值,并且假设N充分大,则上述公式可以写成: 对 -x · ln x 求导,并令这个导数为 0,可以解出 x 的最优值,它就是欧拉研究的神秘常数的倒数—— 1/e !即此时 M=N/e。 结果分析:由上述分析可以得到如下结论:为了使一个女生以最大的概率在第一次选择接受男生时遇到的正是Mr. Right,女生应该采用以下的策略:拒绝前M=[N/e]或者[N/e]+1个追求者,当其后的追求者比前M个追求者更适合则接受,否则拒绝。也就是说,如果你预计求爱者有 n 个人,你应该先拒绝掉前 n/e 个人,静候下一个比这些人都好的人。假设你一共会遇到大概 30 个,就应该拒绝掉前 30/e ≈ 30/ ≈ 11 个求爱者,然后从第 12 个求爱者开始,一旦发现比前面 11 个求爱者都好的人,就果断接受他。由于 1/e 大约等于 37%,因此这条爱情大法也叫做 37% 法则。不过,37% 法则有一个小问题:如果最佳人选本来就在这 37% 的人里面,错过这 37% 的人之后,她就再也碰不上更好的了。但在游戏过程中,她并不知道最佳人选已经被拒,因此她会一直痴痴地等待。也就是说,MM将会有 37% 的概率“失败退场”,或者以被迫选择最后一名求爱者的结局而告终。37% 法则“实测”! 37% 法则的效果究竟如何呢?我们在计算机上编写程序模拟了当 n = 30 时利用 37% 法则进行选择的过程(如果 MM 始终未接受求爱者,则自动选择最后一名求爱者)。编号越小的男生越次,编号为 30 的男生则表示最佳选择。程序运行 10000 次之后,竟然有大约 4000 次选中最佳男生,可见 37% 法则确实有效啊。不知道了解此问题的女生,会不会多了一种分手的理由:不好意思,你是那 37% 的人⋯⋯对于男生,该模型残酷的,指出了炮灰存在的现实意义,正如伟大哲学家萨特所说“存在即是合理”,炮灰的不可避免性也许是对已经和即将成为炮灰的男生的宽慰。But,However,What's more(*^__^*) ……,该模型的量化指标都是采自女生主观臆断,各个指标的合理性希望广大MM慎思之。结论推广与讨论 1、众所周知生活中涉及到感情的事情是很复杂的,而且也是很微妙的,把所有可能影响的因素都考虑到几乎是不可能的。不过也说明了数学的强大。2、设女性最为灿烂的青春为18-28岁,在这段时间中将会遇到一生中几乎全部的追求者(之前之后的忽略不计),且追求者均匀分布,则女性从18+10/e=即22岁左右开始接受追求对自己最有利,这告诉我们,想谈恋爱找大四或研一的(有木有默默中枪的O(∩_∩)O)。推而广之,若只考虑时间段研究生年的话,则T/e=。也就是说,对于研究生,男生表白的最佳时刻在第二个学期的期末。若不考虑进入实验室后狭小的圈子的研二阶段,那么T=1/e=.莫非是这学期12月份?-_-!3、在文章中只考虑了N个男生表白的先后顺序是完全随机的,并没有考虑相邻两次之间的时间隔。如果把时间因素也考虑进去的话,在一个相对较短的时间中,可以近似的假设为齐次泊松过程,这样不仅可以得出女生应该选择上面的第M个男生的结论,而且找到男生表白的最佳时间在t=T/e时刻。 例如如果取时间段为大学四年的话,则T/e=。也就是说,在大学四年里,男生表白的最佳时刻在第三个学期的期末或寒假。但是这个模型假设 还没有考虑:女生分辨N 能力是在增长的,并不是一开始就能无失误的迅速判断;在大学阶段 18至22如果把她能接触到的男生放进一个集合A,那么max{A}会不断减小的,等到她审阅到N/e的时候恐怕已经没的选了(也就是说原模型不可以在时间段上任意推广)。而且如果这个时间段较长的话,那么男生追求可近似假设为了一个非齐次泊松过程,或者分段齐次泊松过程。(随机过程有用武之地了⊙﹏⊙b汗)喜欢就关注鸭

