杂志信息网-创作、查重、发刊有保障。

精油的研究性论文

发布时间:2024-07-03 02:17:18

精油的研究性论文

精油的论文,首先你要说清楚精油的特点和它的属性,吉尔要说明精油的作用,同时一定不要缺少论点论据论证,阐述你的观点,讲述精油的重要性,如此而已

功能化妆品概要 功能化妆品的界定 在过去的10多年里,作为化妆品和制药工业革新,以及消费者对化妆品态度转变的结果,化妆品和药品的界线因为交叉而更加模糊不清,见Fig1-1, 由于这种交叉,化妆品和类似药物功效的新类别产品已经出现。比如,尽管美国食品药物管理局 (FDA)没有将功能化妆品(Cosmeceuticals)定义为独立类别,但是该术语已经被派生出来,并且被化妆品制造厂商者,迫不及待地用于描述化妆品和药品组合的一类产品。 每天都有越来越多的术语,用来描述我们正在称为功能化妆品这类日用品。这些包括: 美容增补剂;活性化妆品;效能化妆品;生物活性化妆品;植物化妆品;功效化妆品 皮肤治疗剂;皮肤药物;化妆品药物;疗效性化妆品。 当然,这些术语不都是一样的,在有些情况下,使用者正试图对一些产品类别进行正确地区分;在另一些情况下,使用者可能会简单地"将新酒装入旧瓶"。 美容增补剂基本上是天然营养保健类产品,通过口服产生美容效果,它们通常以胶囊形式使用,但有时以汤剂或甚至酊剂形式使用。 活性化妆品包括"活性"成分,可能不产生许多令人满意的健康益处,然而使用类似效能化妆品或功效化妆品的术语意味着:它们比一般化妆品表现出一些较有用的功效。 比如:皮肤治疗剂和皮肤药物只能简单地归为功能化妆品中的一小类,而化妆品药物被美国食品药物管理局定义为:化妆品和药物相组合的产品,这类产品包括含氟牙膏,抗头皮屑香波,也必须符合人体健康,化妆品卫生和安全法规。由于世界上现有的化妆品卫生和安全法规,和全球文化存在着不同的差异,造成对功能化妆品的许多不同解释;并且不同的国家正在使用上述多种短语和术语,来表达功能化妆品。 .2 功能化妆品历史 尽管功能化妆品这个术语,最初由美国皮肤学家阿尔伯特克利格曼医学博士,在20世纪70年代制造出来,但埃及人是有史以来,最早认识到化妆品能有保健的作用。考古学家已经发掘出一些古代化妆品罐,在其化妆品罐上所写的象形文字是说:"对视力有益"和"止血"。公元前1600年书写的医用莎草纸,经常涉及到许多功能化妆品。特别受人喜爱的是使用蜂蜜和牛奶的制剂,据说蜂蜜和牛奶有助于治疗皮肤疾病。而其他由乳香、植物油和石蜡按等比例制造的产品,声称能消除面部皱纹。 对于许多中世纪的阿拉伯医生和他们的欧洲同行来说,化妆品、香精和草药之间没有什么区别。他们所做的研究和试制工作,同时也覆盖了这些学科。化妆品和洗涤工业从医药领域中分离出来,是19世纪当现代制药工业开始发展,当第一个管制药物销售的政府法令实施以来,所出现的现象。 在近来的50多年里,有点讽刺性的是,医生和公众过分关注化妆品,引起的过敏反应。化妆品作为有效帮助治愈的作用被忽视,直到它在20世纪70年代末和80年代初,才被重视。 克利格曼通过开发能改善紫外损伤皮肤外表和抗皮肤皱纹的制剂,重新点燃人们对化妆品的兴趣。在此,他使用维甲酸作为活性成分。维甲酸已被证实:具有消除细小皱纹、减少衰老角质症,和促使胶原形成的能力。 克利格曼认为:新的化妆品技术"使得在皮肤护理品中,加入数量不受限制的活性物质成为可能,这些活性物质来自自然资源-来自植物、海洋、地球以及宇宙,包括那些由化学家合成的令人心动的物质名单。比如:维生素和抗氧化剂、抗炎、影响情绪的香味、胎盘、羊水血清和众多的激素,选择的范围十分广泛。" 功能化妆品类型 (1)按通常使用来划分,功能化妆品被分为下列各部分: 皮肤护理:包括防晒和其他皮肤护理品; 头发护理:包括洗发香波、护发剂和保护头皮健康的护发品; 身体护理:包括除臭剂和广泛范围的个人护理品; 化妆护理:包括护甲、护眼和彩妆美容产品。 大多数功能化妆品绝多数是皮肤护理品,特别强调防晒品类;其次第二大类是护发品。 (2)按性别化使用来划分,功能化妆品被分为: 在男性中,潜在功能化妆品使用的关键领域是: 头发再生、抗衰老、抗头皮屑、抗汗、抗皮炎、抗牙齿腐蚀、抗脚癣以及作为收敛剂; 在女性中,功能化妆品最多数用于: 抗皱纹、丰乳、苗条(抗脂肪团)、脱毛、口腔卫生、皮肤变棕色、皮肤美白、细胞再生复原、抗自由基、抗静脉曲张。 在这个世界人口老龄化的当今,人们心里将青春与美丽联系在一起,对于女性,不断使用抗衰老面霜和皮肤美白产品,将构成不断增长的化妆品消费大市场。最近几十年,最流行和最有争议的功能化妆品,有些含有果酸:α-羟基酸(AHA)和β-羟基酸(BHA),它们都是非常流行的"抗衰老物质"。 红血丝是另一个美容的疑难问题,在这个领域中,生物化妆品和植物化妆品正愈加流行。许多植物药材,特别是葡萄叶提取产品,已经被成功地开始应用,减缓红血丝的局部面霜,也正日益进入市场。(今后继续连载) -------------------------------------------------------------------------------- 功能美白成分解析 1、减少黑色素生成,概念跟“预防胜于治疗”相类似:利用防晒露,使皮肤因缺少黑色素生成的刺激而变白。通常这类美白产品配方里都添加有防晒因子。 2、加速已出现色素沉着的角质层细胞的新陈代谢:α羟基酸及A醇可促进皮肤的新陈代谢。它们可帮助消除已出现色素沉着的细胞,使肌肤外表更明亮,还可使不断更新的基层细胞加快其生长分裂速度。这样,黑色素细胞进入邻近细胞中的数量就会较少,肌肤就会显著变白。 3、减少新色素的生物合成:关于此类成分的作用过程,目前市面上出售产品的内含成分大多通过抑制酪氨酸酵素而起作用。通常此类衍生物不能兼备安全性和功效性。以对苯二酚为例,该活性成分因据称有毒而渐遭弃用。 于是,近年来,新一代功能性美白产品成分成为许多业内人士关注的焦点和开发重点——熊果素:其结构是对苯二酚的葡萄糖甙,通过抑制酪氨酸酵素而起作用;其刺激性及敏感性比苯二酚小很多。使用浓度介乎1%~10%之间,最好高于5%。易溶于水,需添加稳定剂以避免在最终配方中变色。 曲酸:其效用是在观察日本清酒酿造工人的手变白时发现的。它能有效抑制酪氨酸酵素,可溶于水,使用浓度介乎1%~3%之间,无毒,用后刺激性极小,在亚洲食品工业中被用作抗氧化剂。但在美白产品中应用,配方中存在稳定性问题,会令加入曲酸的产品变成黄褐色。基于这一原因,含有曲酸的美容化妆品中均添加抗氧化剂。 棕榈酸曲酸:由曲酸衍生而来的脂溶性成分,相对于防晒露及其配方中可能添加的防腐剂而言,其好处在于不影响它们的活性。尽管推测它能起抑制酪氨酸酵素的作用,但确切的作用过程仍未被业界人士彻底搞清楚。而通过人体试验显示其性质稳定,无刺激性。 维生素C衍生物:维生素C可有效抑制酪氨酸酵素,但不具相应比例的美白效果,因此业内人士推断是其抗氧化作用令黑色素减少进而分解,从而起到了美白作用。由于其性质倾向不稳定,故其配方中需添加其他成分保持其稳定性,但可能会因此而降低其功效。值得一提的是,维生素C磷酸镁盐是维生素C相对稳定的衍生物,可溶于水。作为皮肤美白成分使用时,浓度介乎5%~10%之间。具有令肌肤明亮及抗氧化作用,并能刺激胶原蛋白的合成,也常用于抗衰老保养品中。 壬二酸衍生物:该酸由引起花斑癣的皮屑芽胞菌酵母自然生成,通过该分子的作用会使皮肤出现淡斑。它是氧化酵素的有效抑制剂,因此也能抑制酪氨酸酵素。对光不敏感,与皮肤相容性好,但难以溶解,不便与乳液结合,近年来生产出的衍生物azelaoidiglycine,在其浓度含量为3%的口者喱中有显著的美白效果。 植物萃取物:许多植物萃取物具有美白肌肤的作用,而当前的问题是如何正确辨别它们内部的活性成分。譬如,中国植物蔷薇科属火棘(Pyracanthafortuneana)的衍生物,其美白作用与抑制酪氨酸酵素、抗组氨作用均同步进行,虽然目前仍不清楚这些作用是否来自萃取物中的同一成分,但肯定它包含多酚—— 一种洋甘草(Glycyrrhiza glabra)精油中供研究及散见于多种不同植物中、被确认为具美白功用的物质。 总之,美白配方的功效主要取决于所含成分的类型,人们可以通过试管及人体测试进行评估。不过有研究成果显示,数种活性成分结合产生的护理功效,可高于单一成分功效的总和。某些成分——如硫辛酸、山梨酸、萄糖氨、谷光甘肽及半胱氨酸等——各自的美白功效不大,但结合使用可提高其功效。

