杂志信息网-创作、查重、发刊有保障。

甲醇制烯烃工艺技术毕业论文

发布时间:2024-07-07 12:56:26

甲醇制烯烃工艺技术毕业论文

甲醇的生产,主要是合成法,尚有少量从木材干馏作为副产回收。合成的化学反应式为: H2 + CO → CH3OH 合成甲醇可以固体(如煤、焦炭)液体(如原油、重油、轻油)或气体(如天然气及其他可燃性气体)为原料,经造气净化(脱硫)变换,除去二氧化碳,配制成一定的合成气(一氧化碳和氢)。在不同的催化剂存在下,选用不同的工艺条件。单产甲醇(分高压法低压和中压法),或与合成氨联产甲醇(联醇法)。将合成后的粗甲醇,经预精馏脱除甲醚,精馏而得成品甲醇。高压法为BASF最先实现工业合成的方法,但因其能耗大,加工复杂,材质要求苛刻,产品中副产物多,今后将由ICI低压和中压法及Lurgi低压和中压法取代。

乙烯、丙烯等低碳烯烃是重要的基本化工原料,随着我国国民经济的发展,特别是现代化学工业的发展对低碳烯烃的需求日渐攀升,供需矛盾也将日益突出。甲醇制乙烯、丙烯的MTO工艺和甲醇制丙烯的MTP工艺是目前重要的化工技术。该技术以煤或天然气合成的甲醇为原料,生产低碳烯烃,是发展非石油资源生产乙烯、丙烯等产品的核心技术。