模糊数学模型论文

模糊数学是研究和处理模糊性现象的一种数学理论和方法 。 1965 年美国控制论学者.扎德发表论文《模糊集合》,标志着这门新学科的诞生。现代数学建立在集合论的基础上。一组对象确定一组属性,人们可以通过指明属性来说明概念,也可以通过指明对象来说明。符合概念的那些对象的全体叫做这个概念的外延,外延实际上就是集合。一切现实的理论系统都有可能纳入集合描述的数学框架。经典的集合论只把自己的表现力限制在那些有明确外延的概念和事物上,它明确地规定:每一个集合都必须由确定的元素所构成,元素对集合的隶属关系必须是明确的。对模糊性的数学处理是以将经典的集合论扩展为模糊集合论为基础的,乘积空间中的模糊子集就给出了一对元素间的模糊关系。对模糊现象的数学处理就是在这个基础上展开的。从纯数学角度看,集合概念的扩充使许多数学分支都增添了新的内容。例如不分明拓扑、不分明线性空间、模糊测度与积分、模糊群、模糊范畴、模糊图论等。其中有些领域已有比较深入的研究。模糊性数学发展的主流是在它的应用方面。由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。例如模糊聚类分析、模糊综合评判、模糊决策、模糊控制等。这些方法构成了一种模糊性系统理论,构成了一种思辨数学的雏形,它已经在医学、气象、心理、经济管理、石油、地质、环境、生物、农业、林业、化工、语言、控制、遥感、教育、体育等方面取得具体的研究成果。模糊性数学最重要的应用领域应是计算机智能。它已经被用于专家系统和知识工程等方面。 [编辑本段]模糊数学的产生现代数学是建立在集合论的基础上。集合论的重要意义就一个侧面看,在与它把数学的抽象能力延伸到人类认识过程的深处。一组对象确定一组属性,人们可以通过说明属性来说明概念(内涵),也可以通过指明对象来说明它。符合概念的那些对象的全体叫做这个概念的外延,外延其实就是集合。从这个意义上讲,集合可以表现概念,而集合论中的关系和运算又可以表现判断和推理,一切现实的理论系统都一可能纳入集合描述的数学框架。但是,数学的发展也是阶段性的。经典集合论只能把自己的表现力限制在那些有明确外延的概念和事物上,它明确地限定:每个集合都必须由明确的元素构成,元素对集合的隶属关系必须是明确的,决不能模棱两可。对于那些外延不分明的概念和事物,经典集合论是暂时不去反映的,属于待发展的范畴。在较长时间里,精确数学及随机数学在描述自然界多种事物的运动规律中,获得显著效果。但是,在客观世界中还普遍存在着大量的模糊现象。以前人们回避它,但是,由于现代科技所面对的系统日益复杂,模糊性总是伴随着复杂性出现。各门学科,尤其是人文、社会学科及其它“软科学”的数学化、定量化趋向把模糊性的数学处理问题推向中心地位。更重要的是,随着电子计算机、控制论、系统科学的迅速发展,要使计算机能像人脑那样对复杂事物具有识别能力,就必须研究和处理模糊性。我们研究人类系统的行为,或者处理可与人类系统行为相比拟的复杂系统,如航天系统、人脑系统、社会系统等,参数和变量甚多,各种因素相互交错,系统很复杂,它的模糊性也很明显。从认识方面说,模糊性是指概念外延的不确定性,从而造成判断的不确定性。在日常生活中,经常遇到许多模糊事物,没有分明的数量界限,要使用一些模糊的词句来形容、描述。比如,比较年轻、高个、大胖子、好、漂亮、善、热、远……。这些概念是不可以简单地用是、非或数字来表示的。在人们的工作经验中,往往也有许多模糊的东西。例如,要确定一炉钢水是否已经炼好,除了要知道钢水的温度、成分比例和冶炼时间等精确信息外,还需要参考钢水颜色、沸腾情况等模糊信息。因此,除了很早就有涉及误差的计算数学之外,还需要模糊数学。人与计算机相比,一般来说,人脑具有处理模糊信息的能力,善于判断和处理模糊现象。