燃烧是一种同时伴有放热和发光效应的激烈的化学反应。放热、发光、生成新物质(如木料燃烧后生成二氧化碳和水份并剩下碳和灰)是燃烧现象的三个特征。燃烧是一种氧化反应,其中氧气是最常见的氧化剂,但氧化剂并不限于氧气,氧化并不限于同氧的化合。 燃料燃烧放出的热量,至今仍是人们的主要能量来源,其目的不是制备生成物,而是获得能量。研究燃料充分燃烧的条件与方法不仅对节约能源、提高燃料的利用率至关重要,而且,对减少因不完全燃烧产生的CO等有害气体、烟尘等对空气的污染,也具有重要意义。一般说来,燃料在空气中的燃烧,是燃料和空气中氧气的氧化还原反应。为使燃料充分氧化,应保证有足够的空气。同时,为保证固体和液体燃料燃烧充分,增大燃料与空气的接触面(固体燃料粉碎、液体燃料以雾状喷出等)也是有效的措施。 燃烧的条件:1.可燃物(不论固体,液体和气体,凡能与空气中氧或其它氧化剂起剧烈反应的物质,一般都是可燃物质,如木材,纸张,汽油,酒精,煤气等)2.充足的氧气 3.达到物质的着火点 灭火的基本原理及方法:燃烧必须同时具备三个条件,采取措施以至少破坏其中一个条件则可达到扑灭火灾的目的.,灭火的基本方法有三个:(1)冷 却法: 将燃烧物质降温扑灭,如木材着火用水扑灭;(2)窒息法:将助燃物质稀释窒息到不能燃烧反应,如用氮气、二氧化碳 等惰性气体灭火。(3)隔离法:切断可燃气体来源,移走可燃物质,施放阻燃剂,切断阻燃物质,如油类着火用泡沫灭火机。 当今世界常用燃料:煤、石油和天然气是当今世界上最重要的三大矿物燃料,又是化学工业中极为重要的原料,它们又细分为(1)固体燃料:木柴、烟 煤、揭煤、无烟煤、木炭、焦炭、煤粉等;(2)液体燃料;汽油、煤油、柴油、重油等;(3)气体燃料:天然气、人工煤气、液 化石油气等 清洁燃料:液氨、酒精、液氢(最清洁的燃料,燃烧产物是水)、甲醇等 海洋资源的开发利用与海洋环境 海洋资源类型 海洋中有丰富的资源。在当今全球粮食、资源、能源供应紧张与人口迅速增长的矛盾日益突出的情况下,开发利用海洋中丰富的资源,已是历史发展的必然趋势。目前,人类开发利用的海洋资源,主要有海洋化学资源、海洋生物资源、海底矿产资源和海洋能源四类。 海水可以直接作为工业冷却水源,也是取之不尽的淡化水源。发展海水淡化技术,向海洋要淡水,是解决世界淡水不足问题的重要途径之一。 海水中已发现的化学元素有80多种。目前,海洋化学资源开发达到工业规模的有食盐、镁、溴、淡水等。随着科学技术的发展,丰富的海洋化学资源,将广泛地造福于人类。 海洋中有20多万种生物,其中动物18万种,包括16000多种鱼类。在远古时代,人类就已开始捕捞和采集海产品。现在,人类的海洋捕捞活动已从近海扩展到世界各个海域。渔具、渔船、探鱼技术的改进,大大提高了人类的海洋捕捞能力。海洋中由鱼、虾、贝、藻等组成的海洋生物资源,除了直接捕捞供食用和药用外,通过养殖、增殖等途径还可实现可持续利用。 在大陆架浅海海底,埋藏着丰富的石油、天然气以及煤、硫、磷等矿产资源。在近岸带的滨海砂矿中,富集着砂、贝壳等建筑材料和金属矿产。在多数海盆中,广泛分布着深海锰结核,它们是未来可利用的潜力最大的金属矿产资源(图《深海锰结核》)。 海水运动中蕴藏着巨大的能量,它们属于可再生能源,而且没有污染。但是,这些能量密度很小,要开发利用它们,必须采用特殊的能量转换装置。现在,具有商业开发价值的是潮汐发电和波浪发电,但是工程投资较大,效益也不高。 海洋渔业生产 海洋渔业资源主要集中在沿海大陆架海域,也就是从海岸延伸到水下大约200米深的大陆海底部分。这里阳光集中,生物光合作用强,入海河流带来丰富的营养盐类,因而浮游生物繁盛(图3.15《大陆架剖面示意》)。这些浮游生物是鱼类的饵料,它们在海洋中分布很不均匀,一般在温带海区比较多。 温带地区季节变化显著,冬季表层海水和底部海水发生交换时,上泛的底部海水含有丰富的营养盐类,这些营养盐类来自海洋中腐烂的生物遗体。暖流和寒流交汇处或有冷海水上泛的地方,饵料比较丰富。这些地方通常是渔场所在地(图3.16《世界主要渔业地区的分布》)。因此,尽管大陆架水域只占海洋总面积的7.5%,渔获量却占世界海洋总渔获量的90%以上。 世界主要渔业国都分布在温带地区,这些温带国家鱼产品消费量高,市场需求大。中国和日本是世界海洋渔获量较多的国家。中国在充分利用近海渔场(图3.17《舟山渔场的沈家门渔港》)和浅海滩涂大力发展海洋捕捞和海水增养殖业的同时,远洋捕捞也获得了较大的发展。日本可耕地有限,人口密度高,因此海洋水产品在食品结构中比重较大。 海洋油、气开发 海底油气的开发,开始于20世纪初。它的发展经历了从近海到远海、从浅海到深海的过程。受技术条件的限制,最初只能开采从海岸直接向浅海延伸的油气矿藏。80年代以来,在能源危机和技术进步的刺激下,近海石油勘探与开发飞速发展,海洋石油开发迅速向大陆架挺进,逐渐形成了崭新的近海石油工业部门。 地质学家和地球物理学家通常利用地震波方法来寻找海底油气矿藏,然后通过海上钻井来估计矿藏类型与分布,分析是否具有商业开发价值。 海上钻井平台(图3.18《海上钻井平台》)是实施海底油气勘探和开采的工作基地,它标志着海底油气开发技术的水平。工作人员和物资在平台和陆地间的运输一般通过直升机完成。油气田离炼油厂一般都较远,油气要经过装油站通过船舶运到目的地,或直接由海底管道输送至海岸。 海底石油和天然气的勘探、开采是一项高投资、高技术难度、高风险的工程,国际合作和工程招标是可行方式之一。 海洋空间利用 世界人口迅速增长,使陆地空间显得越来越拥挤,海洋空间的开发利用问题越来越令人关注。海洋可利用空间包括海上、海中、海底三个部分,随着人类逐步向海洋挺进,海洋将成为人类活动的广阔空间(图3.19未来海洋空间利用示意)。 海洋环境不同于陆地,它的环境和生态条件有其复杂性和特殊性。人类活动在近海和海洋表面,要抗御多变的海洋气象状况和海水的运动;深海活动要能适应黑暗、高压、低温、缺氧的环境;海水的腐蚀性强,海冰的破坏性大,对工程设备材料和结构有严格的要求。因此,海洋空间资源开发对科学技术和资金投入的依赖性大、技术难度高、风险大。 海洋空间利用已从传统的交通运输,扩大到生产、通信、电力输送、储藏、文化娱乐等诸多领域。交通运输方面包括海港码头、海上船舶、航海运河、海底隧道、海上桥梁、海上机场、海底管道等。生产空间有海上电站、工业人工岛、海上石油城、围海造地、海洋牧场等。通信和电力输送空间主要是海底电缆。储藏空间方面,有海底货场、海底仓库、海上油库、海洋废物处理场等。文化娱乐设施空间包括海洋公园、海滨浴场和海上运动区等。 海洋运输和港口建设 海洋曾经是人类从事交通运输的天然屏障。长期以来,人类一直在努力将海洋屏障变为海上坦途。最初,人们利用人力、风力或洋流作为动力,驾驶木船在近海活动。随着欧洲人到达美洲大陆,世界海洋航运由近海转向远洋。之后,世界大洋重要的航道陆续开辟。20世纪初,开辟了通往南极和北极的航道,巴拿马运河和苏伊士运河相继开通。现在,人类已经能够将船舶驶人世界任何海域(图3.20世界主要海运路线)。 20世纪60年代,世界石油生产和运输增长,大型油轮得到发展。集装箱船的兴起,带来了海洋货物运输的革命。今天,穿梭在辽阔海洋上的是百万吨级的大型集装箱货轮和巨型油轮。这些船舶不仅拥有无线电导航和全球定位技术等现代化仪器设备,还可以选择最佳航线服务,以节省能源和航时,减少危险。 沿海港口是海洋运输船舶停泊、中转和装卸货物的场所,也是人们开发利用海洋空间的主要场所。港口一般有一个服务区域,即腹地,该区域的商品和货物通过这个港口向外扩散。为了完成运输任务,港口要有配套的设施,如码头、装卸设备等,还要有高效率的运作服务。在港口发展过程中,受内外因素的影响,港口的规模、服务功能和范围可能有所变化。例如,某些国家的政府为吸引船舶来本国港口中转,对港口实行特殊政策,将港口辟为自由贸易区、自由港等,不需或很少缴纳费用。 荷兰的鹿特丹很早就是世界贸易的中心。之后,鹿特丹港又通过开凿连通北海的运河,改善水运条件而持续发展。鹿特丹利用中转散装货物的机能,发展了农、矿产品加工业和造船工业(图3.21鹿特丹港口的土地利用)。中继贸易也带动了腹地近代工业的迅速发展。第二次世界大战以后,西欧各国经济复兴,鹿特丹成为欧洲联盟的大门,港湾和航空设施得到完善,港口的中转机能更加突出。现在,鹿特丹是世界最大的港口之一,腹地覆盖了欧盟的半数国家。 围海造陆 沿海地区人地矛盾激化,使人们将眼光投向大海。荷兰人从13世纪就开始围海造陆,目前,荷兰有 1/5的国土是从海中围起来的。围海造陆是缓解人多地少矛盾的重要途径,但是它需要经过充分的科学论证,特别是做好以水利工程为中心的配套建设。 在近岸浅海水域用砂石、泥土和废料建造陆地,通过海堤、栈桥或者海底隧道与海岸连接,这种新建陆地称为人工岛。世界上一些沿海发达国家如日本、美国、法国、荷兰等都已建造了人工岛。其中以海上城市(图3.22日本神户人工岛)的规模最大、功能最齐全。兴建海上城市,工程和费用巨大,需要以强大的国力作基础。 澳门人多地少,有限的土地不足以满足发展居住、绿化、交通、工业、商业等的建设需要。澳门沿岸有许多淤积成的浅滩,有的在落潮时能露出水面,澳门人将它们视为良好的后备土地资源。 100多年来,澳门人利用填海造陆的办法使土地面积扩大了1倍(表3.2澳门历年土地面积的变化和图3.23澳门历年填海范围)。 海洋环境保护 海洋环境问题包括两个方面:一是海洋污染,即污染物进入海洋,超过海洋的自净能力;二是海洋生态破坏,即在各种人为因素和自然因素的影响下,海洋生态环境遭到破坏。 (一)海洋污染 海洋污染物绝大部分于陆地上的生产过程。海岸活动,例如倾倒废物和港口工程建设等,也向沿岸海域排入污染物。污染物进入海洋,污染海洋环境,危害海洋生物,甚至危及人类的健康。 工业生产过程中排出的废弃物是海洋污染物的主要来源,它们集中在大型港口和工业城市附近。1953-1970年,日本九州岛水俣湾发生的汞污染事件,就是因为工厂在生产有机产品过程中,排出含汞废物。这些有害物质流入海洋后,逐渐在鱼和贝类体内富集。最后导致100多人严重中毒,并先后死亡。 核电站和工厂排出的冷却水,水温较高,流入河口或海中时,往往给海洋生物带来影响。施入农田的杀虫剂随雨水流进河流,或者随土壤颗粒在河口附近淤积,最终进入海洋。偶发性的海上石油平台和油轮事故,引起石油渗漏和溢出,造成海洋污染。 (二)海洋生态破坏 除海洋污染外,人类的生产活动,例如工程建设和渔业生(围垦和滥捕等),以及自然环境的变化,例如全球变暖和海平面上升,都会使海洋生态环境遭到破坏和改变。人类对某些海洋生物的过度捕捞,导致海洋生物资源数量减少,质量降低,也使部分物种濒临灭绝。有些海岸工程建设和围海造田缺乏科学论证,破坏了海岸环境和海岸带生态系统。目前,海洋开发活动还缺乏综合的、长远的规划、综合效益比较差。 石油污染和监测防治 沿海工业生产和海运航线上的船舶,是石油污染的主要来源。因此,石油污染区域集中于沿海水域和海上航道沿线。由意外事故造成的石油泄漏,因为污染迹象明显,污染物集中,危害严重,因而倍受公众的关注,也是目前治理污染的重点。 为减少意外事故的发生,很多国家在试验新的原油装载方法。有些国家配备了除污船,用来清除港口水面垃圾和污油。 海洋权益和《联合国海洋法公约》 20世纪60年代以来,出现了世界性的开发海洋热潮。海洋科学和技术迅猛发展,成为当代新技术革命的重要领域之一。为适应国际海洋开发、保护和管理的新形势,国际社会经过20多年的努力,通过了《联合国海洋法公约》,并于1994年11月16日正式生效。海洋法公约的诞生,使国际海洋法律制度发生了重大变革。例如,长期争执不休的领海宽度问题得到了解决;国际海底及其资源确立为人类的共同继承财产。 根据《联合国海洋法公约》,全球144个沿海国家除拥有12海里领海权外,其管辖海域面积可外延到200海里,作为该国的专属经济区,享有勘探、开发、利用、保护、管理海床上覆水域及底土自然资源的主权。我国管辖海域面积为473万平方千米,约相当于我国陆地面积的二分之一,因此,加强海洋综合管理显得日益重要。 《联合国海洋法公约》的诞生,为建立国际法律新秩序迈出了重要一步。但是,因为《联合国海洋法公约》要兼顾各个国家的利益和要求,还有许多不完善和不明确之处。因此,在实施过程中,必然会产生一些新的矛盾和问题。例如,在封闭和半封闭的海域,周边国家主张的200海里专属经济区就有可能存在着重叠,还有一些岛屿主权争议和渔业资源分配等问题,这些都有可能成为相邻国家关系紧张,甚至引发国际冲突的新的因素。因此,相邻国家间管辖海域划界和海洋权益,要求有关国家本着友好协商的精神,予以公平合理的解决。 海水化学资源概况 海洋化学资源是指海水中所蕴含的可供人类利用的各种化学元素。海水的成分非常复杂,全球海洋的含盐量就达5亿亿吨,还含有大量非常稀有的元素,如金达500万吨,铀达42亿吨,所以海洋是地球上最大的矿产资源库。海洋资源的持续利用是人类生存发展的重要前提,目前,全世界每年从海洋中提取淡水20多亿吨、食盐5000万吨、镁及氧化镁260多万吨、溴20万吨,总产值达6亿多美元。水是生命之源,世界上缺水的地区愈来愈多,海水淡化已成为获得淡水资源重要的途径,所有这些都是海洋化学要研究的。 海洋生物资源 1、海洋生物资源量估计。海洋是生物资源宝库。据生物学家统计,海洋中约有20万种生物,其中已知鱼类约万种,甲壳类约2万种。许多海洋生物具有开发利用价值,为人类提供了丰富食物和其他资源。世界海洋浮游植物产量5000亿吨,折合成鱼类年生产量约6亿吨。假如以50%的资源量为可捕量,则世界海洋中鱼类可捕量约3亿吨。 2、海洋生物资源开发状况。开发海洋生物资源的主要产业是海洋渔业,另外还有少量海洋药用生物资源开发。1989年世界海洋渔业产量约8575万吨。1990年世界渔业总产量估计(正式统计数字尚未见报道)为1亿吨,其中海洋渔业产量也比1989年有所增长。其中,世界各大洋的渔业产量分别为:太平洋亿吨,大西洋亿吨,印度洋亿吨。 各国海洋渔业的发展水平差别很大。长期以来,日本和原苏联是渔业产量超过1000万吨的渔业大国。中国的渔业发展比较快,1990年渔业产量达到1200多万吨,成为第一渔业大国。美国、加拿大和欧洲的一些国家,以及南朝鲜和东南亚的某些国家,渔业也比较发达。 3、海洋生物资源开发潜力。世界大洋生物资源的开发潜力是很大的。如前述各国专家所估计的,世界海洋渔业资源的总可捕量在2-3亿吨之间,目前的实际捕捞量不足1亿吨。另外,药用和其他生物资源也有很大开发潜力。近年来,日本等国正在探索大洋深水区的生物资源开发问题,首先是进行资源调查,同时开发新的捕捞技术。据报道,过去被认为是海洋中的荒漠的大洋深水区,蕴藏着大量的中层鱼类资源,其中仅灯笼鱼的生物量就有9亿吨,每年可捕量可达5亿吨。南大洋磷虾资源年可捕量可达亿吨。另外,水深200?000m的区域也有许多其他经济鱼类,如长尾鳕科鱼类,深海鳕科鱼类,平头鱼科鱼类,以及金眼鲷、鲽鱼等,可捕量约3000万吨。 海洋矿藏资源概述 用“聚宝盆”来形容海洋资源是再确切不过的。单就她的矿产资源来说,其种类之繁多,含量之丰富,令人咋舌。在地球上已发现的百余种元素中,有80余种在海洋中存在,其中可提取的有60余种,这些丰富的矿产资源以不同的形式存在于海洋中:海水中的“液体矿床”;海底富集的固体矿床;从海底内部滚滚而来的油气资源。 海水中最普通的是盐,即氯化钠,是人类最早从海水中提出的矿物质之一。另外还有一种镁盐,它们是造成海水又咸又苦的主要原因。除了这两种外,还有钾盐、碘、溴等几十种稀有元素及硼、铷、钡等,它们一般在陆地上比较少,而且分布较分散,但又极具价值,对人类用处很大。 据估计海水中含有的黄金可达550万吨,银5500万吨,钡27亿吨,铀40亿吨,锌70亿吨,钼137亿吨,锂2470亿吨,钙560万亿吨,镁1767万亿吨等等。这些东西,大都是国防工农业生产及生活的必需品。例如镁是制造飞机快艇的材料,又可以做火箭的燃料及照明弹等,是金属中的“后起之秀”,而世界上目前有一半以上的镁来自海水。 海水是宝,海洋矿砂也是宝。海洋矿砂主要有滨海矿砂和浅海矿砂。它们都是在水深不超过几十米的海滩和浅海中的由矿物富集而具有工业价值的矿砂,是开采最方便的矿藏。从这些砂子中,可以淘出黄金,而且还能淘出比金子更有价值的金刚石、石英、钻石、独居石、钛铁矿、磷钇矿、金红石、磁铁矿等,所以海洋矿砂成为增加矿产储量的最大的潜在资源之一,愈来愈受到人们的利用。 这种矿砂主要分布在浅海部分,而在那深海底处,更有着许多令人惊喜的发现:多金属结核锰结核就是其中最有经济价值的一种。它是1872-1876年英国一艘名为“挑战号”考察船在北大西洋的深海底处首次发现的。这些黑乎乎的,或者呈褐色的锰结核鹅卵团块,有的象土豆,有的象皮球,直径一般不超过20厘米,呈高度富集状态分布于300-6000米水深的大洋底表层沉积物上。 据估计整个大洋底锰结核的蕴藏量约3万亿吨,如果开采得当,它将是世界上一项取之不尽,用之不竭的宝贵资源。目前,锰结核矿成为世界许多国家的开发热点。在海洋这一表层矿产中,还有许多沉积物软泥,也是一种非同小可的矿产,含有丰富的金属元素和浮游生物残骸。例如覆盖一亿多平方公里的海底红粘土中,富含轴、铁、锰、锌、锢、银、金等,具有较大的经济价值。 近年来,科学家们在大洋底发现了33处“热液矿床”,是由海底热液成矿作用形成的块状硫化物多金属软泥及沉积物。这种热涂矿床主要形成于洋中脊,海底裂谷带中,热液通过热泉,间歇泉或喷气孔从海底排出,遇水变冷,加上周围环境中及酸碱度变化,使矿液中金属硫化物和铁锰氧化物沉淀,形成块状物质,堆积成矿丘。有的呈烟筒状,有的呈土堆状,有的呈地毯状从数吨到数千吨不等,是又一项极有开发前途的大洋矿产资源。 石油和天然气是遍及世界各大洲大陆架的矿产资源。石油可以说是海洋矿产资源中的“宠儿”,又被称为“黑色的金子”。据报告,1990年,全世界海上石油已探明储量达×1010吨,海上天然气已探明储量达×1013M3。油气加在一起的价值占了海洋中已知矿产物总产值的70%以上。 石油是“工业的血液”,然而目前全世界已开采石油640亿吨,石油的枯竭在所难免,从海湾战争可以看出石油的价值所在。所以人们转而求助的就是海洋石油资源。天然气是一种无色无味的气体,又称为沼气,成分主要是甲烷。由于含碳量极高,所以极易燃烧,放出大量热量。1000立方米天然气的热量,可相当于两吨半煤燃烧放出的势量。因此,天然气的价值在海洋中仅次于石油而位居第二。 海洋能源概述 浩瀚的大海,不仅蕴藏着丰富的矿产资源,更有真正意义上取之不尽,用之不竭的海洋能源。它既不同于海底所储存的煤、石油、天然气等海底能源资源,也不同于溶于水中的铀、镁、锂、重水等化学能源资源。它有自己独特的方式与形态,就是用潮汐、波浪、海流、温度差、盐度差等方式表达的动能、势能、热能、物理化学能等能源。直接地说就是潮汐能、波浪能、海水温差能、海流能及盐度差能等。这是一种“再生性能源”,永远不会枯竭,也不会造成任何污染。 潮汐能就是潮汐运动时产生的能量,是人类利用最早的海洋动力资源。中国在唐朝沿海地区就出现了利用潮汐来推磨的小作坊。后来,到了11-12世纪,法、英等国也出现了潮汐磨坊。到了二十世纪,潮汐能的魅力达到了高峰,人们开始懂得利用海水上涨下落的潮差能来发电。据估计,全世界的海洋潮汐能约有二十亿多千瓦,每年可发电12400万亿度。 今天,世界上第一个也是最大的潮汐发电厂就处于法国的英吉利海峡的朗斯河河口,年供电量达亿度。一些专家断言,未来无污染的廉价能源是永恒的潮汐。而另一些专家则着眼于普遍存在的,浮泛在全球潮汐之上的波浪。 波浪能主要是由风的作用引起的海水沿水平方向周期性运动而产生的能量。 波浪能是巨大的,一个巨浪就可以把13吨重的岩石抛出20米高,一个波高5米,波长100米的海浪,在一米长的波峰片上就具有3120千瓦的能量,由此可以想象整个海洋的波浪所具有的能量该是多么惊人。据计算,全球海洋的波浪能达700亿千瓦,可供开发利用的为20-30亿千瓦。每年发电量可达9-万亿度。 除了潮汐与波浪能,海流可以作出贡献,由于海流遍布大洋,纵横交错,川流不息,所以它们蕴藏的能量也是可观的。例如世界上最大的暖流——墨西哥洋流,在流经北欧时为1厘米长海岸线上提供的热量大约相当于燃烧600吨煤的热量。据估算世界上可利用的海流能约为亿千瓦。而且利用海流发电并不复杂。因此要海流做出贡献还是有利可图的事业,当然也是冒险的事业。 把温度的差异作为海洋能源的想法倒是很奇妙。这就是海洋温差能,又叫海洋热能。由于海水是一种热容量很大的物质,海洋的体积又如此之大,所以海水容纳的热量是巨大的。这些热能主要来自太阳辐射,另外还有地球内部向海水放出的热量;海水中放射性物质的放热;海流摩擦产生的热,以及其他天体的辐射能,但来自太阳辐射。因此,海水热能随着海域位置的不同而差别较大。海洋热能是电能的来源之一,可转换为电能的为20亿千瓦。但1881年法国科学家德尔松石首次大胆提出海水发电的设想竟被埋没了近半个世纪,直到1926年,他的学生克劳德才实现了老师的夙愿。 此外,在江河入海口,淡水与海水之间还存在着鲜为人知的盐度差能。全世界可利用的盐度差能约26亿千瓦,其能量甚至比温差能还要大。盐差能发电原理实际上是利用浓溶液扩散到稀溶液中释放出的能量。 由此可见,海洋中蕴藏着巨大的能量,只要海水不枯竭,其能量就生生不息。作为新能源,海洋能源已吸引了越来越多的人们的兴趣。

