杂志信息网-创作、查重、发刊有保障。

复变函数毕业论文方向

发布时间:2024-07-02 16:17:44

复变函数毕业论文方向

半导体物理和模电是很有关联的两门课,而对于一个学习电子科学与技术专业的学生来说,学习复变函数式相当有必要的,这点在你大四写毕业论文和以后工作的时候就可以感受的到了。其实,你现在觉得你学的很多专业知识都没有用,可到你将来要用的时候,你就知道学习这些东西的必要性了。

有一个网站叫中华论文中心,貌似有很多文章,你自己上去看下吧!

1、选题尽量与日常工作结合起来一是便于收集数据,二是通过论文写作,对考生今后工作也有帮助,一举两得。反之,选一个与工作毫不相干的题目,从头开始,只能落得个事倍功半的结果。2、选择感兴趣的题目做论文是原创性的工作,因此,考生对某个方面感兴趣,会促使自己积极主动地探讨这方面的问题,强烈的成就动机将是做一篇优秀论文的基础。3、学术类文献综述类题目尽量不要选对所有参加自学考试的考生来讲,做学术论文是一件极具挑战性的工作,绝不是想象中那样轻松。自考过程中,考生可以通过强化复习通过考试,但做研究是完全不同的过程。只有在考生花费精力查阅大量文献后,才能知道可以做什么课题,还需要考生自己去收集数据,分析数据,撰写报告。综述性论文需要查阅大量的参考文献,从选题到提交论文,一般仅有3个月时间,真正码字可能就一两个星期的时间,在这么短的时间内要查阅到写综述的参考文献,难度相当大。时间短难度大,很少考生能将这些类型的论文写得好和有一定深度。不过,如果你实力很强,那也是可以的。当然,每次没能通过论文答辩的考生,绝大部分都是选择了这些雷区类型题目,希望大家吸取教训。

看你想做什么了,如果科研的话,这三个都是必不可少的;如果想去公司就业的话(电路方面的硬件研发),模电和复函是必不可少的。

毕业论文复变函数的积分

1、楼主的这两道题,涉及到:

A、复变函数积分,转化为留数的计算;

B、然后又转化为求导计算;

第一道题,需要求导一次;第二次不需要求导。

.

2、具体解答如下,如有疑问,欢迎追问,有问必答。

.

3、若点击放大,图片更加清晰。

.

.

求复变函数的积分

在复变函数的分析理论中,复积分是研究解析函数的重要工具,解析函数的许多重要性质都要利用复积分来表述和证明的,因此,对复积分及其计算的研究显得尤为重要。本文介绍了复变函数积分常规的计算方法、利用级数法、拉普拉斯变换法及对数留数与辐角原理进行复积分计算方法。利用这些方法可以使一些复杂的复积分计算变得简单、快捷。接下来要介绍计算复积分的常见的一些方法。

注:柯西积分公式与解析函数的无穷可微性在计算复积分时的主要区别在于被积函数分母的次数,

二者在计算时都常与柯西积分定理相结合。

复变函数中求积分的方法有哪些?1、柯西积分定理;2、柯西积分公式;3、高阶导数公式;4、复合闭路定理;5、留数定理(留数的计算可以用定理或洛朗展开),这个方法是最重要的,柯西积分公式和高阶导数公式其实都是留数定理的特例。希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮。

复变函数论论文题目

波恩哈德·黎曼,德国数学家、物理学家,对数学分析和微分几何做出了重要贡献,其中一些为广义相对论的发展铺平了道路。在1858年发表的关于素数分布的论文中,研究了黎曼ζ函数,给出了ζ函数的积分表示与它满足的函数方程,他提出著名的黎曼猜想至今仍未解决。黎曼的工作直接影响了19世纪后半期的数学发展,许多杰出的数学家重新论证黎曼断言过的定理,在黎曼思想的影响下数学许多分支取得了辉煌成就。黎曼首先提出用复变函数论特别是用ζ函数研究数论的新思想和新方法,开创了解析数论的新时期,并对单复变函数论的发展有深刻的影响 。他是世界数学史上最具独创精神的数学家之一。