煤制甲醇气化工艺毕业论文

巨野煤田煤质分析及科学利用评价摘要]从工业、元素、工艺性质方面,对巨野煤田煤质进行了详细的分析,根据其煤质特点,进行科学论证,得出巨野煤田是优质动力用煤和炼焦用煤的结论,可以用来制备水煤浆,用于煤气化合成氨、合成甲醇及后续产品,用作焦化原料等。[关键词]煤质分析;煤质特点;科学利用;评价1巨野煤田煤质分析煤的工业分析工业分析是确定煤组成最基本的方法。在指标中,灰分可近似代表煤中的矿物质,挥发分和固定碳可近似代表煤中的有机质。衡量煤灰分性能指标主要有灰分含量、灰分组成、煤灰熔融性(DT、ST、HT和FT)。其中煤灰熔融性是动力用煤和气化用煤的重要性能指标。一般以煤灰软化的温度(即灰熔点ST)作为衡量煤灰熔融性的指标。龙固矿钻孔煤样工业分析结果(表1)变形温度(DT)为煤灰锥体尖端开始弯曲或变圆时的温度;软化温度(ST)为煤灰锥体弯曲至锥尖触及底板变成球形时的温度;半球温度(HT)为灰锥形变至近似半球形,即高约等于底长的一半时的温度;流动温度(FT)为煤灰锥体完全熔化展开成高度< mm薄层时的温度。彭庄矿钻孔煤样工业分析结果(表2)2煤质特点及科学利用评价巨野煤田煤质特点由煤炭科学研究总院《巨野矿区煤质特征及菜加工利用途径评价》可以看出巨野煤田煤质有如下特点:①灰分含量低,属于中、低灰煤层。②挥发分含量高,各煤层原煤的挥发分含量在33%以上,且差异不大,均属于高挥发分煤种。③磷含量特低;硫分含量上低下高。④干燥基低位热值高。各层煤的都比较高,且随原煤灰分的降低而升高。⑤粘结指数、胶质层厚度和焦油产率均较高。⑥碳、氢含量较高。碳含量在~之间,氢含量在~之间,C/H比值<16。⑦灰熔点上高下低。成浆性实验评价2008年1月,华东理工大学对巨野煤田龙固矿(1#)、赵楼矿(2#)和彭庄矿(3#)原煤进行成浆性实验及评价。成浆浓度实验成浆浓度是指剪切速率100 s-1,粘度为1 000 mPa·s,水煤浆能达到的浓度。采用双峰级配制浆,粗颗粒与细颗粒质量比为3∶7;选取腐殖酸盐作为添加剂,用量为煤粉质量的1%。制成一系列浓度的水煤浆,测量其流动性,观察水煤浆的表观粘度随成浆浓度上升的变化规律,结果如表10所示。由表10看出,随着煤浆浓度增大,煤浆表观粘度也明显升高。本实验3种煤样成浆浓度分别为龙固矿66%(wt);赵楼矿67%(wt);彭庄矿68%(wt)。流变性实验水煤浆流变特性是指受外力作用发生流动与变形的特性。良好的流变性和流动性是气化水煤浆的重要指标之一。将实验用煤制成适宜浓度的水煤浆,然后用NXS-4 C型水煤浆粘度计测定其粘度。将水煤浆的表观粘度随剪切变化的规律绘制成曲线,观察水煤浆的流变特性,见表11。从表11可以看出,3种煤制成的水煤浆中,随着剪切速率增大,表观粘度都随之降低,均表现出一定的屈服假塑性。屈服假塑性有利于气化水煤浆的储存、泵送和雾化。实验结论煤粉粗粒度(40~200目)和细颗粒(<200目)质量比为3∶7,腐殖酸盐作为添加剂,添加量为煤粉质量的1%时,龙固矿煤浆浓度为66%(wt)、赵楼矿煤浆浓度为67%(wt)、彭庄矿煤浆浓度为68%(wt),满足加压气流床水煤浆气化技术对水煤浆浓度的要求。原料煤的应用适合于制备水煤浆水煤浆不但是煤替代重油的首选燃料,而且是加压气流床水煤浆气化制备合成气的重要原料。同时它又是一种很有前途的清洁工业燃料。实践上,华东理工大学“巨野煤田原煤成浆性实验评价报告”表明:巨野煤田各矿井原料煤均适合于制备高浓度稳定水煤浆。用于煤气化合成氨、合成甲醇及后续产品巨野煤田原煤属于高发热量的煤种(弹筒热平均值在28~31 MJ/kg之间),该煤有利于降低氧气和能量消耗,并能提高气化产率;因灰熔点较高(>1 300℃),有利于固态排渣。根据鞍钢和武钢分别使用双鸭山和平项山1/3焦煤作高炉喷吹的经验,巨野煤田的1/3焦煤与双鸭山和平顶山1/3焦煤一样成浆性较好,其1/3焦煤洗精煤可以制成水煤浆,作为德士古(Texaco)水煤浆气化炉高炉喷吹用原料。煤气化得到的合成气既可通过变换用于合成氨/尿素,又可经净化脱硫合成甲醇或二甲醚。以甲醇为基础可进一步合成其他约120余种化工产品。另外,还可利用甲醇制备醇醚燃料及合成液体烃燃料等。用作焦化原料焦化用于生产冶金焦、化工焦,其副产焦炉煤气可用于合成甲醇或合成氨,副产煤焦油进行分离和深加工后可得到一系列化工原料及化工产品。由表12看出,巨野煤田大槽煤经过洗选以后,可以供将来的400万t/a焦化厂或者上海宝钢等大型钢铁企业生产I级焦炭时作配煤炼焦使用;灰分≤的8级精煤(2#),也可供华东地区的中小型焦化企业生产2级和3级冶金焦的配煤炼焦使用。此外,该煤也可以单独炼焦,但所生产焦炭的孔隙率偏高,最好进行配煤炼焦。远景目标———煤制油煤直接液化可得到汽油、煤油等多种产品。巨野煤田的大部分煤层均为富油煤,尤其是15煤层平均焦油产率>12%,属高油煤;根据元素分析计算的碳氢比各煤层均<16%;大部分煤层挥发分>35%的气煤和气肥煤通过洗选后的精煤挥发分>37%,而其灰分<10%。因此,巨野煤田的煤炭都是较好的液化用原料煤。煤间接液化可制取液体烃类。煤经气化后,合成气通过F-T合成,可以制取液体烃类,如汽油、柴油、石腊等化工产品及化工原料。3结语综上所述,巨野煤田第三煤层大槽煤属于低灰、低硫、低磷、结焦性好、挥发分高、发热量高的煤炭资源,其中的气煤、1/3焦煤、气肥煤、肥煤、天然焦等是国内紧缺的煤种,它们的洗精煤不仅可作为炼焦用煤、动力用煤,而且是制备水煤浆和高炉喷吹气化的重要原料。因此,菏泽大力发展煤气化合成氨和甲醇并拉长产业链搞深度加工是必然的正确选择。