精油的研究论文

茉莉花香气研究 茉莉的香气非常独特,且因品种而异,具清丽、淡雅、新鲜的花香。一般常用来配制茉莉香精的天然香料有:小花茉莉浸膏和净油、大花茉莉浸膏和净油、树兰浸膏、依兰依兰油、卡南加油、白兰花油和白兰叶油、玳玳花油和玳玳叶油等,合成香料有乙酸苄酯、苯乙醇、芳樟醇、乙酸芳樟酯、松油醇、甲位戊基桂醛、甲位己基桂醛、邻氨基苯甲酸甲酯、乙位萘甲醚、乙位萘乙醚、苄醇、苯甲酸苄酯、吲哚、乙酸对甲酚酯、苯乙酸对甲酚酯等,这些单体香料有的是天然茉莉花香的成分,有的则完全是人工合成的。小花茉莉净油和大花茉莉净油都含有不少的吲哚,这也是茉莉花和它的浸膏、净油容易变色的一个原因,配制茉莉花香精不用、少用或大量使用吲哚取决于该香精的用途:不怕变色的可以多用,否则就少用或不用。 木樨科茉莉属植物大约有100种,其中的大花茉莉和小茉莉香气优雅、馥郁,被作为重要的香料植物广泛栽种,所提制的茉莉香精油是香料工业重要原料,它与其它花的香质调和,给众多类型的香料提供优雅而润泽的品质,因此有“没有茉莉就没有香料”之说。我国和印度尼西亚还用茉莉花与茶叶拼和加工成茉莉花茶,深受消费者喜爱。 在香料工业中,目前已形成较完善的茉莉香精油分析方法,分离鉴定的组分约100种,而且许多重要的香气组分已被相继合成出来,作为香料单体广泛用于调配各种高级香料;在茉莉花茶加工领域,由于直接采用茉莉鲜花作香源,对茉莉花的开花吐香习性,香气形成挥发的环境影响因素进行了探讨。以下从五个方面对茉莉花香气研究作系统介绍。 1 香精油的制备方法 工业上提取茉莉香精油最早采取的是冷脂吸法(enfleurage)”,目前,该方法已被“溶剂直接提取法”代替,即用一挥发性的溶剂来直接萃取茉莉花香精油,这一原理公布于1835年,所用有机溶剂主要是低沸点的石油醚、已烷和戊烷,用石油醚(或已烷)提取茉莉花能得到~的茉莉浸膏,然后在-15℃~-20℃的低温下,用乙醇处理,除去类脂化合物和蜡质,得到52~63%的茉莉净油,该方法经济简便,目前被香料工业广泛采用。 茉莉花香气分析中,除采用“溶剂直接提取法”制备样品外,还有“同时蒸馏一萃取法”(SDE)、多孔树脂吸附法和吹气冷冻法等。“同时蒸馏一萃取法”是由Likens和Nickerson在1966年发展起来的,该法突出特点是将样品的水蒸汽蒸馏和馏分的溶剂(乙醚)萃取两个步骤合二为一,此外,它可以把10-9级浓度的挥发性有机物从脂质或水介质中浓缩数千倍,对微量成分提取效率高,而且在10-6级浓度范围内对大多数有机化合物仍有定量的提取率,该方法是一种全组分香精油制备方法。孔守威、马娅萍等采用“SDE”法研究了茉莉花的香气组成。多孔树脂吸附法和吹气冷冻法主要用于茉莉花头香制备,前者利用多孔吸附树脂对极性较小的有机分子的强吸附作用,在较温和条件下真空抽吸,使香气分子吸附于树脂上,再经溶剂洗脱、浓缩制得头香,或采用热脱附法直接进样分析,目前采取的吸附树脂主要有XAD、Porapak QS和Tenex GC系列。吹气冷冻法未见详细说明。 张镜澄 (1985)发明了一种鲜花头香制备的专利技术,该专利采用活性炭或大孔吸附树脂吸附鲜花开放过程中散发出来的香气,即香花顶空挥发物或头香,然后用超临界(或液体)二氧化碳抽提被吸附剂吸附的香精油。据称该专利可以生产出具有鲜花特有香气的头香精油,并可降低成本,增加鲜花精油产量。 2 茉莉花香气分析方法 分离鉴定方法 随气相色谱柱分离效能的不断提高,茉莉花香气分离技术得到不断发展,目前主要采用OV-101和PEG-20M两种石英毛细管色谱柱对茉莉花香精油组分进行分析,其中又以OV-101柱的分离效果较好,分析时所采用柱温一般为70~200℃,检测器为FID型检测器。用上述方法可使茉莉花香精油中的各组分得到较好分离,在一个样品中分离出近100种香气组分。气—质联用技术的应用,使分离出的香气组分可得到快速鉴定,同时结合核磁共振、红外、紫外多种鉴定方法及kovats指数、程升指数等辅助定性方法,使鉴定的结果更为准确。 定量方法 对茉莉香精油的大多数研究中,主要侧重于对其香气组分进行定性鉴定,通常采用归一法对各组分含量粗略定量。为增强各样品间的可比性,郭友嘉等〔21~22、27〕在茉莉花花源季节稳定性研究中,将每一个样品中一定数量的峰进行归一化定量,在茉莉花头香变化规律研究中,采用归一法与校正因子相结合进行定量,定义其中的6号样总峰面积为100%,用归一法分别求出各组分的含量,再用含量与峰面积之比求出校正因子,用该校正因子再求出其它样品中香气成分的含量。 茉莉花开放释香过程中,因香气组分数变化显著,不宜采用归一法定量,否则会导致结果的重现性差,主要香气组分变化规律不明显。内标法定量是目前香气分析中广泛采用的一种定量方法,它具有减小实验误差、结果可比性强且简便易行的特点。茉莉花香气分析中可采用癸酸乙酯作为内标物〔32〕,该化合物在茉莉花香气中不存在,出峰时间基本处于茉莉花香气气相色谱图中间位置,且与茉莉花香气组分不重叠。 3 茉莉香精油香气组分 1899年,Verley、Hesse和Muller首次分别报道了从茉莉香精油中鉴定的几种主要组分,包括乙酸苯甲酯、芳樟醇、苯甲醇、吲哚、邻氨基苯甲酸甲酯和茉莉酮,到本世纪60年代中期,香料工业生产的精油、净油中的大部分香气组分得到鉴定,70年代初鉴定的香气组分已达30种左右,80年代鉴定的香气组分增至97种;其中烃类化合物33种、醇类化合物27种、醛类化合物2种、酯类化合物27种、酮类化合物10种、其它化合物2种。 茉莉精油中含量较高的组分有:苯甲酸顺-3-乙烯酯、芳梓醇、石竹烯、乙酸本甲酯、苯甲醇、11-二十三烯、吲哚、乙酸顺-3-乙烯酯、苯甲酸甲酯〔〕。具有茉莉型香气特征的主要组分有:乙酸苯甲酯、茉莉酮和茉莉内酯,具有茉莉清香的组分有:乙酸顺-3-乙烯酯、顺-3-已烯醇、苯甲醇、苯甲酸顺-3-乙烯酯。α-萜品醇对香型有较大的影响。 不同来源的茉莉香精油,其香气组成存在差异。吴承顺等 (1987)对大花茉莉和小花茉莉的香清油组分进行比较研究,认为:小花茉莉主要香气成分是苯甲酸顺-3-已烯酯,大花茉莉中则是苯甲酸甲酯,且在大花茉莉香气中存在对香气起主要作用的茉莉酮,但在小花茉莉香气中没有检测到。郭友嘉 (1994)首次在小花茉莉精油中检测到了茉莉酮,其含量为~,而大花茉莉香精油中茉莉酮的含量为~。 不同制备方法得到的茉莉香精油,香气组成亦存在差异,吴承顺等 (1987)对小花茉莉净油、精油和头香组分进行了比较认为:净油中沸点较高的组分较多,主要是苯甲酸顺-3-乙烯酯,还有榧烯醇、油酸甲酯等;精油和净油组分相近,但精油中吲哚和邻氨基苯甲酸含量较高;头香中乙酸顺-3-乙烯酯、芳樟醇和乙酸苯甲酯的含量较高,并含有一些低沸点的烃和酯。郭友嘉等 (1994)分别采用SDE、溶剂直接提取法和Porapak QS树脂吸附法对福建茉莉花的精油、净油和头香进行了系统研究,分别分离出176、145和86个峰,鉴定出峰面积/总峰面积≥的组分分别为81、96和46个,但未对三种香精油之间组分的差异进行详细的比较。张丽霞等对同一样品采用吸附—溶剂洗脱方法、同时蒸馏—萃取方法和有机溶剂浸提法三种香精油制备方法,对茉莉头香、精油和净油的香气组成差异进行了系统比较,三者除了在香气组分数上存在明显差别外,香气组分在气相色谱图上的分布位置也存在差异。如将茉莉花香气的气相色谱图分成三个区段,即芳樟醇之前的化合物属第Ⅰ区,芳樟醇与邻氨基苯甲酸甲酯之间的化合物属第Ⅱ区,邻氨基苯甲酸之后的化合物属第Ⅲ区。茉莉花头香与精油、净油组成之间的差异主要在于:头香中第Ⅲ区的化合物极少,仅有1~2个组分,而净油和精油该区段的化合物多达12~18个。 此外,马崇德等 (1983)采用吹气—冷冻法得到茉莉花头香样品(含油相和水相两部分),首次报道头香水相样中具浓郁的茉莉花香,水相样经过XAD-2树脂富集、洗脱、浓缩处理进行分析,鉴定出12种油相中未曾检测到的香气组分,主要是一些低级醇类化合物,如:甲醇、异丁醇、1-戊烯-3-醇、正已醇和环已醇等。 4 茉莉花释香过程中香气组分变化 探明茉莉花释香过程中香气组分含量和组成变化,对香料生产投料时间和花茶加工付窨时间具指导作用。 陆生椿等(1985)对离体茉莉花存放不同的时间后净油、头香进行了研究,认为:茉莉花离体后当晚23:00~次日3:00香气组分最多,净油的香气品质最好,主要赋香成分苯甲醇、芳樟醇、乙酸苯甲酯、苯甲酸顺-3-乙烯酯等含量较高,乙酸顺-3-已烯酯在释香前期含量较高,随后逐渐减少,而吲哚、邻氨基苯甲酸甲酯等含氮化合物在释香后期却增加;头香组分中,乙酸顺-3-乙烯酯和吲哚的变化情况与净油相同,但邻氨基苯甲酸甲酯含量却不断减少。 郭友嘉等 (1994)采用吸附-热脱捕集进样法,对茉莉花采后7~46小时之间的头香进行了研究,将茉莉花香气的释放过程分成三个阶段:未成熟期、成熟期和枯萎期,刚采摘的花蕾在未成熟期香味甚微,香气组分少,放置11小时后进入成熟期,酯类和醇类的数量增加,在枯萎期酯类含量明显下降,醇类含量却略有增加。张丽霞等研究表明:刚采摘的成熟茉莉花蕾香气组分少,香精油总量低,基本上不存在茉莉花香气的特征成分,当茉莉花开始释香时,香气组分数急剧增加,香精油、酯和醇的总量也相应增加,并出现一个高峰期,随后逐渐降低;此外,在茉莉花释香前期和末期,醇类香气组分所占比例较大,在旺盛释香过程中,则酯类香气组分所占比例较大;采用统计分析方法对茉莉花主要香气组分含量与感官审评的香气浓度进行了相关分析,其中萜品醇、乙酸苯甲酯、α-法呢烯、丁子香烯、苯甲酸顺-3-乙烯酯的含量与香气浓度呈显著或极显著相关,在此基础上建立了4种香气组分与香气浓度之间的回归模型。 此外,郭友嘉等(1993)对茉莉全花期(包括八个节气)的花源稳定性进行了研究,认为:不同季节的气候特征对茉莉花朵的色泽、大小、重量、含蜡量及香精油总量有较大影响,但对香精油的组成影响不显著,说明茉莉花在全花期内花源质量基本稳定。 5 茉莉花开放释香与环境的关系 环境条件对茉莉花,尤其是离体茉莉花的开放吐香影响较大,在温度、湿度和含氧量三个环境因子中,以温度的作用最大,当温度低于20℃时,离体茉莉花蕾难于开放,温度高于36℃时,茉莉花蕾在下午7:00左右就可开放。福建宁德茶厂 (1987)认为茉莉花释香最佳环境条件:室温30℃~33℃,堆温35℃~38℃,相对湿度80%左右,空气流速5~6ml/min,鲜花养护时堆高10~15cm,花堆内部氧气含量17~20%。 茉莉花产花量在整个花期中出现波浪式高峰期,产花高峰期供过于求,花少时又供不应求,影响了花茶生产,因此许维建 (1982)和丁清厚 (1990)分别探讨低温贮藏控制茉莉花开放吐香的问题,许维建认为12℃~18℃低温贮藏花蕾较好,不宜低于12℃,升高温度后茉莉花基本上可以开放吐香。丁清厚则认为在8℃~15℃的低温和90%的相对湿度环境条件下,可使茉莉花蕾处于休眠状态,从而达到抑制花蕾开放的目的,并以此为依据设计了一种茉莉花低温冷藏的方法:将鲜花分层贮藏于冷藏室中,每层间距15cm,层间花堆厚度10~15cm,冷藏室的温度控制在10~13℃、湿度控制在85~90%范围内,据称采用这种方法贮藏的茉莉花蕾,解除低温后鲜花依然洁白有光泽,无干缩现象,香气浓郁清香。 参考文献 1 山西贞.向亚太技术开发委员会报告的在印尼指导茶叶研究的工作报告.1986. 2 罗龙新.印度尼西亚的茉莉花茶.茶叶,1990(4),30~31. 3 刘晓华.介绍印度尼西亚的茉莉花茶生产.广西茶叶,1991(1),64. 4 孔守威,马娅萍,吴承顺.“同时蒸馏—萃取”分析茉莉花香成分.植物学报1985(26),186-191. 5 卜欣,黄爱今,孙亦梁等.茉莉鲜花香气成分分析.北京大学学报(自然版)1987(6),53-60. 6 马崇德,赵明,张世怿等.XAD树脂在茉莉头香水样分析中的应用.化学通报1984(2),20-21. 7 朱亮锋,陆碧瑶,罗友娇.茉莉花头香化学成分的初步研究,植物学报,(2),189-193. 8 陆生椿,黄秀丽,卢剑飞.茉莉花不同存放时间所制备样品的得率和主要成分对比.广州轻工.1985(3),1-7. 9 范成有主编.香料及其应用.化学工业出版社,1991. 10 郭友嘉,戴亮,杨兰萍等.福州小花茉莉全花期中的花源质量稳定性研究Ⅱ.净油和头香化学成分〔GC/MS〕分析.色谱,1994,12(1),11-19. 11 郭友嘉,戴亮,任清等.用吸附—热脱捕集进样法研究茉莉花香释放过程中化学成分.色谱,1994,12(2),110-113 12 马崇德,黄爱今,林祖铭.茉莉花头香的成分研究.化学通报,1983(3),15-17. 13 王天公,孙亦梁.香花顶空挥发物的分析.化学通报,1986(2),19~22. 14 吴承顺,赵德修,孙守威.茉莉花净油的成分研究.植物学报,1981,23(6),459~63. 15 吴承顺,赵德修,孙守威等.小花茉莉净油的少量成分研究.植物学报,1987,29(6),636-42. 16 郭友嘉,戴亮,杨兰萍等,福州小花茉莉全花期中的花源质量稳定性研究Ⅰ.精油化学成分分析,色谱,1993,11(4),191~196. 17 刘先和.茉莉花的开花习性与茉莉花茶窨制.茶叶通讯,1982(2),13~17. 18 福建省宁德茶厂.茉莉花开放吐香习性与环境条件关系.福建茶叶,1987(2)21~23,20. 19 许维建.对人工控制茉莉花开放和吐香的初步探讨.福建茶叶,1982(4),27~28. 20 丁清厚.茉莉花低温冷藏技术设备的开发研究.茶叶机械,1990(2),29~30. 21 张丽霞.茉莉花释香过程中香气变化规律及其细胞学、生物化学基础研究.博士学位论文,