但计算机对模糊现象识别能力较差,为了提高计算机识别模糊现象的能力,就需要把人们常用的模糊语言设计成机器能接受的指令和程序,以便机器能像人脑那样简洁灵活的做出相应的判断,从而提高自动识别和控制模糊现象的效率。这样,就需要寻找一种描述和加工模糊信息的数学工具,这就推动数学家深入研究模糊数学。所以,模糊数学的产生是有其科学技术与数学发展的必然性。 [编辑本段]模糊数学的研究内容1965年,美国控制论专家、数学家查德发表了论文《模糊集合》,标志着模糊数学这门学科的诞生。模糊数学的研究内容主要有以下三个方面:第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系。查德以精确数学集合论为基础,并考虑到对数学的集合概念进行修改和推广。他提出用“模糊集合”作为表现模糊事物的数学模型。并在“模糊集合”上逐步建立运算、变换规律,开展有关的理论研究,就有可能构造出研究现实世界中的大量模糊的数学基础,能够对看来相当复杂的模糊系统进行定量的描述和处理的数学方法。在模糊集合中,给定范围内元素对它的隶属关系不一定只有“是”或“否”两种情况,而是用介于0和1之间的实数来表示隶属程度,还存在中间过渡状态。比如“老人”是个模糊概念,70岁的肯定属于老人,它的从属程度是 1,40岁的人肯定不算老人,它的从属程度为 0,按照查德给出的公式,55岁属于“老”的程度为,即“半老”,60岁属于“老”的程度。查德认为,指明各个元素的隶属集合,就等于指定了一个集合。当隶属于0和1之间值时,就是模糊集合。第二,研究模糊语言学和模糊逻辑。人类自然语言具有模糊性,人们经常接受模糊语言与模糊信息,并能做出正确的识别和判断。为了实现用自然语言跟计算机进行直接对话,就必须把人类的语言和思维过程提炼成数学模型,才能给计算机输入指令,建立和是的模糊数学模型,这是运用数学方法的关键。查德采用模糊集合理论来建立模糊语言的数学模型,使人类语言数量化、形式化。如果我们把合乎语法的标准句子的从属函数值定为1,那么,其他文法稍有错误,但尚能表达相仿的思想的句子,就可以用以0到1之间的连续数来表征它从属于“正确句子”的隶属程度。这样,就把模糊语言进行定量描述,并定出一套运算、变换规则。目前,模糊语言还很不成熟,语言学家正在深入研究。人们的思维活动常常要求概念的确定性和精确性,采用形式逻辑的排中律,既非真既假,然后进行判断和推理,得出结论。现有的计算机都是建立在二值逻辑基础上的,它在处理客观事物的确定性方面,发挥了巨大的作用,但是却不具备处理事物和概念的不确定性或模糊性的能力。为了使计算机能够模拟人脑高级智能的特点,就必须把计算机转到多值逻辑基础上,研究模糊逻辑。目前,模糊逻辑还很不成熟,尚需继续研究。第三,研究模糊数学的应用。模糊数学是以不确定性的事物为其研究对象的。模糊集合的出现是数学适应描述复杂事物的需要,查德的功绩在于用模糊集合的理论找到解决模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。在模糊数学中,目前已有模糊拓扑学、模糊群论、模糊图论、模糊概率、模糊语言学、模糊逻辑学等分支。 [编辑本段]模糊数学的应用模糊数学是一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机职能,不少人认为它与新一代计算机的研制有密切的联系。目前,世界上发达国家正积极研究、试制具有智能化的模糊计算机,1986年日本山川烈博士首次试制成功模糊推理机,它的推理速度是1000万次/秒。1988年,我国汪培庄教授指导的几位博士也研制成功一台模糊推理机——分立元件样机,它的推理速度为1500万次/秒。这表明我国在突破模糊信息处理难关方面迈出了重要的一步。模糊数学还远没有成熟,对它也还存在着不同的意见和看法,有待实践去检验。