水煤浆气化技术论文篇二 德士古水煤浆气化技术的特点及应用 【摘要】水煤浆气化技术在我国由来已久,近年来,德士古水煤浆气化技术在我国的发展更为的迅速,其技术应用的范围也在不断的扩大,德士古水煤浆气化技术具有很多优点,因此,其应用还有待于进一步开发。本文将从以下几个方面来分析德士古水煤浆气化技术的特点及应用。 【关键词】德士古水煤浆气化技术;特点;应用;分析 中图分类号:X752 文献标识码:A 文章编号: 一、前言 目前,国内水煤浆气化的应用还存在一定的问题,选用何种技术成为了主要的关注点,因此,研究德士古水煤浆气化技术的特点及其在我国的应用具有很深远的现实意义。 二、煤气化原理及发展趋势 1、煤气化的原理 煤的气化反应是指气化剂(空气、水蒸气、富氧空气、工业氧气以及其相应混合物等)与碳质原料之间以及反应产物与原料、反应产物之间的化学反应。在气化炉内,煤炭要经历干燥、热解、气化和燃烧过程。 (一)湿煤中水分蒸发的过程: (二)热解(干馏)是煤受热后自身发生的一系列物理化学变化过程。一般来讲,热解的形式为:煤 煤气(CO2,CO,CH4,H2O,H2,NH3, H2S)+焦油+焦炭 (三)气化与燃烧过程。仅考虑煤的主要元素碳的反应,这些反应如下: a.碳-氧间的反应; b.碳-水蒸气间的反应; c.甲烷生成反应; 需要指出的是,以上所列诸反应为煤气化和燃烧过程的基本化学反应,不同过程可由上述或其中部分反应以串联或平行的方式组合而成。 2、煤气化技术的发展趋势 现代煤炭气化技术发展趋势如下: (一)气化压力向高压发展。气化压力由常压、低压(<)向高压() 气化发展,从而提高气化效率、碳转化率和气化炉能力。 (二)气化炉能力向大型化发展。大型化便于实现自动控制和优化操作,降低能耗和操作费用。 (三)气化温度向高温发展。气化温度高,煤中有机物质分解气化,消除或减少环境污染,对煤种适应性广。 (四)不断开发新的气化技术和新型气化炉,提高碳转化率和煤气质量,降低建设投资。目前碳转化率高达98%-99%,煤气中含CO+H2达到80%-90%。 (五)现代煤气化技术与其他先进技术联合应用。 (六)煤气化技术与先进脱硫、除尘技术相结合,实现环境友好,减少污染。 三、国内应用上存在的问题与解决措施 1.存在的问题 (一)气化效率仍然低 当前在国内,在燃烧上多采用单喷嘴直喷的模式,像德士古炉,而华东理工大学则采用多嘴对喷,后者的改进虽然增强了利用的效率,但是其对耐火砖的损坏也相应的加大了。在整个气化装置中,采用单个喷嘴时,其容量受到了限制,这就制约了水煤浆气化的转化效率。当采用多对喷嘴时,喷嘴的寿命也同时受到了考验,在雾化方面的效果仍然不能得到完全的控制。 (二)耐火砖的寿命短 水煤浆中本身存在34%左右的水,它的存在会吸收大量的热,在转化过程中,反应的进行使得化学平衡容易遭受破坏,因此,在设计上安排了耐火砖来作内衬。耐火砖专为改善水煤浆气化而来,所以,好的耐火砖将会对气化产生重要的作用。而在实际转化过程中,耐火砖十分容易损坏,当转化炉的操作温度过高时,它将直接烧坏耐火砖。 (三)煤炭质量的影响在现今的转化中,煤浆的混合制成,也对煤中含灰量和灰熔点有着特定的要求,当煤的质量不能满足水煤浆的合成时,其气化的效果将降低,同时,在进一步的燃烧中,由于可燃物含量的低下使得将要获得热能减少。 四、德士古水煤浆气化技术工艺 水煤浆制气的德士古工艺见图 1: 五、德士古水煤浆气化技术特点 德士古加压水煤浆气化工艺与第一代煤气化工艺相比,主要是提高了气化压力和温度,从而改善了技术经济指标。扩大了煤种的适应范围,该气化炉属于喷流气化,以水煤浆方式进料,其气化压力为。 主要工艺特点如下: 1、煤种适应性强,主要以烟煤为主,对煤的活性没有严格要求,但对煤的灰熔点有一定要求。 2、水煤浆用泵连续输送,故气化炉操作稳定性好,输送方便并有利于环境改善。 3、碳转化率高达96%以上,排水中无焦油、酚等污染环境的副产物产生,同时煤气中甲烷含量低,是较为理想的合成原料气。 