精油的论文,首先你要说清楚精油的特点和它的属性,吉尔要说明精油的作用,同时一定不要缺少论点论据论证,阐述你的观点,讲述精油的重要性,如此而已

初中就要写生物论文??写你们老师吧~参见CNKI~

精油研究论文

茉莉花香气研究 茉莉的香气非常独特,且因品种而异,具清丽、淡雅、新鲜的花香。一般常用来配制茉莉香精的天然香料有:小花茉莉浸膏和净油、大花茉莉浸膏和净油、树兰浸膏、依兰依兰油、卡南加油、白兰花油和白兰叶油、玳玳花油和玳玳叶油等,合成香料有乙酸苄酯、苯乙醇、芳樟醇、乙酸芳樟酯、松油醇、甲位戊基桂醛、甲位己基桂醛、邻氨基苯甲酸甲酯、乙位萘甲醚、乙位萘乙醚、苄醇、苯甲酸苄酯、吲哚、乙酸对甲酚酯、苯乙酸对甲酚酯等,这些单体香料有的是天然茉莉花香的成分,有的则完全是人工合成的。小花茉莉净油和大花茉莉净油都含有不少的吲哚,这也是茉莉花和它的浸膏、净油容易变色的一个原因,配制茉莉花香精不用、少用或大量使用吲哚取决于该香精的用途:不怕变色的可以多用,否则就少用或不用。 木樨科茉莉属植物大约有100种,其中的大花茉莉和小茉莉香气优雅、馥郁,被作为重要的香料植物广泛栽种,所提制的茉莉香精油是香料工业重要原料,它与其它花的香质调和,给众多类型的香料提供优雅而润泽的品质,因此有“没有茉莉就没有香料”之说。我国和印度尼西亚还用茉莉花与茶叶拼和加工成茉莉花茶,深受消费者喜爱。 在香料工业中,目前已形成较完善的茉莉香精油分析方法,分离鉴定的组分约100种,而且许多重要的香气组分已被相继合成出来,作为香料单体广泛用于调配各种高级香料;在茉莉花茶加工领域,由于直接采用茉莉鲜花作香源,对茉莉花的开花吐香习性,香气形成挥发的环境影响因素进行了探讨。以下从五个方面对茉莉花香气研究作系统介绍。 1 香精油的制备方法 工业上提取茉莉香精油最早采取的是冷脂吸法(enfleurage)”,目前,该方法已被“溶剂直接提取法”代替,即用一挥发性的溶剂来直接萃取茉莉花香精油,这一原理公布于1835年,所用有机溶剂主要是低沸点的石油醚、已烷和戊烷,用石油醚(或已烷)提取茉莉花能得到~的茉莉浸膏,然后在-15℃~-20℃的低温下,用乙醇处理,除去类脂化合物和蜡质,得到52~63%的茉莉净油,该方法经济简便,目前被香料工业广泛采用。 茉莉花香气分析中,除采用“溶剂直接提取法”制备样品外,还有“同时蒸馏一萃取法”(SDE)、多孔树脂吸附法和吹气冷冻法等。“同时蒸馏一萃取法”是由Likens和Nickerson在1966年发展起来的,该法突出特点是将样品的水蒸汽蒸馏和馏分的溶剂(乙醚)萃取两个步骤合二为一,此外,它可以把10-9级浓度的挥发性有机物从脂质或水介质中浓缩数千倍,对微量成分提取效率高,而且在10-6级浓度范围内对大多数有机化合物仍有定量的提取率,该方法是一种全组分香精油制备方法。孔守威、马娅萍等采用“SDE”法研究了茉莉花的香气组成。多孔树脂吸附法和吹气冷冻法主要用于茉莉花头香制备,前者利用多孔吸附树脂对极性较小的有机分子的强吸附作用,在较温和条件下真空抽吸,使香气分子吸附于树脂上,再经溶剂洗脱、浓缩制得头香,或采用热脱附法直接进样分析,目前采取的吸附树脂主要有XAD、Porapak QS和Tenex GC系列。吹气冷冻法未见详细说明。 张镜澄 (1985)发明了一种鲜花头香制备的专利技术,该专利采用活性炭或大孔吸附树脂吸附鲜花开放过程中散发出来的香气,即香花顶空挥发物或头香,然后用超临界(或液体)二氧化碳抽提被吸附剂吸附的香精油。据称该专利可以生产出具有鲜花特有香气的头香精油,并可降低成本,增加鲜花精油产量。 2 茉莉花香气分析方法 分离鉴定方法 随气相色谱柱分离效能的不断提高,茉莉花香气分离技术得到不断发展,目前主要采用OV-101和PEG-20M两种石英毛细管色谱柱对茉莉花香精油组分进行分析,其中又以OV-101柱的分离效果较好,分析时所采用柱温一般为70~200℃,检测器为FID型检测器。用上述方法可使茉莉花香精油中的各组分得到较好分离,在一个样品中分离出近100种香气组分。气—质联用技术的应用,使分离出的香气组分可得到快速鉴定,同时结合核磁共振、红外、紫外多种鉴定方法及kovats指数、程升指数等辅助定性方法,使鉴定的结果更为准确。 定量方法 对茉莉香精油的大多数研究中,主要侧重于对其香气组分进行定性鉴定,通常采用归一法对各组分含量粗略定量。为增强各样品间的可比性,郭友嘉等〔21~22、27〕在茉莉花花源季节稳定性研究中,将每一个样品中一定数量的峰进行归一化定量,在茉莉花头香变化规律研究中,采用归一法与校正因子相结合进行定量,定义其中的6号样总峰面积为100%,用归一法分别求出各组分的含量,再用含量与峰面积之比求出校正因子,用该校正因子再求出其它样品中香气成分的含量。 茉莉花开放释香过程中,因香气组分数变化显著,不宜采用归一法定量,否则会导致结果的重现性差,主要香气组分变化规律不明显。内标法定量是目前香气分析中广泛采用的一种定量方法,它具有减小实验误差、结果可比性强且简便易行的特点。茉莉花香气分析中可采用癸酸乙酯作为内标物〔32〕,该化合物在茉莉花香气中不存在,出峰时间基本处于茉莉花香气气相色谱图中间位置,且与茉莉花香气组分不重叠。 3 茉莉香精油香气组分 1899年,Verley、Hesse和Muller首次分别报道了从茉莉香精油中鉴定的几种主要组分,包括乙酸苯甲酯、芳樟醇、苯甲醇、吲哚、邻氨基苯甲酸甲酯和茉莉酮,到本世纪60年代中期,香料工业生产的精油、净油中的大部分香气组分得到鉴定,70年代初鉴定的香气组分已达30种左右,80年代鉴定的香气组分增至97种;其中烃类化合物33种、醇类化合物27种、醛类化合物2种、酯类化合物27种、酮类化合物10种、其它化合物2种。 茉莉精油中含量较高的组分有:苯甲酸顺-3-乙烯酯、芳梓醇、石竹烯、乙酸本甲酯、苯甲醇、11-二十三烯、吲哚、乙酸顺-3-乙烯酯、苯甲酸甲酯〔〕。具有茉莉型香气特征的主要组分有:乙酸苯甲酯、茉莉酮和茉莉内酯,具有茉莉清香的组分有:乙酸顺-3-乙烯酯、顺-3-已烯醇、苯甲醇、苯甲酸顺-3-乙烯酯。α-萜品醇对香型有较大的影响。 不同来源的茉莉香精油,其香气组成存在差异。吴承顺等 (1987)对大花茉莉和小花茉莉的香清油组分进行比较研究,认为:小花茉莉主要香气成分是苯甲酸顺-3-已烯酯,大花茉莉中则是苯甲酸甲酯,且在大花茉莉香气中存在对香气起主要作用的茉莉酮,但在小花茉莉香气中没有检测到。郭友嘉 (1994)首次在小花茉莉精油中检测到了茉莉酮,其含量为~,而大花茉莉香精油中茉莉酮的含量为~。 不同制备方法得到的茉莉香精油,香气组成亦存在差异,吴承顺等 (1987)对小花茉莉净油、精油和头香组分进行了比较认为:净油中沸点较高的组分较多,主要是苯甲酸顺-3-乙烯酯,还有榧烯醇、油酸甲酯等;精油和净油组分相近,但精油中吲哚和邻氨基苯甲酸含量较高;头香中乙酸顺-3-乙烯酯、芳樟醇和乙酸苯甲酯的含量较高,并含有一些低沸点的烃和酯。郭友嘉等 (1994)分别采用SDE、溶剂直接提取法和Porapak QS树脂吸附法对福建茉莉花的精油、净油和头香进行了系统研究,分别分离出176、145和86个峰,鉴定出峰面积/总峰面积≥的组分分别为81、96和46个,但未对三种香精油之间组分的差异进行详细的比较。张丽霞等对同一样品采用吸附—溶剂洗脱方法、同时蒸馏—萃取方法和有机溶剂浸提法三种香精油制备方法,对茉莉头香、精油和净油的香气组成差异进行了系统比较,三者除了在香气组分数上存在明显差别外,香气组分在气相色谱图上的分布位置也存在差异。如将茉莉花香气的气相色谱图分成三个区段,即芳樟醇之前的化合物属第Ⅰ区,芳樟醇与邻氨基苯甲酸甲酯之间的化合物属第Ⅱ区,邻氨基苯甲酸之后的化合物属第Ⅲ区。茉莉花头香与精油、净油组成之间的差异主要在于:头香中第Ⅲ区的化合物极少,仅有1~2个组分,而净油和精油该区段的化合物多达12~18个。 此外,马崇德等 (1983)采用吹气—冷冻法得到茉莉花头香样品(含油相和水相两部分),首次报道头香水相样中具浓郁的茉莉花香,水相样经过XAD-2树脂富集、洗脱、浓缩处理进行分析,鉴定出12种油相中未曾检测到的香气组分,主要是一些低级醇类化合物,如:甲醇、异丁醇、1-戊烯-3-醇、正已醇和环已醇等。 4 茉莉花释香过程中香气组分变化 探明茉莉花释香过程中香气组分含量和组成变化,对香料生产投料时间和花茶加工付窨时间具指导作用。 陆生椿等(1985)对离体茉莉花存放不同的时间后净油、头香进行了研究,认为:茉莉花离体后当晚23:00~次日3:00香气组分最多,净油的香气品质最好,主要赋香成分苯甲醇、芳樟醇、乙酸苯甲酯、苯甲酸顺-3-乙烯酯等含量较高,乙酸顺-3-已烯酯在释香前期含量较高,随后逐渐减少,而吲哚、邻氨基苯甲酸甲酯等含氮化合物在释香后期却增加;头香组分中,乙酸顺-3-乙烯酯和吲哚的变化情况与净油相同,但邻氨基苯甲酸甲酯含量却不断减少。 郭友嘉等 (1994)采用吸附-热脱捕集进样法,对茉莉花采后7~46小时之间的头香进行了研究,将茉莉花香气的释放过程分成三个阶段:未成熟期、成熟期和枯萎期,刚采摘的花蕾在未成熟期香味甚微,香气组分少,放置11小时后进入成熟期,酯类和醇类的数量增加,在枯萎期酯类含量明显下降,醇类含量却略有增加。张丽霞等研究表明:刚采摘的成熟茉莉花蕾香气组分少,香精油总量低,基本上不存在茉莉花香气的特征成分,当茉莉花开始释香时,香气组分数急剧增加,香精油、酯和醇的总量也相应增加,并出现一个高峰期,随后逐渐降低;此外,在茉莉花释香前期和末期,醇类香气组分所占比例较大,在旺盛释香过程中,则酯类香气组分所占比例较大;采用统计分析方法对茉莉花主要香气组分含量与感官审评的香气浓度进行了相关分析,其中萜品醇、乙酸苯甲酯、α-法呢烯、丁子香烯、苯甲酸顺-3-乙烯酯的含量与香气浓度呈显著或极显著相关,在此基础上建立了4种香气组分与香气浓度之间的回归模型。 此外,郭友嘉等(1993)对茉莉全花期(包括八个节气)的花源稳定性进行了研究,认为:不同季节的气候特征对茉莉花朵的色泽、大小、重量、含蜡量及香精油总量有较大影响,但对香精油的组成影响不显著,说明茉莉花在全花期内花源质量基本稳定。 5 茉莉花开放释香与环境的关系 环境条件对茉莉花,尤其是离体茉莉花的开放吐香影响较大,在温度、湿度和含氧量三个环境因子中,以温度的作用最大,当温度低于20℃时,离体茉莉花蕾难于开放,温度高于36℃时,茉莉花蕾在下午7:00左右就可开放。福建宁德茶厂 (1987)认为茉莉花释香最佳环境条件:室温30℃~33℃,堆温35℃~38℃,相对湿度80%左右,空气流速5~6ml/min,鲜花养护时堆高10~15cm,花堆内部氧气含量17~20%。 茉莉花产花量在整个花期中出现波浪式高峰期,产花高峰期供过于求,花少时又供不应求,影响了花茶生产,因此许维建 (1982)和丁清厚 (1990)分别探讨低温贮藏控制茉莉花开放吐香的问题,许维建认为12℃~18℃低温贮藏花蕾较好,不宜低于12℃,升高温度后茉莉花基本上可以开放吐香。丁清厚则认为在8℃~15℃的低温和90%的相对湿度环境条件下,可使茉莉花蕾处于休眠状态,从而达到抑制花蕾开放的目的,并以此为依据设计了一种茉莉花低温冷藏的方法:将鲜花分层贮藏于冷藏室中,每层间距15cm,层间花堆厚度10~15cm,冷藏室的温度控制在10~13℃、湿度控制在85~90%范围内,据称采用这种方法贮藏的茉莉花蕾,解除低温后鲜花依然洁白有光泽,无干缩现象,香气浓郁清香。 参考文献 1 山西贞.向亚太技术开发委员会报告的在印尼指导茶叶研究的工作报告.1986. 2 罗龙新.印度尼西亚的茉莉花茶.茶叶,1990(4),30~31. 3 刘晓华.介绍印度尼西亚的茉莉花茶生产.广西茶叶,1991(1),64. 4 孔守威,马娅萍,吴承顺.“同时蒸馏—萃取”分析茉莉花香成分.植物学报1985(26),186-191. 5 卜欣,黄爱今,孙亦梁等.茉莉鲜花香气成分分析.北京大学学报(自然版)1987(6),53-60. 6 马崇德,赵明,张世怿等.XAD树脂在茉莉头香水样分析中的应用.化学通报1984(2),20-21. 7 朱亮锋,陆碧瑶,罗友娇.茉莉花头香化学成分的初步研究,植物学报,(2),189-193. 8 陆生椿,黄秀丽,卢剑飞.茉莉花不同存放时间所制备样品的得率和主要成分对比.广州轻工.1985(3),1-7. 9 范成有主编.香料及其应用.化学工业出版社,1991. 10 郭友嘉,戴亮,杨兰萍等.福州小花茉莉全花期中的花源质量稳定性研究Ⅱ.净油和头香化学成分〔GC/MS〕分析.色谱,1994,12(1),11-19. 11 郭友嘉,戴亮,任清等.用吸附—热脱捕集进样法研究茉莉花香释放过程中化学成分.色谱,1994,12(2),110-113 12 马崇德,黄爱今,林祖铭.茉莉花头香的成分研究.化学通报,1983(3),15-17. 13 王天公,孙亦梁.香花顶空挥发物的分析.化学通报,1986(2),19~22. 14 吴承顺,赵德修,孙守威.茉莉花净油的成分研究.植物学报,1981,23(6),459~63. 15 吴承顺,赵德修,孙守威等.小花茉莉净油的少量成分研究.植物学报,1987,29(6),636-42. 16 郭友嘉,戴亮,杨兰萍等,福州小花茉莉全花期中的花源质量稳定性研究Ⅰ.精油化学成分分析,色谱,1993,11(4),191~196. 17 刘先和.茉莉花的开花习性与茉莉花茶窨制.茶叶通讯,1982(2),13~17. 18 福建省宁德茶厂.茉莉花开放吐香习性与环境条件关系.福建茶叶,1987(2)21~23,20. 19 许维建.对人工控制茉莉花开放和吐香的初步探讨.福建茶叶,1982(4),27~28. 20 丁清厚.茉莉花低温冷藏技术设备的开发研究.茶叶机械,1990(2),29~30. 21 张丽霞.茉莉花释香过程中香气变化规律及其细胞学、生物化学基础研究.博士学位论文,