模糊数学又称Fuzzy 数学,是研究和处理模糊性现象的一种数学理论和方法。模糊性数学发展的主流是在它的应用方面。

由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。

例如模糊聚类分析、模糊模式识别、模糊综合评判、模糊决策与模糊预测、模糊控制、模糊信息处理等。这些方法构成了一种模糊性系统理论,构成了一种思辨数学的雏形,它已经在医学、气象、心理、控制、遥感、教育、体育等方面取得具体的研究成果。

扩展资料

应用前景:

模式识别是计算机应用的重要领域之一。人脑能在很低的准确性下有效地处理复杂问题。如计算机使用模糊数学,便能大大提高模式识别能力,可模拟人类神经系统的活动。

在工业控制领域中,应用模糊数学,可使空调器的温度控制更为合理,洗衣机可节电、节水、提高效率。在现代社会的大系统管理中,运用模糊数学的方法,有可能形成更加有效的决策。

50年来,模糊数学的研究和应用取得了许多可喜的成就。它在科学技术领域和日常生活方面正在扮演着越来越重要的角色。

模糊数学是数学中的一门新兴学科,其前途未可限量。1965年,《模糊集合》的论文发表了。作者是著名控制论专家、美国加利福尼亚州立大学的扎德()教授。康托的集合论已成为现代数学的基础,如今有人要修改集合的概念,当然是一件破天荒的事。扎德的模糊集的概念奠定了模糊性理论的基础。这一理论由于在处理复杂系统特别是有人干预的系统方面的简捷与有力,某种程度上弥补了经典数学与统计数学的不足,迅速受到广泛的重视。近40年来,这个领域从理论到应用,从软技术到硬技术都取得了丰硕成果,对相关领域和技术特别是一些高新技术的发展产生了日益显著的影响。有一个古老的希腊悖论,是这样说的:“一粒种子肯定不叫一堆,两粒也不是,三粒也不是……另一方面,所有的人都同意,一亿粒种子肯定叫一堆。那么,适当的界限在哪里?我们能不能说,123585粒种子不叫一堆而123586粒就构成一堆?”确实,“一粒”和“一堆”是有区别的两个概念。但是,它们的区别是逐渐的,而不是突变的,两者之间并不存在明确的界限。换句话说,“一堆”这个概念带有某种程度的模糊性。类似的概念,如“年老”、“高个子”、“年轻人”、“很大”、“聪明”、“漂亮的人”、“价廉物美”等等,不胜枚举。经典集合论中,在确定一个元素是否属于某集合时,只能有两种回答:“是”或者“不是”。我们可以用两个值0或1加以描述,属于集合的元素用1表示,不属于集合的元素用0表示。然而上面提到的“年老”、“高个子”、“年轻人”、“很大”、“聪明”、“漂亮的人”、“价廉物美” 等情况要复杂得多。假如规定身高米算属于高个子范围,那么,米的算不算?照经典集合论的观点看:不算。但这似乎很有些悖于情理。如果用一个圆,以圆内和圆周上的点表示集A,而且圆外的点表示不属于A。A的边界显然是圆周。这是经典集合的图示。现在,设想将高个子的集合用图表示,则它的边界将是模糊的,即可变。因为一个元素(例如身高米的人)虽然不是100%的高个子,却还算比较高,在某种程度上属于高个子集合。这时一个元素是否属于集合,不能光用0和1两个数字表示,而可以取0和1之间的任何实数。例如对米的身高,可以说具有70%属于高个子集合的程度。这样做似乎罗嗦,但却比较合乎实际。精确和模糊,是一对矛盾。根据不同情况有时要求精确,有时要求模糊。比如打仗,指挥员下达命令:“拂晓发起总攻。”这就乱套了。这时,一定要求精确:“×月×日清晨六时正发起总攻。”我们在一些旧电影中还能看到各个阵地的指挥员在接受命令前对对表的镜头,生怕出个半分十秒的误差。但是,物极必反。如果事事要求精确,人们就简直无法顺利的交流思想——两人见面,问:“你好吗?”可是,什么叫“好”,又有谁能给“好”下个精确的定义?有些现象本质上就是模糊的,如果硬要使之精确,自然难以符合实际。例如,考核学生成绩,规定满60分为合格。但是,59分和60分之间究竟有多大差异,仅据1分之差来区别及格和不及格,其根据是不充分的。不仅普遍存在着边界模糊的集合,就是人类的思维,也带有模糊的特色。有些现象是精确的,但是,适当的模糊化可能使问题得到简化,灵活性大为提高。例如,在地里摘玉米,若要找一个最大的,那很麻烦,而且近乎迂腐。我们必须把玉米地里所有的玉米都测量一下,再加以比较才能确定。它的工作量跟玉米地面积成正比。土地面积越大,工作越困难。然而,只要稍为改变一下问题的提法:不要求找最大的玉米,而是找比较大的,即按通常的说法,到地里摘个大玉米。这时,问题从精确变成了模糊,但同时也从不必要的复杂变成意外的简单,挑不多的几个就可以满足要求。工作量甚至跟土地无关。因此,过分的精确实际成了迂腐,适当的模糊反而灵活。显然,玉米的大小,取决于它的长度、体积和重量 。大小虽是模糊概念,但长度、体积、重量等在理论上都可以是精确的。然而,人们在实际判断玉米大小时,通常并不需要测定这些精确值。同样,模糊的“堆”的概念是建立在精确的“粒”的基础上,而人们在判断眼前的东西叫不叫一堆时,从来不用去数“粒”。有时,人们把模糊性看成一种物理现象。近的东西看得清,远的东西看不清,一般的说,越远越模糊。但是,也有例外的情况:站在海边,海岸线是模糊的;从高空向下眺望,海岸线却显得十分清晰。太高了,又模糊。精确与模糊,有本质区别,但又有内在联系,两者相互矛盾、相互依存也可相互转化。所以,精确性的另一半是模糊。对模糊性的讨论,可以追溯得很早。20世纪的大哲学家罗素()在1923年一篇题为《含糊性》(Vagueness)的论文里专门论述过我们今天称之为“模糊性”的问题(严格地说,两者梢有区