黎曼是德国人。波恩哈德·黎曼(公元1826—1866年),是德国著名的数学家,他在数学分析和微分几何方面作出过重要贡献,他开创了黎曼几何,并且给后来爱因斯坦的广义相对论提供了数学基础。黎曼留给后人的难题之一就是当今著名的黎曼猜想,是希尔伯特(Hilbert)在1900年提出的二十三个问题的第八问题,现在又被列为千禧年七大难题之一。它要求解决的是黎曼zeta函数ζ(s)的非平凡零点都位于复平面Re(s)=1/2直线上。数学家们把这条直线称为临界线。运用这一术语,黎曼猜想可以表述为:黎曼ζ(s)函数的所有非平凡零点都位于临界线上。

复变函数复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。 以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。复变函数论的内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。 如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。 复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。 黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。近来,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。 复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。 留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。 把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。

黎曼是德国人。波恩哈德·黎曼,德国数学家、物理学家,对数学分析和微分几何做出了重要贡献,其中一些为广义相对论的发展铺平了道路。他的名字出现在黎曼ζ函数,黎曼积分,黎曼引理,黎曼流形,黎曼映照定理,黎曼-希尔伯特问题,黎曼思路回环矩阵和黎曼曲面中。他初次登台作了题为"论作为几何基础的假设"的演讲,开创了黎曼几何,并为爱因斯坦的广义相对论提供了数学基础。他在1857年升为格丁根大学的编外教授,并在1859年狄利克雷去世后成为正教授。