功能化妆品概要 功能化妆品的界定 在过去的10多年里,作为化妆品和制药工业革新,以及消费者对化妆品态度转变的结果,化妆品和药品的界线因为交叉而更加模糊不清,见Fig1-1, 由于这种交叉,化妆品和类似药物功效的新类别产品已经出现。比如,尽管美国食品药物管理局 (FDA)没有将功能化妆品(Cosmeceuticals)定义为独立类别,但是该术语已经被派生出来,并且被化妆品制造厂商者,迫不及待地用于描述化妆品和药品组合的一类产品。 每天都有越来越多的术语,用来描述我们正在称为功能化妆品这类日用品。这些包括: 美容增补剂;活性化妆品;效能化妆品;生物活性化妆品;植物化妆品;功效化妆品 皮肤治疗剂;皮肤药物;化妆品药物;疗效性化妆品。 当然,这些术语不都是一样的,在有些情况下,使用者正试图对一些产品类别进行正确地区分;在另一些情况下,使用者可能会简单地"将新酒装入旧瓶"。 美容增补剂基本上是天然营养保健类产品,通过口服产生美容效果,它们通常以胶囊形式使用,但有时以汤剂或甚至酊剂形式使用。 活性化妆品包括"活性"成分,可能不产生许多令人满意的健康益处,然而使用类似效能化妆品或功效化妆品的术语意味着:它们比一般化妆品表现出一些较有用的功效。 比如:皮肤治疗剂和皮肤药物只能简单地归为功能化妆品中的一小类,而化妆品药物被美国食品药物管理局定义为:化妆品和药物相组合的产品,这类产品包括含氟牙膏,抗头皮屑香波,也必须符合人体健康,化妆品卫生和安全法规。由于世界上现有的化妆品卫生和安全法规,和全球文化存在着不同的差异,造成对功能化妆品的许多不同解释;并且不同的国家正在使用上述多种短语和术语,来表达功能化妆品。 .2 功能化妆品历史 尽管功能化妆品这个术语,最初由美国皮肤学家阿尔伯特克利格曼医学博士,在20世纪70年代制造出来,但埃及人是有史以来,最早认识到化妆品能有保健的作用。考古学家已经发掘出一些古代化妆品罐,在其化妆品罐上所写的象形文字是说:"对视力有益"和"止血"。公元前1600年书写的医用莎草纸,经常涉及到许多功能化妆品。特别受人喜爱的是使用蜂蜜和牛奶的制剂,据说蜂蜜和牛奶有助于治疗皮肤疾病。而其他由乳香、植物油和石蜡按等比例制造的产品,声称能消除面部皱纹。 对于许多中世纪的阿拉伯医生和他们的欧洲同行来说,化妆品、香精和草药之间没有什么区别。他们所做的研究和试制工作,同时也覆盖了这些学科。化妆品和洗涤工业从医药领域中分离出来,是19世纪当现代制药工业开始发展,当第一个管制药物销售的政府法令实施以来,所出现的现象。 在近来的50多年里,有点讽刺性的是,医生和公众过分关注化妆品,引起的过敏反应。化妆品作为有效帮助治愈的作用被忽视,直到它在20世纪70年代末和80年代初,才被重视。 克利格曼通过开发能改善紫外损伤皮肤外表和抗皮肤皱纹的制剂,重新点燃人们对化妆品的兴趣。在此,他使用维甲酸作为活性成分。维甲酸已被证实:具有消除细小皱纹、减少衰老角质症,和促使胶原形成的能力。 克利格曼认为:新的化妆品技术"使得在皮肤护理品中,加入数量不受限制的活性物质成为可能,这些活性物质来自自然资源-来自植物、海洋、地球以及宇宙,包括那些由化学家合成的令人心动的物质名单。比如:维生素和抗氧化剂、抗炎、影响情绪的香味、胎盘、羊水血清和众多的激素,选择的范围十分广泛。" 功能化妆品类型 (1)按通常使用来划分,功能化妆品被分为下列各部分: 皮肤护理:包括防晒和其他皮肤护理品; 头发护理:包括洗发香波、护发剂和保护头皮健康的护发品; 身体护理:包括除臭剂和广泛范围的个人护理品; 化妆护理:包括护甲、护眼和彩妆美容产品。 大多数功能化妆品绝多数是皮肤护理品,特别强调防晒品类;其次第二大类是护发品。 (2)按性别化使用来划分,功能化妆品被分为: 在男性中,潜在功能化妆品使用的关键领域是: 头发再生、抗衰老、抗头皮屑、抗汗、抗皮炎、抗牙齿腐蚀、抗脚癣以及作为收敛剂; 在女性中,功能化妆品最多数用于: 抗皱纹、丰乳、苗条(抗脂肪团)、脱毛、口腔卫生、皮肤变棕色、皮肤美白、细胞再生复原、抗自由基、抗静脉曲张。 在这个世界人口老龄化的当今,人们心里将青春与美丽联系在一起,对于女性,不断使用抗衰老面霜和皮肤美白产品,将构成不断增长的化妆品消费大市场。最近几十年,最流行和最有争议的功能化妆品,有些含有果酸:α-羟基酸(AHA)和β-羟基酸(BHA),它们都是非常流行的"抗衰老物质"。 红血丝是另一个美容的疑难问题,在这个领域中,生物化妆品和植物化妆品正愈加流行。许多植物药材,特别是葡萄叶提取产品,已经被成功地开始应用,减缓红血丝的局部面霜,也正日益进入市场。(今后继续连载) -------------------------------------------------------------------------------- 功能美白成分解析 1、减少黑色素生成,概念跟“预防胜于治疗”相类似:利用防晒露,使皮肤因缺少黑色素生成的刺激而变白。通常这类美白产品配方里都添加有防晒因子。 2、加速已出现色素沉着的角质层细胞的新陈代谢:α羟基酸及A醇可促进皮肤的新陈代谢。它们可帮助消除已出现色素沉着的细胞,使肌肤外表更明亮,还可使不断更新的基层细胞加快其生长分裂速度。这样,黑色素细胞进入邻近细胞中的数量就会较少,肌肤就会显著变白。 3、减少新色素的生物合成:关于此类成分的作用过程,目前市面上出售产品的内含成分大多通过抑制酪氨酸酵素而起作用。通常此类衍生物不能兼备安全性和功效性。以对苯二酚为例,该活性成分因据称有毒而渐遭弃用。 于是,近年来,新一代功能性美白产品成分成为许多业内人士关注的焦点和开发重点——熊果素:其结构是对苯二酚的葡萄糖甙,通过抑制酪氨酸酵素而起作用;其刺激性及敏感性比苯二酚小很多。使用浓度介乎1%~10%之间,最好高于5%。易溶于水,需添加稳定剂以避免在最终配方中变色。 曲酸:其效用是在观察日本清酒酿造工人的手变白时发现的。它能有效抑制酪氨酸酵素,可溶于水,使用浓度介乎1%~3%之间,无毒,用后刺激性极小,在亚洲食品工业中被用作抗氧化剂。但在美白产品中应用,配方中存在稳定性问题,会令加入曲酸的产品变成黄褐色。基于这一原因,含有曲酸的美容化妆品中均添加抗氧化剂。 棕榈酸曲酸:由曲酸衍生而来的脂溶性成分,相对于防晒露及其配方中可能添加的防腐剂而言,其好处在于不影响它们的活性。尽管推测它能起抑制酪氨酸酵素的作用,但确切的作用过程仍未被业界人士彻底搞清楚。而通过人体试验显示其性质稳定,无刺激性。 维生素C衍生物:维生素C可有效抑制酪氨酸酵素,但不具相应比例的美白效果,因此业内人士推断是其抗氧化作用令黑色素减少进而分解,从而起到了美白作用。由于其性质倾向不稳定,故其配方中需添加其他成分保持其稳定性,但可能会因此而降低其功效。值得一提的是,维生素C磷酸镁盐是维生素C相对稳定的衍生物,可溶于水。作为皮肤美白成分使用时,浓度介乎5%~10%之间。具有令肌肤明亮及抗氧化作用,并能刺激胶原蛋白的合成,也常用于抗衰老保养品中。 壬二酸衍生物:该酸由引起花斑癣的皮屑芽胞菌酵母自然生成,通过该分子的作用会使皮肤出现淡斑。它是氧化酵素的有效抑制剂,因此也能抑制酪氨酸酵素。对光不敏感,与皮肤相容性好,但难以溶解,不便与乳液结合,近年来生产出的衍生物azelaoidiglycine,在其浓度含量为3%的口者喱中有显著的美白效果。 植物萃取物:许多植物萃取物具有美白肌肤的作用,而当前的问题是如何正确辨别它们内部的活性成分。譬如,中国植物蔷薇科属火棘(Pyracanthafortuneana)的衍生物,其美白作用与抑制酪氨酸酵素、抗组氨作用均同步进行,虽然目前仍不清楚这些作用是否来自萃取物中的同一成分,但肯定它包含多酚—— 一种洋甘草(Glycyrrhiza glabra)精油中供研究及散见于多种不同植物中、被确认为具美白功用的物质。 总之,美白配方的功效主要取决于所含成分的类型,人们可以通过试管及人体测试进行评估。不过有研究成果显示,数种活性成分结合产生的护理功效,可高于单一成分功效的总和。某些成分——如硫辛酸、山梨酸、萄糖氨、谷光甘肽及半胱氨酸等——各自的美白功效不大,但结合使用可提高其功效。

油脂精炼的研究现状论文

目的:清除植物油中所含固体杂质、游离脂肪酸、磷脂、胶质、蜡、色素、异味等的一系列工序。

内容:

1、脱胶:应用物理、化学或物理化学方法将粗油中胶溶性杂质脱除的工艺过程成为脱胶。食用油脂中,若磷脂含量高,加热时易起泡、冒烟、有臭味,且磷脂在高温下因氧化而使油脂呈焦褐色,影响煎炸食品的风味。

脱胶就是依据磷脂及部分蛋白质在污水状态下溶于油,但与水形成水合物后则不溶于油的原理,向粗油中加入热水或通入水蒸气,加热油脂并在50℃温度下搅拌混合,然后静置分层,分离水相,即可除去磷脂和部分蛋白质。

2、脱酸:游离脂肪酸影响油脂的稳定性和风味,可采用加碱中和的方法除去游离脂肪酸,称为脱酸,又称碱炼。

3、脱色:粗油中含有叶绿素、类胡萝卜素等色素,叶绿素是光敏化剂,影响油脂的稳定性,而其他色素影响油脂的外观,可用吸附剂除去。

4、脱臭:油脂中存在一些非需宜的异味物质,主要源于油脂氧化产物。采用减压蒸馏的方法,并添加柠檬酸,螯合过度金属离子,抑制氧化作用。

扩展资料

油脂精炼的方法

1、机械的方法

机械方法包括沉降、过滤、离心分离等。主要用于分离悬浮在油脂中的机械及部分胶融性杂质。

2、化学方法

化学方法主要包括酸炼、碱炼、以及氧化、酯化等,这类方法使用时存在明显的化学反应。酸炼是用酸处理油脂以除去色素、胶溶性杂质;碱炼是用碱处理,主要除去原油中的游离脂肪酸。

氧化主要用于脱色;酯化法用的不多,主要用于添加甘油使油脂中的游离脂肪酸生成甘油三酯,从而降低游离脂肪酸的含量。

3、物理化学方法

物理化学方法主要包括水化、吸附、水蒸气蒸馏、夜-液萃取等。这类方法使用时没有明显的化学反应但又不同于机械的方法。

水化主要用于除去原油中的磷脂等胶体杂质;吸附主要用于脱色;水蒸气蒸馏主要用于除去原油中的臭味物质和游离脂肪酸;液-液萃取法适合于高酸值深色油脂的脱酸,是一种很有发展前途的脱酸方法。