模糊数学又称Fuzzy 数学,研究和处理模糊性现象的一种数学理论和方法。模糊数学法采用模糊数学模型,须先进行单项指标的评价,然后分别对各单项指标给予透当的权重,最后应用模糊矩阵复合运算的方法得出综合评价的结果。这一方法在地下水环境质量评价中已得到广泛的应用。

模糊数学为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判、系统理论、信息检索、医学、生物学等各个方面。在气象、结构力学、控制、心理学等方面已有具体的研究成果。然而模糊数学最重要的应用领域是计算机智能,不少人认为它与新一代计算机的研制有密切的联系。

扩展资料

1965年,美国控制论专家扎德Zadeh(Lotfi A.Zadeh)教授在Information and Control杂志上发表了题为Fuzzy Sets的论文,提出用“隶属函数”来描述现象差异的中间过渡,从而突破了经典集合论中属于或不属于的绝对关系。

Zadeh教授这一开创性的工作,标志着数学的一个新分支——模糊数学的诞生。

模糊数学的基本思想就是:用精确的数学手段对现实世界中大量存在的模糊概念和模糊现象进行描述、建模,以达到对其进行恰当处理的目的。

模糊数学为以不确定性的事物为其研究对象的。模糊集合的出现为数学适应描述复杂事物的需要,Zadeh的功绩在于用模糊集合的理论将模糊性对象加以确切化,从而使研究确定性对象的数学与不确定性对象的数学沟通起来,过去精确数学、随机数学描述感到不足之处,就能得到弥补。

参考资料来源:百度百科-模糊数学法

参考资料来源:百度百科-模糊数学

相关百科