关于复变函数的毕业论文题目

1. 生活中处处有数学 2、解数学竞赛题的整体策略 3、谈数学解题中发掘隐含条件的若干途径4、论数学教育中性别差异的影响 5、逆向思维在数学论证中的作用及培养6、谈小学、初中数学的衔接 7、容斥原理及其应用8、从高中课程改革看大学课程改革 9、信息化教育问题10、数学素质教育中的教师素质问题 11. 浅析课堂教学的师生互动12、谈设疑法在课堂教学中的应用 13、计算机辅助小学数学教学的探索 14、谈一类重要的数学方法--分类讨论法15、小学数学竞赛题的教育价值16、在解题中培养学生的数学直觉思维 17. 反思教学中的一题多解18. 初探影响解决数学问题的心理因素 19、在数学教学中培养学生的反思意识 20、关于探索性命题的若干问题 21、数学实验教学模式探究22、论小学数学竞赛题的解题方法 23、奥林匹克数学的解题策略24、三角形面积在竞赛中的应用 25. 数学教育中的科学人文精神 26. 数学几种课型的问题设计 27. 在探索中发展学生的创新思维 28. 把握发现式教学实质,优化课堂教学 29. 如何评价小学学生的数学素质 30. 阅读材料在数学教学中的作用 31. 数学中的判断之我见 32. 关于学生数学能力培养的几点设想 33. 反例在数学中的作用 34. 谈谈类比法 35. 数学教学设计随笔 36. 数学CAI应遵循的原则 37. 我国数学教育改革的若干问题 38. 当代数学教学模式的发展趋势 39. “问题解决教学”的实践与认识 40. 数学教学中的“理论联系实际” 41. 小学数学课堂教学探究性学习案例简析 42. 数学训练,贵在科学 43. 教学媒体在数学教学中的作用 44. 培养数学能力的重要性和基本途径 45. 初探在数学教学中开展研究性学习 46. 浅谈数学学习兴趣的培养 47. 如何使计算机辅助教学变得更方便 48. 精心设计习题,提高教学质量 49. 我对概念教学的的再认识 50. 数学教学中的情境创设 51. 结合数学教学实际开展教研教改 52. 为学生展开想象的翅膀创造环境 53. 利用习题变换,培养思维能力 54. 课堂教学中培养学生创造能力的尝试 55. 观察法及其在数学教育研究中的应用 56. 直觉思维在解题中的运用 57. 数学方法论与数学教学—案例三则 58. 概念课是思维训练的重要环节 59. 对概念导入和问题设计的思考 60. 把握概念本质注重思维能力的培养 61. 将研究性学习引入数学课堂教学 62. 数学教学的现代研究 63. 数学探究性活动的内容、形式及教学设计 64. 注重创新性试题的设计 以上为参考论文选题,学生写论文时可选用,也可按选题提供的范围和方向,根据自己教学过程中体会最深的某方面自定论文选题1.关于数学教学目的问题; 2.关于数学思维问题; 3.关于数学教学方法问题; 4.关于学习的迁移问题; 5.关于数学教学的评价问题; 6.关于熟练技能与深刻理解的关系问题; 7.数学的实用功能与数学的文化教育功能相关关系的研究; 8.数学教学的德育功能研究; 9.班级授课制中集体教学、小组教学和个别教学在数学教学中的地位和作用; 10.数学发现法(探究式)教学可实施的基本内容、对象和范围; 11.对数学教学中“可接受性原则”的认识及其具体做法的实验研究; 12.中学生数学学习习惯与学习方法的调查分析; 13.诊断和鉴别数学学习困难学生的方法探析; 14.