4、气化在加压下进行,气化强度高,设备体积小,布置紧凑而且能耗较低。 5、气化炉内无转动部件,其结构简单、可靠。 6、气体在气化炉内停留时间短,仅为几秒钟,因而气化操作弹性大。 7、气化炉高温下排出之熔渣性能稳定,对环境影响小。 德士古水煤浆气化技术,与无烟煤间歇气化及鲁奇(Lurgi)气化技术相比具有明显的优越性。该法常以灰融点低活性较好的煤质为主,对煤种有较宽的适应性。适宜于作生产合成氨和甲醇的原料气。因而该技术引入我国以后,引起合成氨企业及各界人事的普遍关注。 六、德士古水煤浆气化的应用 目前我国采用该技术的在运行装置有20多家。鲁南化肥厂、上海焦化厂、陕西渭河化肥厂、安徽淮南化工厂和黑龙江浩良河化肥厂是国内使用德士古水煤浆气化炉较早的厂家,德士古水煤浆气化炉的部分应用情况见表 1。 表 1 德士古德士古水煤浆气化的应用状况 七、水煤浆气化工艺前景展望 德士古加压水煤浆气化技术虽然是比较成熟的煤气化技术,但从已投产的水煤浆加压气化装置的运行情况看,由于工程设计和操作经验的不完善,还没有达到长周期、高负荷、稳定运行的最佳状态,存在的问题还较多。 1、气化炉烧嘴运行周期较短,一般不超过 3 个月,这是造成德士古装置必须有备炉的主要原因; 2、耐火砖使用寿命国产约 1 a,进口约 2 a,导致维修费用较大; 3、单烧嘴制气,操作弹性较低;德士古加压水煤浆气化炉耐火砖的寿命问题仍然是一个难题,对于德士古水煤浆气化炉烧嘴的问题已有一些新的气化炉将单喷嘴改为对置式多喷嘴,可以增加热质传递,并且能提高碳的转化率。目前由兖矿集团有限公司、华东理工大学共同承担的国家高技术研究发展计划(863 计划)重大课题“新型水煤浆气化技术”就是将单喷嘴水煤浆气化炉改为对置式多喷嘴水煤浆气化炉,并配套生产甲醇和联产发电。多喷嘴对置式水煤浆气化技术含水煤浆制备工序、多喷嘴对置式水煤浆气化和煤气初步净化工序、含渣水处理工序。 多喷嘴对置式水煤浆气化技术自动化程度高,全部采用集散控制系统(DCS)控制,特别是氧煤比完全可以投自动串级控制。工业运行证实,该装置具有开车方便、操作灵活、投煤负荷增减自如的特点,操作的方便程度优于引进水煤浆气化装置。多喷嘴对置式水煤浆气化技术已被工程实践证实完全可行,工艺指标也极为先进,对初步的运行结果统计表明:有效气 CO+H2≥82%,碳转化率≥98%。通过工业化规模的气化炉的示范运行,我国在水煤浆气流床气化技术方面将达国际先进水平,具有自主知识产权的大型煤气化技术。 随着机械化采煤的发展,粉煤产率也在增加,利用此项技术可以解决粉煤的利用问题,也可以解决煤炭在洗选过程中产生的大量煤泥,利用水煤浆气化技术联合循环发电也具有广阔前景。今后煤化工的更多机会是发展新型煤化工,即煤制甲醇、煤烯烃、二甲醚和煤制油,煤气化生产甲醇及其下游产品的开发和 IGCC 联合发电也是新型煤化工的一个发展方向。新型煤化工将成为今后煤化工产业的发展主题。 八、结束语 在我国今后的水煤浆气化的发展过程中,可以更加深入的分析德士古水煤浆气化技术,通过充分利用其优势来提高其使用效果,从而提高我国水煤浆气化技术的整体质量水平。 【参考文献】 [1]陈俊峰.煤气化技术的发展现状及研究进展[J].广州化工,(5):31-33. [2]赵嘉博.刘小军.洁净煤技术的研究现状及进展[J].露天采矿技术.. [3]高丽. 德士古水煤浆加压气化技术的应用[J]. 煤炭技术,2010,07:161-162. [4]贾小军. 德士古水煤浆气化技术研究及其国产化创新[J]. 中国科技信息,2013,14:115. [5]崔嵬,吕传磊,徐厚斌. 德士古水煤浆加压气化技术的应用及创新[J]. 化肥工业,2000,06:7-8+17-58. 看了“水煤浆气化技术论文”的人还看: 1. 煤气化技术论文 2. 煤气化技术论文(2) 3. 煤炭气化技术论文(2) 4. 洁净煤燃烧技术论文 5. 大气污染控制技术论文