参考资料来源:百度百科-油脂精炼

油料预处理、浸出、精炼、生物柴油、他配套设备 预处理 : 目的是改良油料的外形,以便快速有效的通过机榨或浸出制油。它通常包括以下一系列过程: 油籽剥壳

烹饪过程中控制食物的安全性问题之研究摘要:当今社会“绿色”、“环保”已成为人们最关心的话题。无公害的绿色材料,无氯的绿色冰箱,尤其是无污染的绿色食品越来越受人们的亲睐。如何将绿色食品材料加工成可直接入口的绿色烹饪制品,烹饪过程中如何控制事物的安全性问题,已成为烹饪界人士的广泛关注与探讨。关键词:烹饪过程、有害物质、高温加热、N-亚硝酸基化合物、多环芳烃、致癌物质、污染。“民以食为天”,食品的安全卫生程度直接关系着人们的健康与否,二食品的安全卫生程度又与烹调制作的科学与否密切相关。要使饮食营养科学合理化,人们管拥有“绿色食品材料”还远远不够,绿色食品还须科学烹调,因烹调加工时,假使方法步当,极易混进或产生一些有害物质对所谓的绿色原料造成污染 ,而且,次过程中产生有害物质的环节害很多,如:原料加工温度过低、时间过程、蛋白质烧煮过度、油温过高或考制食品、使用香料调料、色素不当、烹调生产者带菌都可能对烹调食品的安全性问题产生影响。故此,笔者认为,要使人们吃到真正的绿色食品,烹调工作者应着重做好以下工作,以确保烹调过程中控制好食品的安全卫生问题。1、 烹饪中,2、 控制事物的安全性问题,3、 最重要的一点使恰当控制加热温度和时间,4、 烹制的温度过高或过低,5、 加热时间的过短或过过长,6、 都可能对食品安全产生影响。众所周知,烹饪的重要目的之一便是对烹饪原料杀菌、消毒,使食品原料由生变熟,即卫生安全,又易于人体的消化吸收,尽管烹调生产人员都明白“确保烹饪食品的安全,病从口入”的烹饪目的,但可能并非每份烹调制品豆腐和响应的卫生要求。大家或许听过,在水煮或油炸的大鱼块、肉、香肠、肉饼等;大家亦听过有人因吃未熟的鸡蛋、鸡肉、海鲜等食品时而肚痛、腹泻等不良反应;还有大家或许见过已做好上桌的炒、爆、滑、溜类菜,旁边还留有动物原料的血水。烹饪众还有不少类似上述提到的现象,要保证食品的安全,烹饪工作者应时时提高警惕,做好杀菌、消毒的加热工作。了解温度对微生物的影响。据相关文献资料证明,温度大50℃,一般腐败微生物停止生长;60℃以上时,微生物逐渐死亡;63℃~65℃经30分钟或70℃经5~10分钟,或85℃~90℃经3分钟;100℃经1分钟,微生物细胞就会被杀死,,但细菌的芽孢、霉菌的孢子一般在高温高压时才能杀死。如果熟悉了温度对微生物的影响,就可以根据不同的烹饪原料灵活选用加热温度和时间。如:知道蛋类易受沙门氏菌污染,加热时选用能杀死沙门氏菌的温度70℃~80℃且8~10分钟加热鸡蛋即可。加热时忌温度太高或太长采用适当的火候烹制食品,不仅能杀菌消毒,还能确保食物营养,和使制品色、香、味俱佳。若温度过高或是机过长可能会对制品产生很多有害成份。据分析,一般认为高温、长时间加热对食物产生的有害物质主要来源于两个方面:来自加热的客体----原料。长时间高温情况下,,原料中的蛋白质和碳水化合物都极易转变产生有害物质。通常在45℃~120℃温度范围内原料的蛋白质处于正常的热变性状态,45℃--开始变性;55℃~60℃--热变性进行加快并开始凝结;60℃~120℃--逐渐变得完全凝结。蛋白质的这种适度变性,有利于人体的消化吸收,但随着加热温度的递增和时间的延长,蛋白质变性进一步深入,蛋白质分子逐步脱水,断裂或热降解,使蛋白质脱去氨基,并有可能与碳水化合物得羰基结合形成色素复合物,发生非酶褐变,使食品色泽加深。当原料表面温度继续上升到200℃以上且继续加热时,原料中的氨基酸、蛋白质则完全分解并焦化成对人体有害的物质,特别是焦化蛋白中色氨酸产生的-氨甲基衍生物具有强烈的致癌作用。不久前一眼科权威的研究结果向人们指出烧煮、熏烤太过的蛋白质类食物会造成体内缺钙,大量的临床资料及动物试验证明:近视眼的形成与机体缺乏钙铬等微量元素有关。摄入过多烧煮、熏烤太过的蛋白质类食物,会造成体内缺钙。从而导致眼睛近视。另外,随着加热温度升高、时间延长,糖类其他物质亦发生分解碳化,并随着加热时间的延长,铬焦化过程由表及里,这也是我们看到事物烧煮太过过造成碳化的原因。故此,烹饪过程中亦应严格控制高温,切忌将原料烧焦或烧糊。来自加热的主体-油脂烹调用油加热温度不宜太高,因油脂的温域范畴广(一般在0℃~240℃都可选作烹调加热用)烹饪中常用油脂为传热的媒介物,以形成烹饪制品的不同风味质感。在加热油脂时,烹饪生产者通过实践,常可了解到:在一般烹调时,如果加热油温不高,且时间较短,油脂的色泽、透明度等都不会有太大的变化。但如果油脂过高或反复加热使用,油脂的变化逐渐明显起来。通常,新鲜、精炼植物油初次加热使用时,随着油加热,油面由平静状态慢慢转入到微微冒泡状,泡沫大而数量少,稍后,泡沫消失,再转入微微冒泡烟状,油面始终呈透明状,清亮见底,用之加热过的原料,颜色亦透明,呈浅黄或金黄色。经高温反复多次用过的油则随所用次数的增多,颜色逐渐变暗、变浊,油的粘度亦大增。加热时,油面很快产生大量的细密而浓厚的泡沫,并难以消散且迅速产生油烟,投入加热的原料表面颜色马上加深变暗,人们常将这种现象称之为油脂的热变性。它是油脂在高温下发生聚合、水解、缩合、分解等各种复杂的物理化学变化的结果。具体而言,在高温下,油脂开始部分水解形成甘油褐脂肪酸,当不断加热至油温升高到300℃以上时,脂肪酸分子开始脱水缩合成分子量大的醚型化合物,至温度上升到350℃~360℃时,脂肪酸分子(特别是不饱和脂肪酸,如:亚麻酸、亚麻油酸、花生回烯酸等)分解为低分子的酮类,醛类物质,同时,亦发生成各种形式的聚合物,如:二烯环状单聚体、二聚体、三聚体和多聚体等。另外,高温下油脂水解的甘油也进一步脱水生成具有挥发性和强烈辛酸气味的物质-丙烯醛,它是油脂的主要成分,对人鼻、眼具有强烈的刺激作用。当烹饪从业人员看到加热的油面冒着青烟时,表示此时油温达到该油脂的发烟点,有一定的丙烯醛产生了。当然,油脂的发烟点亦随油脂的精炼程度、种类和使用情况的不同而稍有区别。如:未精炼好的植物油,含低分子物质较多,发烟点多为160℃~180℃;精炼较好的植物油发烟点则约为240℃左右。再如:豆油发烟点为181℃~256℃、菜油为186℃~227℃,棉油216℃~229℃。另外,,随着使用时间的加大,油脂发烟点亦是呈下降趋势,这是反复使用过的油脂加热后迅速冒烟的原因。有不少有趣的实验已证明:油脂在高温下反复使用,经上述各种复杂的反应后,生成的物质对人和动物用相当的毒害。有人以高温加热油脂饲养动物一段时间后,发现生长停滞、肝脏肿大。最初认为是高温加热破坏油脂是的营养素所至。但有人在饲料中添加维生素E后,亦不能改善此肿不良影响。所以认为可能是高温加热后产生的有害物质所引起。有人还发现用含高温油脂的饲料喂大白鼠数月后,普遍出现喂伤损的乳头状瘤,并有肝瘤、肺腺瘤及乳腺瘤等。高温加热油脂、所形成的有害物质是什么?专家一般认为是不饱和脂肪酸经加热而产生的各种聚合物。其中,三聚体因分子量大、不易被机体吸收的毒性较小;而分子量较小、易被机体吸收的环状单聚体和二聚体的毒性较强,可使动物生长停滞、肝脏肿大,甚至可能有导致癌作用。此外,油脂在高温发生热聚,害可形成致癌性较强的多环芳烃类物质,值得引起大家的重视。为防止油脂经高温加热带来的毒害,用油加热时应做到:(1)尽量避免持续高温煎炸食品,一般烹饪用油温度最好控制在200℃以下。(2)反复使用油脂时,应随时加入新油,并随时沥尽浮物杂质。(3)据原材料品种和成品的要求正确选用不同分解温度的油脂。如:松鼠鱼、菠萝鱼等要求230℃以上温度成型时,应选用分解温度较高的棉籽油和高级精炼油。二、烹饪过程中,控制食物的安全,须谨防N-亚硝基化合物对食品的污染。食品中天然存在的N-亚硝基化合物含量极微,一般在10pg/kg以下。但腌制的鱼、肉制品、腌菜、发酵食品中,含量较高。一些食品中含油合成N-亚硝基化合物的前体物质仲胺及亚硝酸盐,烹调不当或在微生物作用下,可形成亚硝胺或亚硝酰胺。影响N-亚硝基化合物合成的因素,主要有PH值、反应物浓度、胺的种类及催化物的存在等等。亚硝胺和成反应需要酸性条件,如仲胺亚硝酸基化的最适PH值为。在中性及碱性条件下,如果增加反应浓度,延长反应时间或有催化剂卤族离子及甲醛等羧基化合物存在时,亦可形成亚硝胺。合成亚硝胺的反应物包括胺类和亚硝酸盐等。凡含有-N=结构的化合物均可参加合成反应,如胺类、酰胺类、氨基甲酸乙脂、氨基酸胍类等。胺类中伯胺、仲胺、叔胺均可亚硝化,但仲胺速度快,叔胺比仲胺慢大约200倍。大肠杆菌、普通变形杆菌等硝酸盐还原菌亦可将仲胺及硝酸盐合成亚硝胺。但这常在人体胃内及食品发酵过程中发生。香肠、腊肉、水晶蹄制作过程中,加入硝酸盐或亚硝酸盐作护色剂的盐腌干鱼,也会含有N-亚硝基化合物;腌制腊肠用佐料事先将黑胡椒、辣椒粉等香料与粗制盐、亚硝酸盐等混合,腊肠中就会有亚硝酸基比咯烷、亚硝基哌啶检出。因此应禁用事先混合的盐腌佐料来腌制腊肠,盐合香料要分别包装。烟熏肉和鱼,煎炸咸肉片、暴露于空气中的直接烤制也会形成一部分亚硝胺。三、饪过程中,控制事物的安全,须慎防多环芳烃对食品的污染。烹饪过程中,产生有害化学物质中危害性最大的便时多环芳烃。多环芳烃时指由两个以上的苯环粘合起来的一系列芳烃化合物及其衍生物。它们对 人由致癌作用,特别时五个苯环稠合起来的苯并芘(B(a)P)更具强的致癌性。据研究得知,烹饪过程中,产生多环芳烃的途径主要其一是上述已提到得油脂经高温聚合而产生多环芳烃—苯并芘;其二,主要源于烟熏和烘烤食品时所产生。人们在用煤、汽油、木炭、柴草等有机物进行高温烟熏烤制食品时,有机物得不完全燃烧将产生大量的多环芳烃类化合物。而被熏烤的食物原料往往直接与火、烟接触,直接受到所产生的多环芳烃的污染。随着熏烤时间的延长,多环芳烃由表及内,不断向原料内部渗透。尤其时含油脂和胆固醇较多的食品熏烤时,由于内部所含油脂的热聚作用,亦能产生苯并芘,其所含苯并芘更多。据相关统计发现:熏烤食品中苯并芘的含量大致为:一般烤肉、烤香肠内含量 g/kg,广东叉肉和烧腊肠用柴炉加工使(B(a)P)量上升最多,其次为煤炉及炭炉,电炉烧制的量最少;新疆烤羊肉如滴落油着火后,则含量为,平均。至于烟熏,烧烤食品所含多环芳烃较多且具有强致癌作用,特别使容易导致胃癌这一特点,已被一系列事实所证明。据调查:匈牙利西部已地区胃癌明显高发与该地区居民常吃家庭自制的熏肉有关;前苏联拉托维亚—沿海地区胃癌高发,是吃熏鱼较多所致;冰岛胃癌死亡率高发,是吃熏鱼较多所致;冰岛胃癌死亡率第三位,原因之一是冰岛居民喜欢吃熏羊肉,用当地熏羊肉喂大白鼠已诱发恶性肿瘤。为防止多环节烃对食品的污染,可采用以上措施:(1) 熏烤食品时,(2) 不(3) 要离火太近,(4) 避免食物与炭火直接接触,(5) 温度不(6) 宜高于400℃。(7) 不(8) 让熏制食品油脂滴入炉内因为烟熏时流出的油含—苯并芘多,(9) 致癌性强,(10) 且勿用此油。(11) 设法改进烟熏和烘烤的烹饪过程,(12) 改用电炉,(13) 改良食品烟熏剂或使用冷熏液等。、四、有效减或消除原料中对人不利的成分,确保食品安全。如:人们常通过飞水去除菠菜、觅菜、茄子等原料中的有机酸,可防止其与人体摄入的其它高钙或高蛋白质食物在体内形成不能被吸收的结石性有机物,入鞣酸蛋白、草酸钙等。再如:烹饪鲜黄花中的秋水仙碱;加工发芽土豆时,出去净皮、芽周围组织外,还应注意煮熟煮透,辅加适量的醋,以破坏所含有对人体有害的龙蔡素碱;烹饪制四季豆时,注意须长时间煮沸,加热彻底才能破坏所含有的对人体不利成分—皂素和豆素;烹制白果时,加热彻底才能免除银杏酸对人体的毒害;烹制害氰疳的木薯、苦杏仁、桃仁等,加热彻底并不加盖烹制,可让生长的氰氢酸挥发;加热被绦虫、肝吸虫、蛔虫等寄生虫卵污染的食品,应使加热时间稍长,使原料内部中心温度达到杀菌温度时,才能彻底灭杀寄生虫。恰当使用香辛料、调料、色素等调味、调色辅助料,防止食品中人为加入有害成分。最好不使用花椒、胡椒、桂皮、茴香等香料,不使用劣质或假冒的酱油,米醋、料酒、食盐等调料,不使用防腐、发色剂亚硝酸盐类,不使用日落黄、觅菜红、柠檬黄等食用色素。据分析:花椒、胡椒、桂皮、茴香等含有的“黄漳素”有致癌的作用;劣质或假冒的酱油、米醋、食盐等多含黄曲素、甲醇、重金属等有害成分。而使用类制品呈鲜红的玫瑰红的发色剂。亚硝酸盐、硝酸盐类易与胺类在人体内或人体外含有致癌作用的亚硝胺;其它一些食用色素在生产过程中亦可能混入钾、铅等重金属。对人不利。故此,万一要用色素或发色剂,亦应严格规定其用量。通常觅菜红、胭脂红的用量为;柠檬黄、靛蓝为;亚硝酸盐类不超过;硝酸盐类不超过。五、烹饪过程中还应特别注意恰当投放味精(味精主要成分为谷氨酸钠),在弱酸性时,或中性溶液中,且温度为70~90度时,使用效果最好,若投放时温度过高,谷氨酸钠会在高温下转化为焦谷氨酸钠,不仅毫无鲜味,而且可能引起恶心、眩晕、心跳加快等中毒症状。6、 饪过程中,7、 控制食品安全,8、 烹饪工作者需身体健康。由于从事烹饪生产的从业人员是食品污染疾病传播的重要途径之一,所以他们需要搞好个人卫生。从《食品卫生法》亦规定;食品生产经营人员每年必须进行健康检查,新参加和临时参加的食品生产人员必须取得健康合格证后方可参加工作。凡患痢疾、伤害、病毒性肝炎、活动性肺结核或化脓性渗出性皮肤病等不得参加直接入口食品得制作,凡传染病患者或带菌者都应停止工作、立即治疗,待三次检查为阳性后,才可恢复工作。总之,要实现现代化追求“绿色烹饪食品”得理想,烹饪工作者应悉心关注了解烹饪过程中各个环节对食品得影响,并不断地积累核掌握烹饪过程中控制食物安全性问题的各项措施,以便探研到更科学更合理地烹饪方法。参考文献:《家庭厨房百科知识》,上海文化出版社1991年12月第1版。《烹饪化学知识》武汉商业出版社。《烹饪技术》中国商业出版社,孙玉民、朱炳元主编《烹饪基础》中国商业出版社,林则普主编。《饮食营养与卫生》中国商业出版社,刘国芸主编。《烹饪营养学》中国轻工业出版社,彭景主编。《烹饪基础化学》中国商业出版社,朱娩芳主编。《烹饪卫生学》中国轻工业出版社,蒋云升主编。《食品微生物学》中国商业出版社。《食品毒理》人民卫生出版社。