数学智力因素与数学非智力因素的界定及其对学生学习成绩交互作用的研究; 15.数学教学中激发学生学习兴趣的内在机制和外部因素的研究; 16.教法与学法的双向作用研究; 17.学生“用数学”意识和能力的形成机制以及培养途径的实验研究; 18.数学新课程实施中转变学生学习方式的途径; 19.学生数学观念或数学意识的形成机制和培养途径的实验研究; 20.创设良好的数学教学心理氛围与提高数学教学质量相关关系 的研究。 21.中学数学教育的地位与作用。 22.形象思维与数学教学。 23.直观思维与数学教学。 24.非智力因素与数学学习。 25.数学美与数学教学。 26.在数学教学中怎样培养学生的数学能力。 27.数学作图及图形的教学。 28.数学解题错误的探讨。 29.怎样配备数学习题。 30.数学解题常用的一些思维方法。 31.怎样提高学生的自学能力。 32.怎样培养学生学习数学的兴趣。二、《概率论与数理统计》参考题 1.有关概率论发展的历史。 2.随机性与必然的数学基础与认识。 3.随机变量的直观认识与数学描述。 4.古典概率型的计算技巧。 5.几何概率型的分析处理。 6.有关概率论之介绍。 7.概率论中数学期望概念。 8.利用期望概率统一引人矩阵概率。 9.期望概率在概率论中的地位和作用。 10.特征函数与因数在概率论中的作用及其含义。 11.关于独立性。 12.大数定律与中心定律之含义。 13.大数定律与概率的统计定义。 14.有关概率不等式。 15.条件概率与条件期望。 16.Bayes公式的扩展。 17.概率在其它学科中的应用。 18.其它数学分支在概率论中的应用。 19.概率题目计算的多解性。 20.数理统计概念。 21.数理统计的过去与现在。 22.数理统计在客观现实中的作用。 23.假设检验的实质与作用。 24.参数估计的作用与处理方法。 25.数理统计在你自己工作实践中的应用(实例)。 26.学习概率统计的实践与体会。 27.概率统计中的错题分析。 28.如果我讲概率统计的话,我将这样讲(要求具体详细,资料充实,结构新颖)。 29.利用回归分析方法处理问题。 30.回归分析理论中存在的问题与解决的设想。三、《微分几何》参考题 1.空间曲线的基本公式及其在曲线论中的作用。 2.渐近线与渐缩线。 3.空间曲线弯曲性的研究。 4.曲率与挠率。 5.曲面的第一基本形式在曲面论中的作用。 6.等矩映象与曲面的内在几何。 7.曲面的第二基本形式在曲面论中的作用。 8.曲面上的曲率线,渐近曲线,测地线。 9.曲面的内在几何与外在几何的相依性。 10.曲面内的基本定理与曲线论的基本定理的比较(相仿之处与不同之处)。 11.高斯曲率的意义与作用。 12.等矩映射与等角映射及等积映射的关系。 13.高斯与波涅公式的意义与作用。 14.伪球面与罗氏几何。四、《复变函数》参考题 1.复变函数在一点解析的等价定义。 2.幅角多值性所导出的问题汇集。 3.小结复变函数的积分。 4.解析与调和函数的关系。 5.漫谈复数∞。 6.0,∞与函数 7.多值函数单值分支的表达与计算。 8.分式线性函数全体对乘法——函数复合——构成群。 9.∞和∞邻域的引进使扩充复平面的为紧空间。 lo.等比级数 ,在函数的泰勒展开式和罗朗展开式中的作用。 11.谈复数的比较大小问题。 五、《实变函数》参考题, 1.关于积分号下取极限(积分与极限交换次序问题)。 ①在什么条件下可以积分号下取极限,是积分的一个重要性质,例 如关系到微积分基本定理成立的条件,函数项级数和的性质等等。 ②列举勒贝格积分和黎曼积分在几个问题上的基本结论,分析其 中最基本的要求和相互关系(书上P146第6题可供参考),可以发现勒贝格积分在这方面比黎曼积分好得多,而且是用勒贝格积分的主要好处之一。 ③给出上述基本结论的简单推论,新的证明方法应用例题,并说明它们的意义。 2.关于微积分基本定理(牛顿一菜布尼兹公式) ①什么是微积分基本定理,它的重要意义在哪里? ②黎曼积分情形,相应定理的条件是什么?有什么不足之处? ③勒贝格积分情形,相应的定理的结论和条件又是怎样的?条件减弱在哪里?还有什么问题? ④应用例题。 3.关于绝对连续函数。 ①绝对连续的定义是什么?有些什么等价说法或充分必要条件,并证明之。绝对连续与连续、一致连续有什么不同,有什么关系。 ②证明绝对连续函数列一致收敛的极限,可微函数与绝对连续函 数复合,仍为绝对连续的。 ③绝对连续函数几乎处处可微,能否做到处处可微?举例!绝对连续函数与它的导致关系如何,与微积分基本定理有什么关系。 ④绝对连续函数全体组成线性空间。 4.关于勒贝格积分。 ①试将关于勒贝格积分的定义综合起来,做出一个统一,一般的勒贝格积分定义,并说明勒贝格积分仍然是“分割、求积、取极限”的结果,勒贝格积分的“分割”与黎曼积分又有何根本不同之处? ②说明勒贝格积分在几何上仍是“曲边梯形的面积”。 ③证明对于勒贝格积分,也和黎曼积分一样,无界函数的积分(广 义积分)和无界区域上的积分(无穷积分),都是有界函数在有界域上的积分的极限。 ④勒贝格积分有哪些黎曼积分所没有的重要性质。从积分的定义看,是什么原因导致这两类积分有许多重大差别。 ⑤勒贝格积分有许多重要性质,带来一些什么好处? 5.关于测度。 ①总结定义点集的勒贝格测度的过程,并与数学分析中定义区域的面积的过程(重积分前面部分)作比较,分析其中不同之处,以及为什么因为这些不同,导致黎曼积分和勒贝格积分在性质上有许多重大差别。 ②说明勒贝格测度长度、面积、体积概念的推广,当平面区域可求面积时,它的面积和勒贝格测度相等。 ③列举勒贝格测度的重要性质,说明它们与勒贝格积分性质的关 系(例如测度的可数可加性与积分的可数可加性有什么关系,单调集列极限的测度(定理3、2、6~3、2、10)与勒维定理(定理5、4、2的关系)。 6.关于可测函数。 ①可测函数与连续函数,可积函数从定义上、性质上看有什么关系和差别。 ②全体可测函数构成线性空间,构成环。 ③试说明鲁金定理的意义,以及它与黎斯定理、叶果洛夫定理的关系。你如何理解“可测函数近于连续函数”及其理由。 7.关于可测函数列的各种收敛概念。 ①试述实变函数论中及数学分析中讲过的各种收敛概念的定义和性质、互相之间的关系。以及引进这些概念的意义和用处。 ②从黎斯定理和叶果洛夫定理出发说明,你怎么理解“几乎处处收敛,近乎一致收敛”。 8.关于点集上的连续函数。 ①定义,性质。 ②与数学分析中讲的连续的关系。 9.集合论和点集论的方法在实变函数论中的意义。 从一些具体例子出发说明,为了解决数学分析中一些结果不够完善的问题,如推广它们的结论,有必要用这种方法去研究函数,用它也确实有好的效果。说明集合论是测度论和积分论的基础。 以上问题,除参考.所用教材外,还可参考程其襄等编《实变函数与泛函分析基础》。朱玉楷编《实变函数简编》等有关书籍资料。

解:(1)题,∵z^2+2z+4=0,则z=-1±(√3)i,∴丨z丨=2>1,∴在丨z丨=1内,f(z)=(3z+5)/(z^2+2z+4)没有极点,故,由柯西积分定理,原式=0。(2)题,∵f(z)=(1+z^2)e^z在丨z丨=2内没有极点,∴由柯西积分定理,原式=0。供参考。

复变函数复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。 以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。复变函数论的内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。 如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。 复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。 黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。近来,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。 复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。 留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。 把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。

实积分与复积分的比较研究一。对于理科类学科的学习而言,最重要的一点莫过于概念的清晰程度,因此有实积分与复积分的比较研究一。复变函数是以复数作为自变量和因变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。

复变函数积分方法论文开题报告

复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。复变函数论的内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。 如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。 复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。 黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。近来,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。 复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。 留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。 把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。

用留数定理,tanz=sinz/cosz 在 IzI=2内有两个一级极点 z=π/2 和 z=-π/2,则积分结果为-4πi。

4.1.3复变函数项级数定义4.3设{fn(z)}(n=1, 2, …)为一复变函数列,其中各项均在复数域D上有定义,称表达式∑∞〖〗n=1fn(z)=f1(z)+f2(z)+…+fn(z)+…(4.2)为复变函数项级数.该级数的前n项和Sn(z)=f1(z)+f2(z)+…+fn(z)为级数的部分和.若z0为D上的固定点,limn→∞Sn(z)=S(z0),则称复变函数项级数()在z0点收敛,z0称为级数∑∞〖〗n=1fn(z)的一个收敛点,收敛点的集合称为级数∑∞〖〗n=1fn(z)的收敛域.若级数∑∞〖〗n=1fn(z)在z0点发散,则称z0为级数∑∞〖〗n=1fn(z)的发散点,发散点的集合称为级数∑∞〖〗n=1fn(z)的发散域.若对D内的任意点z,都有limn→∞Sn(z)=S(z),则称级数∑∞〖〗n=1fn(z)在D内处处收敛.并称S(z)为级数的和函数.下面我们重点讨论一类特别的解析函数项级数——幂级数,它是复变函数项级数中最简单的情形.4.2幂级数〖〗在复变函数项级数的定义中,若取fn(z)=an(z-z0)n或fn(z)=anzn(n=1, 2, …),就得到函数项级数的特殊情形∑∞〖〗n=0an(z-z0)n=a0+a1(z-z0)+a2(z-z0)2+…+an(z-z0)n+… (4.3)或∑∞〖〗n=0anzn=a0+a1z+a2z2+…+anzn+…(4.4)形如()或()的级数称为幂级数,其中,a0, a1, …, an, …和z0均为复常数.在级数(4.3)中,令z-z0=ξ,则化为式(4.4)的形式,称级数(4.4)为幂级数的标准形式,式(4.3)称为幂级数的一般形式.为方便,今后我们以幂级数的标准形式(4.4)为主来讨论,相关结论可平行推广到幂级数的一般形式(4.3).4.2.1幂级数的收敛性关于幂级数收敛问题,我们先介绍下面的定理.定理4.5(Abel定理)若幂级数∑∞〖〗n=0anzn在z=z0(≠0)处收敛,则此级数在|z|<|z0|内绝对收敛(即∑∞〖〗n=0|anzn|收敛);若在z=z0处发散,则在|z|>|z0|内级数发散.证若∑∞〖〗n=0anzn在z=z0(≠0)处收敛,即级数∑∞〖〗n = 0anzn0收敛,所以limn→∞anzn0=0因而,存在常数M>0使得对所有的n,有|anzn0|<M当|z|<|z0|时,|anzn|=|anz0|z〖〗z0n<Mz〖〗z0n,而级数∑∞〖〗n=0z〖〗z0n收敛,所以,∑∞〖〗n=0anzn绝对收敛.