油脂精炼的目的和方法(1)油脂精炼的目的 油脂精炼,通常是指对毛油进行精制。毛油中杂质的存在,不仅影响油脂的食用价值和安全贮藏,而且给深加工带来困难,但精炼的目的,又非将油中所有的杂质都除去,而是将其中对食用、贮藏、工业生产等有害无益的杂质除去,如棉酚、蛋白质、磷脂、黏液、水分等都除去,而有益的"杂质",如生育酚等要保留。因此,根据不同的要求和用途,将不需要的和有害的杂质从油脂中除去,得到符合一定质量标准的成品油,就是油脂精炼的目的。(2)油脂精炼的方法 根据操作特点和所选用的原料,油脂精炼的方法可大致分为机械法、化学法和物理化学法三种。上述精炼方法往往不能截然分开。有时采用一种方法,同时会产生另一种精炼作用。例如碱炼(中和游离脂肪酸)是典型的化学法,然而,中和反应生产的皂脚能吸附部分色素、粘液和蛋白质等,并一起从油中分离出来。由此可见,碱炼时伴有物理化学过程。油脂精炼是比较复杂而具有灵活性的工作,必须根据油脂精炼的目的,兼顾技术条件和经济效益,选择合适的精炼方法。2.机械方法(1)沉淀①沉淀原理 沉淀是利用油和杂质的不同比重,借助重力的作用,达到自然分离二者的一种方法。②沉淀设备 沉淀设备有油池、油槽、油罐、油箱和油桶等容器。③沉淀方法 沉淀时,将毛油置于沉淀设备内,一般在20~30℃温度下静止,使之自然沉淀。由于很多杂质的颗粒较小,与油的比重差别不大。因此,杂质的自然沉淀速度很慢。另外,因油脂的粘度随着温度升高而降低,所以提高油的温度,可加快某些杂质的沉淀速度。但是,提高温度也会使磷脂等杂质在油中的溶解度增大而造成分离不完全,故应适可而止。沉淀法的特点是设备简单,操作方便,但其所需的时间很长(有时要10多天),又因水和磷脂等胶体杂质不能完全除去,油脂易产生氧化、水解而增大酸值,影响油脂质量,不仅如此,它还不能满足大规模生产的要求,所以,这种纯粹的沉淀法,只适用于小规模的乡镇企业。(2)过滤①过滤原理 过滤是将毛油在一定压力(或负压)和温度下,通过带有毛细孔的介质(滤布),使杂质截留在介质上,让净油通过而达到分离油和杂质的一种方法。②过滤设备 箱式压滤机、板框式过滤机、振动排渣过滤机和水平滤叶过滤机。(3)离心分离 离心分离是利用离心力分离悬浮杂质的一种方法。卧式螺旋卸料沉降式离心机,卧式螺旋卸料沉降式离心机是轻化工业应用己久的一类机械产品,近年来在部分油厂用以分离机榨毛油中的悬浮杂质,取得较好的工艺效果。目前国内油厂用于毛油除杂的WL型离心机的技术性能见表1-13。3.水化法(1)水化原理 所谓水化,是指用一定数量的热水或稀碱。盐及其他电解质溶液,加入毛油中,使水溶性杂质凝聚沉淀而与油脂分离的一种去杂方法。水化时,凝聚沉淀的水溶性杂质以磷脂为主,磷脂的分子结构中,既含有疏水基团,又含有亲水基团。当毛油中不含水分或含水分极少时,它能溶解分散于油中;当磷脂吸水湿润时,水与磷脂的亲水基结合后,就带有更强的亲水性,吸水能力更加增强,随着吸水量的增加,磷脂质点体积逐渐膨胀,并且相互凝结成胶粒。胶粒又相互吸引,形成胶体,其比重比油脂大得多,因而从油中沉淀析出。(2)水化设备 目前广泛使用的水化设备是水化锅。一般油厂往往配备2~3只水化锅,轮流使用。也可作为碱炼(中和)锅使用。(3)工艺流程(4)水化脱胶工艺参数①毛油的质量要求:水分及挥发物≤0.3%;杂质≤0.4%。②水的质量要求:总硬度(以CaO计)<250毫克/升;其他指标应符合生活饮用水卫生标准。③间歇式脱磷加水量可采用胶质含量的3~5倍;连续式脱磷加水量可为油量的1%~3%。④水化温度。通常采用70~85℃,水化的搅拌速度,应能变动,间歇式的应至少有两种速度选择。⑤水化脱磷工艺中如添加酸类等情况时,添加量可考虑为油量的0.05%~0.10%。连续式脱磷设备因胶质分离时带有少量杂质,大型厂宜采用排渣式离心机,以节省清洗碟片的时间。⑥水化脱磷设备的选用,处理量小于20吨/天的宜采用间歇式设备;处理量大于50吨/天的应采用连续式设备。⑦水化脱磷设备布置宜在二层楼房车间,主要设备及操作的仪表开关应放在楼上,中间贮罐及辅助设施放在楼下。⑧一般新设计车间中,间歇式水化锅之间的净空距离可为0.6~0.8米,两两成组,组之间净空距离可为1.2~1.5米,连续式水化离心机之间距离可为1.5~1.8米。⑨成品质量:磷脂含油(干基)<50%含磷脂量<0.15%~0.45%(据不同油品和要求)含磷量<50~150毫克/千克杂质<0.15%水分<0.2%⑩(连续式)消耗指标:蒸气(0.2兆帕)60~80千克/吨水(20℃)0.2~0.4立方米/吨电3~5千瓦·时/吨4.碱炼法碱炼,是用碱中和游离脂肪酸,并同时除去部分其他杂质的一种精炼方法。所用的碱有多种,例如石灰、有机碱、纯碱和烧碱等。国内应用最广泛的是烧碱。(1)碱炼的基本原理 碱炼的原理是碱溶液与毛油中的游离脂肪酸发生中和反应。反应式如下:RCOOH+NaOH→RCOONa+H2O除了中和反应外,还有某些物理化学作用。①烧碱能中和毛油中游离脂肪酸,使之生成钠皂(通称为皂脚),它在油中成为不易溶解的胶状物而沉淀。②皂脚具有很强的吸附能力。因此,相当数量的其他杂质(如蛋白质、黏液、色素等)被其吸附而沉淀,甚至机械杂质也不例外。③毛棉油中所含的游离棉酚可与烧碱反应,变成酚盐。这种酚盐在碱炼过程中更易被皂脚吸附沉淀,因而能降低棉油的色泽,提高精炼棉油的质量。碱炼所生成的皂脚内含有相当数量的中性油,其原因主要在于:钠皂与中性油之间的胶溶性;中性油被钠皂包裹;皂脚凝聚成絮状时对中性油的吸附。在中和游离脂肪酸的同时,中性油也可能被皂化而增加损耗。因此,必须选择最佳条件,以提高精油率。(2)碱炼方法 按设备来分,有间歇式和连续式两种碱炼法,而前者又可分为低温和高温两种操作方法。对于小型油厂,一般采用的是间歇低温法。①间歇式碱炼工艺流程②连续式碱炼连续式碱炼即生成过程连续化。其中有些设备能够自动调节,操作简单,生产效率高,此法所用的主要设备是高速离心机,常用的有管式和碟式高速离心机。(3)碱炼脱酸工艺参数①脱胶油的质量要求:水分<0.2%;杂质<0.15%;磷脂含量<0.05%。水的质量要求:总硬度(以CaO计)<50毫克/升;其他指标应符合生活饮用水卫生标准。烧碱的质量要求:杂质≤5%的固体碱,或相同质量的液体碱。②从处理量来考虑,小于20吨/天的宜采用间歇式碱炼,大于50吨/天的应采用连续式碱炼。③碱炼中碱液的浓度和用量必须正确选择,应根据油的酸价(加入其他酸时亦包括在内)、色泽、杂质等和加工方式,通过计算和经验来确定,碱液浓度一般为10~30波美度,碱炼时的超碱量一般为理论值的20%~40%。④间歇式碱炼应采用较低的温度。设备应有二级搅拌速度。⑤连续式碱炼可采用较高的温度和较短的混合时间。在采用较高温度的同时,必须避免油与空气的接触,以防止油的氧化。⑥水洗作业可采用二次水洗或一次复炼和一次水洗,复炼宜用淡碱,水洗水应用软水,水洗水量一般为油重的10%~20%,水洗温度可为80~95℃。⑦水洗脱水后的油的干燥应采用真空干燥,温度一般为85~100℃,真空残压为4000~7000帕,干燥后的油应冷却至70℃以下才能进入下面的作业或贮存。⑧成品质量:酸价间歇式≤0.4连续式≤0.15或按要求油中含皂间歇式<150~300毫克/千克连续式<80毫克/千克,不再脱色可取<150毫克/千克油中含水<0.1%~0.2%油中含杂<0.1%~0.2%⑨消耗指标:蒸气(0.2兆帕)200~250千克/吨软水0.4~0.6立方米/吨冷却水(20℃,循环使用的补充水量)1~1.5立方米/吨电5~20千瓦·时/吨烧碱(固体碱,含量95%)FFA含量的1.5~2倍碱炼损耗 (1.2~1.6)×韦森损耗⑩非冷却用水废水排放量及其主要指标:碱炼时的非冷却用水是植物油厂产生废水的重要方面,应尽量减少废水的产生和对环境的污染程度。排放量<0.4~0.6立方米/吨主要污染指标:pH8~10SS2000~5000毫克/升COD 5000~10000毫克/升BOD 8000~15000毫克/升含油量 500~1000毫克/升5.塔式炼油法 塔式炼油法又称"泽尼斯炼油法"。该法已用于菜籽油、花生油、王米胚油和牛羊油等的碱炼,同时也适用于棉籽油的第二道碱炼。一般的碱炼法是碱液分散在油相中和游离脂肪酸,即油包水滴(W/O)型。塔式炼油法与一般的碱炼方法有明显区别;它是使油分散通过碱液层,碱与游离脂肪酸在碱液中进行中和,即水包油滴(O/W)型。塔式炼油法由三个阶段组成:第一阶段是毛油脱胶,第二阶段是脱酸,第三阶段是脱色。其工艺过程如下:6.物理精炼 油脂的物理精炼即蒸馏脱酸,系根据甘油三酸酯与游离脂肪酸(在真空条件下)挥发度差异显著的特点,在较高真空(残压600帕以下)和较高温度下(240~260℃)进行水蒸气蒸馏的原理,达到脱除油中游离脂肪酸和其他挥发性物质的目的。在蒸馏脱酸的同时,也伴随有脱溶(对浸出油而言)、脱臭、脱毒(米糠油中的有机氯及一些环状碳氢化合物等有毒物质)和部分脱色的综合效果。油脂的物理精炼适合于处理高酸价油脂,例如米糠油和棕榈油等。油脂的物理精炼工艺包括两个部分,即毛油的预处理和蒸馏脱酸。预处理包括毛油的除杂(指机械杂质,如饼渣、泥沙和草屑等)、脱胶(包括磷脂和其他胶粘物质等)、脱色三个工序。通过预处理,使毛油成为符合蒸馏脱酸工艺条件的预处理油,这是进行物理精炼的前提,如果预处理不好,会使蒸馏脱酸无法进行或得不到合格的成品油。蒸馏脱酸主要包括油的加热、冷却、蒸馏和脂肪酸回收等工序。物理精炼的工艺流程如下:物理精炼使用的主要设备有除杂机、过滤机、脱胶罐、脱色罐、油热交换罐、油加热罐、蒸馏脱酸罐、腊肪酸冷凝器和真空装置等。7.脱溶(1)脱溶原理 由于6号溶剂油的沸程宽(60~90℃),其组成又比较复杂,虽经蒸发和汽提回收混合油中的溶剂,但残留在油中的高沸点组分仍难除尽,致使浸出毛油中残溶较高。脱除浸出油中残留溶剂的操作即为"脱溶"。脱溶后油中的溶剂残留量应不超过50毫克/升。目前,国内外采用最多的是水蒸气蒸馏脱溶法,其原理在于水蒸气通过浸出毛油时,汽-液表面接触,水蒸气被挥发出的溶剂所饱和,并按其分压比率逸出,从而脱除浸出油中的溶剂。因为溶剂和油脂的挥发性差别极大,水蒸气蒸馏可使易挥发的溶剂从几乎不挥发的油脂中除去。脱溶在较高温度下进行,同时配有较高的真空条件,其目的是:提高溶剂的挥发性;保护油脂在高温下不被氧化;降低蒸汽的耗用量。(2)脱溶工艺①间歇式脱溶工艺流程水化或碱炼后的浸出油-→脱溶-→冷却-→成品油②操作步骤第一步:开动真空泵,使脱溶系统真空度稳定在7000帕左右,将浸出油吸入脱溶锅,装油量约为锅容量的60%。第二步:开间接蒸汽,将油温升至100℃。通入压力为0.1兆帕左右的直接蒸汽,使锅内油脂充分翻动,继续用间接蒸汽使油温升至140℃,同时计时,脱溶开始。第三步:视浸出油的质量,脱溶时间一般为4小时左右,其间保持油温140℃、真空度8000帕左右。第四步:脱溶结束前0.5小时,关闭间接蒸汽,达到规定时间才能关闭直接蒸汽。第五步:将脱溶油脂通过冷却器,或在锅内冷却至70℃后,再破真空,放出即为成品油。(3)脱溶设备 当用于脱溶时称脱溶锅。其壳体为一立式圆筒,顶、底为一碟形封头;顶盖上有汽包以保持一定的汽化空间,照明灯和窥视灯成180度布置,以利观察锅内情况;锅内顶部装有泡沫挡板,以减少油脂的飞溅损失;锅内设有两排蛇管,可通入间接蒸汽加热油脂或通水冷却油脂;锅底部装有直接蒸汽分散盘,其上开有很多小孔,以使直接蒸汽喷入油内;在脱溶锅的中心还装有循环管,并借喷嘴射出直接蒸汽,使循环管内油脂和蒸汽呈乳浊液柱强烈地沿循环管上升,让油脂喷溅在充满蒸汽的脱溶锅上部,使溶剂更易挥发除去,同时,这个装置也加强了锅内油脂的循环翻动。此外,脱溶锅外壳上还有入孔和各种接管。其他辅助设备,有W型机械真空泵或汽水串连喷射泵、大气冷凝器、空气平衡罐和液沫捕集器等。连续式脱溶工艺流程8.脱色(1)脱色的目的 各种油脂都带有不同的颜色,这是因为其中含有不同的色素所致。例如,叶绿素使油脂呈墨绿色;胡萝卜素使油脂呈黄色;在贮藏中,糖类及蛋白质分解而使油脂呈棕褐色;棉酚使棉籽油呈深褐色。在前面所述的精炼方法中,虽可同时除去油脂中的部分色素,但不能达到令人满意的地步。因此,对于生产高档油脂--色拉油、化妆品用油、浅色油漆、浅色肥皂及人造奶油用的油脂,颜色要浅,只用前面所讲的精炼方法,尚不能达到要求,必须经过脱色处理方能如愿。(2)脱色的方法 油脂脱色的方法有曰光脱色法(亦称氧化法)、化学药剂脱色法、加热法和吸附法等。目前应用最广的是吸附法,即将某些具有强吸附能力的物质(酸性活性白土、漂白土和活性炭等)加入油脂,在加热情况下吸附除去油中的色素及其他杂质(蛋白质、黏液、树脂类及肥皂等)。(3)工艺流程 间歇脱色即油脂与吸附剂在间歇状态下通过一次吸附平衡而完成脱色过程的工艺。脱色油经贮槽转入脱色罐,在真空下加热干燥后,与由吸附剂罐吸入的吸附剂在搅拌下充分接触,完成吸附平衡,然后经冷却由油泵泵入压滤机分离吸附剂。滤后脱色油汇入贮槽,借真空吸力或输油泵转入脱臭工序,压滤机中的吸附剂滤饼则转入处理罐回收残油。(4)吸附脱色工艺参数①脱酸油质量见表1-14。②消耗指标冷却水量(20℃,0.3兆帕)3.5立方米/吨电(380伏特,2206.5瓦,50赫兹)7千瓦·时/吨汽(1兆帕) 120千克/吨废白土含油量<35%③卫生防护车间卫生,白土投料间粉尘最高允许浓度为10毫克/立方米;废气排放:白土输送系统排至室外的气体最高允许含尘浓度为150毫克/立方米。9.脱臭(1)脱臭的目的 纯粹的甘油三脂肪酸酯无色、无气味,但天然油脂都具有自己特殊的气味(也称臭味)。气味是氧化产物,进一步氧化生成过氧化合物,分解成醛,因而使油呈味。此外,在制油过程中也会产生臭味,例如溶剂味、肥皂味和泥土味等。除去油脂特有气味(呈味物质)的工艺过程就称为油脂的"脱臭"。浸出油的脱臭(工艺参数达不到脱臭要求时称为"脱溶")十分重要,在脱臭之前,必须先行水化、碱炼和脱色,创造良好的脱臭条件,有利于油脂中残留溶剂及其他气味的除去。(2)脱臭的方法 脱臭的方法很多,有真空蒸汽脱臭法、气体吹入法、加氢法和聚合法等。目前国内外应用最广、效果最好的是真空蒸汽脱臭法。真空蒸汽脱臭法是在脱臭锅内用过仍霍汽(真空条件下)将油内呈味物质除去的工艺过程。真空蒸汽脱臭的原理是水蒸气通过含有呈味组分的油脂,汽-液接触,水蒸气被挥发出来的臭味组分所饱和,并按其分压比率选出而除去。(3)脱臭工艺参数①间歇脱臭油温为160~180℃,残压为800帕,时间为4~6小时,直接蒸汽喷入量为油重的10%~15%。②连续脱臭油温为240~260℃,时间为60~120分钟,残压在800帕以下,直接蒸汽喷入量为油重的2%~4%。③柠檬酸加入量应小于油重的0.02%。④导热油温度应控制在270~290℃范围内。(4)设备选择注意事项①脱臭设备有单壳体塔式、双壳体塔式和罐式、卧式等多种形式,设计时可按具体情况选用。②真空装置可采用三级或四级蒸汽喷射泵,选用的动力蒸汽压力要适应配备锅炉的压力;但不宜采用低于0.6兆帕压力,以节约用汽量。③脱臭油应经保险过滤器,以进一步除去油中微量杂质。④回收热能的油-油热交换器有列管式和螺旋板式,设计时应优先使用螺旋板式热交换器。⑤脂肪酸捕集器应采用直接喷淋冷凝式。⑥脱臭油抽出泵应选用密封性好,耐高温的离心泵。优先采用高温屏蔽泵。⑦导热油加热系统应配置温度计、压力表、止回阀、过滤器、警报器等仪表仪器,对运行情况进行监督、测量、指示、报警,以确保安全生产。为防止突然停电而造成事故,导热油加热系统应设置手摇泵,以便停电后导热油能继续循环降温。(5)设备布置①导热炉房应单独设置或在车间内用墙单独隔开。在布置时应尽量靠近脱臭塔,减少热量浪费。②蒸汽喷射泵冷凝器出水口应高于水封池液面11米以上。③析气器应放在二楼上,脱臭塔位置也应适当放高些,以利于抽出泵将油抽出。(6)脱臭油质量①脱臭油的质量标准,按相应油品的国家标准和国家专业标准执行。②柠檬酸质量:性状白色粉末或颗粒品级食用级纯度≥99%③导热油质量。导热油应选用无毒无味,热稳定性好,抗氧化性强,对设备无腐蚀的品种,其主要组成是长碳直链饱和烃。(7)工艺方法选择原则①脱臭工艺可分为间歇式、连续式和半连续式3种,处理量小于20吨/天的宜采用间歇脱臭工艺;处理量大于50吨/天的可采用连续脱臭工艺。②连续式脱臭的加热方法宜采用导热油加热法,间歇脱臭可采用蒸汽加热法或电加热法。③油脂在加热脱臭前,应设置真空析气器,以除去油中空气,防止油在高温时变质。④脱臭时,喷入油中的直接蒸汽宜进行除氧。⑤油脂在脱臭前或脱臭后应加入适量柠檬酸,以提高成品油的质量和稳定性。⑥在条件许可的情况下,成品油中可加适量的合格杭氧化剂,或充氮保护。⑦为提高油品质量,连续脱臭中所有接触高于150℃热油的部件、管路、阀门、管件、仪表等的材质,均应用不锈钢,当油温冷却到70℃以下时方可接触碳钢和空气。⑧为节约能源,连续脱臭工艺的热能回收利用率应在60%以上。(8)消耗指标柠檬酸0.2千克/吨冷却水量≤17立方米/吨电(380伏特,2206.5瓦,50赫兹)≤25千瓦·时/吨汽(1兆帕)≤240千克/吨煤(发热量21兆焦/千克)≤15千克/吨炼耗≤1%(9)卫生防护①废气排放导热炉烟道气最高排放浓度为200毫克/立方米。②废水排放水封池排放的废水要求符合《污水综合排放标准》。废水排放量≤13立方米/吨10.脱蜡毛糠油与一般植物油如菜籽油、大豆油、花生油等比较,不仅酸价高,色泽深,而且还含有2%~7%的蜡。米糠油中的蜡称为"糠蜡"。它与矿物蜡(即石蜡)成分不同,后者是长碳链的正烷烃,而糠蜡的主要成分是高级脂纺酸与高级脂肪酸醇形成的酯。在温度较高时,糠蜡以分子分散状态溶解于油中。因其熔点较高,当温度逐渐降低时,会从油相中结晶析出,使油呈不透明状态而影响油脂的外观。同时,含蜡量高的米糠油吃起来糊嘴,影响食欲,进入人体后也不能为人体消化吸收,所以有必要将其除去。用玉米油生产色拉油时也需"脱蜡"。脱除油中蜡的工艺过程称为"脱蜡"。现在我国米糠油脱蜡的方法有三种:压滤机过滤法、布袋吊滤法和离心分离法。所谓布袋吊滤法,就是将脱臭油先泵入一冷凝结晶罐内冷却结晶,然后将冷却好的油放入布袋内,布袋悬空吊着,依靠重力作用,油从布袋孔眼中流出,蜡留在布袋内,从而达到油蜡分离的目的。此法所得成品油质量虽好,但劳动强度大,设备占地面积也大,成品油得率低,所以采用此法的现已不多了。11.脱硬脂油脂是各种甘油三脂肪酸酯的混合物(简称甘三酯)。其组成的脂肪酸不同,油脂的熔点也不一样,饱和度高的甘三酯的熔点很高;而饱和度低的甘三酯的熔点较低。米糠油等经过脱胶、脱酸、脱色、脱臭、脱蜡后,已经可以食用,但随着用途不同,人们对油脂的要求也不一样。例如色拉油,要求它不能含有固体脂(简称"硬脂"),以便能在0℃(冰水混合物)中5.5小时内保持透明。米糠油经过上述五脱后,仍含有部分固体脂,达不到色拉油的质量标准,要得到米糠色拉油,就必须将这些固体脂也脱除。这种脱除油脂中的固体脂的工艺过程称为油脂的"脱硬脂",其方法是进行"冬化"。用棕榈油、花生油或棉籽油生产色拉油时也需"脱硬脂"。固体脂在液体油中的溶解度随着温度升高而增大,当温度逐渐降至某一点时,固体脂开始呈晶粒析出,此时的温度称为饱和温度。固体脂浓度越大,饱和温度越高。