若∑∞〖〗n=0anzn在z=z0(≠0)发散,假设存在一点z1,使得当|z1|>|z0|时,∑∞〖〗n = 0anzn1收敛.则由上面讨论可知,∑∞〖〗n = 0anzn0收敛,与已知∑∞〖〗n = 0anzn0发散矛盾!因此,∑∞〖〗n=0anzn在|z|>|z0|发散.由Abel定理,我们可以确定幂级数的收敛范围,对于一个幂级数来说,它的收敛情况有以下三种情形:(1) 对所有正实数z=x, ∑∞〖〗n=0anxn都收敛,由Abel定理,∑∞〖〗n=0anzn在复平面上处处绝对收敛;(2) 对所有的正实数x,∑∞〖〗n=0anxn(x≠0)发散,由Abel定理,∑∞〖〗n=0anzn在复平面内除原点z=0外处处发散;(3) 既存在使级数收敛的正实数x1>0,也存在使级数发散的正实数x2>0,即z=x1时级数∑∞〖〗n = 0anxn1收敛,z=x2时级数∑∞〖〗n = 0anxn2发散.由Abel定理,∑∞〖〗n=0anzn在|z|≤x1内,级数绝对收敛,在|z|≥x2内级数发散.在情形(3)中,可以证明,一定存在一个有限的正数R,使得幂级数∑∞〖〗n=0anzn在圆|z|<R内绝对收敛,在|z|>R时发散,则称R为幂级数的收敛半径,称|z|<R为幂级数的收敛圆.约定在第一种情形,R=∞;第二种情形,R=0.而对于幂级数∑∞〖〗n=0an(z-z0)n,收敛圆是以z0为圆心,R为半径的圆:|z-z0|<R.至于在收敛圆的圆周|z|=R(或|z-z0|=R)上,∑∞〖〗n=0anzn或∑∞〖〗n=0an(z-z0)n的收敛性较难判断,可视具体情况而定.关于幂级数收敛半径的求法,同实函数的幂级数类似,可以用比值法和根植法.定理4.6( 幂级数收敛半径的求法)设幂级数∑∞〖〗n=0anzn,若下列条件之一成立:(1) (比值法)limn→∞an+1〖〗an=L;(2) (根值法)limn→∞n〖〗|an|=L.则幂级数∑∞〖〗n=0anzn的收敛半径R=1〖〗L.证明从略.当L=0时,R=∞;当L=∞时,R=0.例4.4求下列幂级数的收敛半径:(1) ∑∞〖〗n=1zn〖〗n3(讨论圆周上情形);(2) ∑∞〖〗n=1(z-1)n〖〗n(讨论z=0, 2的情形);(3) ∑∞〖〗n=0(cosin)zn.解(1)因为limn→∞an+1〖〗an=limn→∞1〖〗(n+1)3〖〗1〖〗n3=limn→∞n〖〗n+13=1或者limn→∞n 〖〗|an|=limn→∞n〖〗1〖〗n3=limn→∞1〖〗n〖〗n3=1所以,收敛半径R=1,从而级数的收敛圆为|z|<1.由于在圆周|z|=1,级数∑∞〖〗n=1zn〖〗n3=∑∞〖〗n=11〖〗n3收敛(p级数,p=3>1),所以,级数在圆周|z|=1上也收敛.因此,所给级数的收敛范围为|z|≤1.(2) 由于limn→∞an+1〖〗an=limn→∞1〖〗(n+1)〖〗1〖〗n=limn→∞n〖〗n+1=1,故收敛半径R=1,从而它的收敛圆为|z-1|<1.在圆周|z-1|=1上,当z=0时,原级数成为∑∞〖〗n=1(-1)n1〖〗n(交错级数),所以收敛;当z=2时,原级数为∑∞〖〗n=11〖〗n,发散.表明在收敛圆周上,既有收敛点又有发散点.(3) 由于an=cosin=1〖〗2(en-e-n),所以limn→∞an+1〖〗an=limn→∞en+1-e-(n+1)〖〗en-e-n=limn→∞en(e-e-2n-1)〖〗en(1-e-2n)=e故收敛半径为R=1〖〗e.例4.5求幂级数∑∞〖〗n=1(-1)n1+sin1〖〗n-n2zn的收敛半径.解因为limn→∞n〖〗(-1)n1+sin1〖〗n-n2=limn→∞1+sin1〖〗n-n=limn→∞1+sin1〖〗n1〖〗sin1〖〗n-sin1〖〗n〖〗1〖〗n=e-1故所求收敛半径为R=e.例4.6求幂级数∑∞〖〗n=1(-i)n-1(2n-1)〖〗2nz2n-1的收敛半径.解记fn(z)=(-i)n-1(2n-1)〖〗2nz2n-1,则limn→∞fn+1(z)〖〗 fn(z)=limn→∞(2n+1)2n|z|2n+1〖〗(2n-1)2n+1|z|2n-1=1〖〗2|z|2当1〖〗2|z|2<1时,即|z|<2时,幂级数绝对收敛;当1〖〗2|z|2>1时,即|z|>2时,幂级数发散.所以,该幂级数的收敛半径为R=2.4.2.2幂级数的运算和性质和实函数的幂级数类似,复变函数的幂级数也可以进行加、减、乘等运算.设幂级数∑∞〖〗n=0anzn=S1(z), ∑∞〖〗n=0bnzn=S2(z),收敛半径分别为R1、 R2,则∑∞〖〗n=1anzn±∑∞〖〗n=1bnzn=∑∞〖〗n=0(an±bn)zn=S1(z)±S2(z),|z|<R(4.5)∑∞〖〗n=1anzn∑∞〖〗n=1bnzn=∑∞〖〗 n=0(anb0+an-1b1+…+a0bn)zn=S1(z)S2(z), |z|<R(4.6)其中,R=min(R1,R2).复变函数的幂级数还可以进行复合运算.设h(z)在D内解析,且|h(z)|<R, z∈D,则f(h(z))在D内解析,且f(h(z))=∑∞〖〗n=0anhn(z), z∈D.在f(z)的幂级数展开中,可以用z的一个函数h(z)去代换展开式中的z,这在后面解析函数的级数展开中经常用到.幂级数∑∞〖〗n=oanzn在其收敛圆|z|<R内,还具有如下性质:(1) 它的和函数S(z)=∑∞〖〗n=0anzn在|z|<R内解析;(2) 在收敛圆内幂级数可逐项求导,即S′(z)=∑∞〖〗n=1nanzn-1, |z|<R;(4.7)(3)在收敛圆内幂级数可逐项积分,即∫CS(z)dz=∑∞〖〗n=0∫Canzndz=∑∞〖〗n=0an〖〗n+1zn+1,(4.8)|z|<R,C 为|z|<R内的简单曲线.

数学系开题报告范文

开题报告是随着现代科学研究活动计划性的增强和科研选题程序化管理的需要而产生的。下面是我为大家整理的数学系开题报告范文,欢迎阅读。

课题名称: 实积分与复积分的比较研究

一、课题的来源及意义

通过对《数学分析》和《复变函数》的学习,我了解到《复变函数论》中的许多知识都是在《数学分析》基础上延伸、拓展的,而复积分在很大程度上说,它就是把实积分的变量范围拓宽了,即在复数域中进行积分。积分学是在古代东西方微积分思想萌发和微积分创立前夕欧洲的思想社会背景的基础上,经过多代数学家研究、探索最终形成完整的数学理论。实积分与复积分的比较研究是值得我思考和研究的一个课题。

积分学是函数论中的一个重要内容,无论是实积分还是复积分,都是研究函数的重要工具,而且在几何、物理和工程技术上,都有着广泛的应用。复积分是复变函数论中的一个重要部分,它在研究复变函数,特别是解析函数时所起的作用远远超过实积分在研究实变函数时所起的作用。无论是在研究复变函数、微分、级数,还是它们的各方面应用,都用到复变函数的积分理论。复积分是实积分的推广,而实积分的计算又用到复积分,因此,比较研复积分和实积分性质和应用对于深刻理解复变函数的理论,并用利用这些理论来解决数学及其他学科中的各种实际问题,都是有十分重要的意义。

二、国内外发展状况及研究背景

国内许多数学家对积分学进行分析和研究,而且许多大学教师也对复积分和实积分进行研究。陇东学院数学的完巧玲就对“利用复积分计算实积分”进行了全面的研究,而且还发表过相关的论文;陕西教育学院的王仲建也发表过“实积分与复积分的联系与区别”的相关论文。国外对积分学的研究要比国内的研究更广泛和深远。实积分和复积分是积分学的具体内容,现代的积分与以前的积分有着一定的区别,但它却是在以前的基础上,经过多代数学家的完善而形成的。积分学最初起源于微积分(微积分起源于牛顿、莱布尼兹),微积分的核心概念是----极限,这个理论的`完善得力于19世纪柯西和魏尔斯特拉斯的工作。17世纪利用积分学求面积、曲线长始于开普勒,他发表了《测量酒桶体积的新科学》。托里拆利、费马、帕斯卡等数学家对以前的积分进行了缺点修补和完善使得积分更接近现代的积分。积分不仅是研究函数的工具,而且在其他方面如几何、物理和工程技术上也有广泛的应用。

三、课题研究的目标和内容

通过对实积分与复积分的比较研究这个课题的研究,熟悉和掌握实积分和复积分的概念和类型,并对其进行分类、归纳,找出它们之间的区别与联系,并了解复积分和实积分的相关应用。

(1)实积分和复积分比较研究课题的研究背景、该课题目前国内外展的状况以及该课题研究的意义等。

(2)实积分和复积分的相关概念(定积分、曲线积分)及它们的性质和计算方法。

(3)对实积分与复积分的定义、性质、计算方法、应用方面进行比较;实积分与复积分的联系(应用复积分来计算实积分,结合例题进行分析、说明)。

四、本课题研究的方法

课题将通过分析、对比、综合等方法对实积分与复积分进行比较研究,最后通过例证说明利用复积分可以解决一些实积分问题。

五、课题的进度安排:

第一阶段:搜集资料,确定选题范围,联系指导老师(20XX秋1--7周)

第二阶段:选定题目、填写开题报告,准备开题 (20XX秋8--12周)

第三阶段:指导教师指导调研、收集资料、准备撰写初稿 (20XX秋13周--20XX春6周)

第四阶段:撰写初稿、在指导老师的指导下修改论文 (20XX春7--14周)

第五阶段:提交论文,准备答辩,论文总结 (20XX春15--16周)

六、参考文献

[1] 钟玉泉. 复变函数论[M]. 第3版.北京:高等教育出版社,2004

[2] 华东师范大学数学系. 数学分析[M].第3版.高等教育出版社,2001

[3] 四川大学数学系. 高等数学(第4册)[M].北京:高等教育出版社,2002

[4] 严子谦, 等. 数学分析(第一册)[M].北京:高等教育出版社,2004

[5] 孙清华, 赵德修. 新编复变函数题解[M]. 武汉:华中科技大学出版社,2002

[6] 王仲建. 实积分与复积分的联系与区别[N]. 陕西教育学院学报,1995,25:73-79

[7] 完巧玲. 利用复积分计算实积分[N]. 菏泽学院学报,2010,32(2):1673—2103

[8] 李敏,王昭海. 巧用复变函数积分证明实积分[J]. 数学教学与研究考试周刊,2009,41

[9] 金云娟. 解析函数唯一性定理在复积分上的应用[N]. 丽水学院学报,2009,31(5)

[10] 崔冬玲. 复积分的计算方法[J]. 淮南师范学院学报,2006,3:6-9

相关百科