日本对精油的研究进展论文

我们应该都曾有过这样的经历:当闻到玫瑰的香气时,会产生幸福的感觉;当闻到柑橘类的香气时,会分泌更多唾液、增加食欲;当闻到薄荷的香气时,鼻子就会通畅无比。这些都是植物香味所带来的效果。即便没有用过精油,我们也体验过并知道香味舒缓身心的效果。

装在蓝色或棕色小瓶子里面的精油,有各式各样的使用方法,最普遍的是精油浴。在浴缸里滴上1~5滴精油,一边享受香味一边泡澡,这种方法能够让精油成分被皮肤吸收。也可以使用香薰机等专用的器具,让精油的香味在房间里扩散开来,或者在纸巾上滴1~2滴精油并放在身边。

精油能让我们的日常生活变得更轻松,也更丰富多彩。

精油在国外的发展史:

在公元前3000年,古埃及已开始以植物香料为防腐剂来制作木乃伊。

在公元前4世纪,古希腊人已经注意到花的气味能振奋精神或让人放松。

《圣经》中也有关于芳香植物的记载。《旧约》中,示巴女王赠送给以色列的所罗门王的礼物中,除了黄金和珠宝以外,还有乳香和檀香(白檀香)等。此外,《新约》中记载,东方三贤士在耶稣诞生的马厩,奉献了黄金的同时,也献上了乳香和没药。

20世纪以后,法国化学家加德佛塞在化学实验中遭遇事故被烧伤,治疗中使用了薰衣草精油,实际感受到了精油的神奇效果。这样的经历让身为化学家的加德佛塞开始研究精油,并在1937年编著了《芳香疗法》一书。

大约30年前,「芳香疗法」这个词开始进入日本。在日本,有大量日本特有的、具有绝佳功效的植物,从这些植物中萃取出的精油,通过各种方式被广泛应用于日本人的日常生活中。日本特有的精油,包括乌樟精油、柳杉精油、丝柏精油以及冷杉精油等。

精油在中国的发展史:

中国在很远古的时代就有了对植物的利用。早在公元前2700年,就有神农尝百草的记载,是中国对植物精华利用的开端。中国利用植物的特性来治疗疾病,中药可以说就是在利用植物的精华了。

《黄帝内经》中记载了韭菜味酸,有养肝的作用。李时珍的《本草纲目》中则记载了大葱、韭菜和香椿的味道对健康的积极作用,而这些味道就包含了植物中的精油成分。值得注意的是,古代中国医药典籍中提到的药用芳香植物属于内生文化,和西方社会的芳疗文化并没有传承和发展关系。

唐宋以来,富裕人家就有着使用花瓣在制作熏香、制作胭脂等传统,还用于日常的护肤保养。同时中国伟大的美食文化中,芳香植物的花瓣、果实参与的美食更是多不胜数。

液体精油在90年代初进入中国市场,被广泛应用于女性养生美容的各个领域。

精油从何而来?

日本最大且认知度最高的开发芳香疗法的协会—日本芳香环境协会,将精油定义为「从花朵、叶子、果皮、树皮、植物根部、种子及树脂中萃取出来的芳香物质」。

精油的萃取部位,是由植物分泌芳香物质的腺体所在的位置决定的。

从同一种植物中萃取的精油,也会因为植物的生长地点不同,散发出不同的香味

植物是在自然界中生长的。有些植物虽然归属于同一科属,却可能因生长环境(气候、土壤)不同,而产生不同的成分,以至于从这些植物中萃取的精油也有所区别。同一种类的精油,其香味也可能会因原材料的产地或采摘年份不同而产生差异。

不同种类的精油之间有很大的价格差异,而同一种类的精油之间也会由于品种、品质、萃取率等不同而产生价格差异。即使有丰富的植物原料,若只能从中萃取少量的精油,那么这种精油的价格就会更加高昂;从不使用农药培育出来的纯天然植物中萃取出来的有机精油也会因为花费了大量的时间和劳动而变得昂贵。

所含有机化合物的差异正是精油的独特个性

精油中,薰衣草的香味令人放松,甜橙的香味令人产生食欲,迷迭香的香味令人头脑清醒。很多人都有这样的印象。这些精油作用的差异是因精油所含成分不同而造成的。

植物在进行光合作用的过程中,会制造出各种有机化合物。精油是数十种乃至数百种有机化合物的集合,精油中的有机化合物可根据其构造和功效,分为几个群组。各种精油根据所含有机化合物群组的不同而发挥不同的功效。

薰衣草精油这个当然是有助于睡眠的,不过要用的话,建议你还是少用点吧,这个还是对人的精神有点影响的

桧木精油的作用

1、能帮助呼吸道机能,振奋精神,减除内在与外在压力。桧香的味道可以沉稳心灵,让您彷佛走在山林中,享受大自然的洗礼。

2、消除疲劳促进睡眠,增强免疫机能,有助呼吸器官和肺机能,改善鼻塞、头痛、咽喉痛、香港脚等。

3、滋润肌肤并有助解决皮肤病,地强血液循环及心脏活力,减轻高血庄。

桧木产于我国台湾阿里山区。桧木为台湾最古老生态系,与银杏、水杉等等同为世界顶级古老珍宝。富含精纯之芬多精,具有独特的森林清新气息,阿里山铁道因为它而建。台湾扁柏精油是精油中的贵族,寿命最长,可以活化脑细胞,放松脑部的压力状况。

桧木精油对於空气中的细菌和霉菌具有灭杀作用,并且也可以防止害虫侵入人体及抑制人类病原菌。 日本医学家原准之助在1983 年研究报告指出,台湾桧木所提炼的桧木精油对人体大有功效。

扩展资料:

使用精油注意事项

在精油使用过程中需要一些安全措施,不要在皮肤上使用浓的,没有稀释过的精油。第一次使用精油或尝试一种新的精油时需要谨慎使用,先做皮肤测试来检验有无过敏反应。

不可经常太高剂量使用。达到疗效,需要低剂量,并持续一段时间,这样调理身体机能的效果适宜。平时使用,浓度以3-5%为宜,较危险的精油,则以不超过3%为准。

光敏性精油不要使用在会晒到太阳之处 有些精油含有会引起光敏感的成分,使用后如果晒到太阳,皮肤会变黑,甚至引发皮肤癌。光敏性也有轻重之分,轻微的如葡萄柚,晚上低剂量使用,隔天晒到太阳没关系。

但像柑橘类精油,柠檬、佛手柑、橘子、甜橙、莱姆、欧白芷根、柠檬马鞭草、芫荽等,都是具有光敏性的精油。

参考资料来源:百度百科——精油

桧香精油——消除疲劳促进睡眠,增强免疫机能,有助呼吸器官和肺机能,改善鼻塞、头痛、咽喉痛、香港脚等,滋润肌肤并有助解决皮肤病,增强血液循环及心脏活力,减轻高血压。 生活在都市丛林中的现代人,是否也向往在高耸入云的森林中,呼吸那来自千年古木的天然精华,让浓郁的芬多精治疗你那疲惫的身心?桧木这古老而高大的树木,生长在高寒的深山之中,储藏了大量的天然能量,清新的桧木芳香,是古老森林的呼唤,是现代人心灵的故乡。 桧木的起源与生态 红桧与扁柏合称桧木,其分布以族群为森林的即谓之桧木林。以一座山坡而言,上中半段为扁柏,下坡段及溪涧谷地则多为红桧;以族群数量言之,则可分为北扁柏、南红桧,中间部份两者相当。 全球桧木属之种类约六种,桧木的生存仅见于北美、日本及台湾,因太平洋两岸多山,湿润的海洋气候适合桧木生长。它的历史可追溯至2亿年前古大陆,推测古中国今东海地域亦存在,并在6千五百万年前,地史大灭绝之后,残存部众随冰河期而避难东迁,更甚至南移台湾。有学者主张桧木林为台湾最古老生态系,其中包含许多珍贵之活化石,例如举世闻名的台湾杉,是以Taiwan拉丁化成Taiwania,也就是全球唯一以台湾当属名的植物,而台湾杉也是台湾最高大的乔木,与银杏、水杉等等同为世界顶级的古老珍宝。 桧木的种类 红桧:桧木分为红桧及扁柏,红桧为松柏类柏科之常绿乔木,是台湾特产,生长于山区海拔1700公尺至3000公尺间,红桧在台湾山区俗称“薄皮仔”,树皮的剥片较薄,裂沟浅,故称之为桧。叶为三角形鳞片状,在小枝侧面以覆瓦状对生,先端渐尖,种子略有薄翅,其木材色淡而红,质地细而结实,内含许多油脂,略香而无辛味,耐朽力高故不易腐朽,是建筑业的上等材料,也因此神木多属之。红桧为台湾主要的造林树种,例如著名的拉拉山神木群、观雾桧山神木群、雪山神木及阿里山神木等均为红桧。 桧木的效用:桧木气味散发浪漫迷人的芳香气息,并且含有丰富芬多精,另外医学专家指出,阴离子有益人体健康;而在自然界中阴离子多于瀑布、溪泉、降雨及绿色植物光合作用所产生新鲜空气。桧木生长于高冷深山中,屹立不摇几千年,吸收天地日月精华,故累积大量芬多精,成为植物中带氧量最多的一种。 另外,药书中记载,扁柏叶入药使用,有凉血止血、祛风理湿、清凉收敛的效用,扁柏果实入药则有润血脉、滋养强壮、宁神益智、益血止汗及润燥通便等效用。 大自然的洗礼:桧香精油主要效用着重在于“激励”,能帮助呼吸道机能,振奋精神,减除内在与外在压力。桧香的味道可以沉稳心灵,让您彷佛走在山林中,享受大自然的洗礼

相关百科