毕业论文甲醇合成工艺设计

这个一般分为汽化,净化,合成,精馏四个步骤: 用天然气一般用转化法(二段)教好!用天然气和氧气水蒸气生成CO和H2!然后将生成的气体经过净化(变换,脱硫,脱碳),然后调整其压力进合成塔,出来后冷却,然后在经过醇分进精馏塔提纯!基本的流程就这样!但不是几句话就能说清楚的!呵呵 找本甲醇工学去看看参考资料:甲醇工学回答者:wenyb_15 - 试用期 一级 1-21 03:15

氢气可以用於合成甲醇,合成甲醇由於其生产成本较低且用途广泛,为有机化学工业的主要原料之一,亦为重要的石油化学品,其主要用途可以用来制造甲醛,其次可以制造对苯二甲酸二甲酯(DMT)、甲基丙烯酸甲酯(MMA)、甲胺、聚乙烯醇、氯甲烷类、醋酸等,此外甲醇尚可作为溶剂与燃料,若有需要还可制氢气。 早期制造甲醇系将木材乾馏而得,合成法开法以后此法几乎被淘汰,初期的合成甲醇方法是由煤炭为原料制造,第二次世界大战后开发以天然气、炼油器与轻油等为原料之制法,煤炭法已经式微,仅余煤炭廉价及炼钢工业区附近尚有采用。甲醇合成之反应式如下:主反应 提高压力降低温度有利於主反应的进行而产生甲醇,早期的合成法为了防止设备之腐蚀,於反应之前先将二氧化碳移除,后来发现二氧化碳也可以作为原料,因而不需将二氧化碳先行去除。 合成甲醇之关键在於压力,过去均采用高压法,压力在300大气压以上,1966年开发出低压法,压力约50大气压;之后又有中压法被开发出来,其压力约200大气压。 压力(atm) 温度(℃) 触媒 高压法 300~600 320~380 铬锌触媒 中压法 105~300 225~270 含铜锌铬铝触媒 低压法 40~60 200~300 含铜锌触媒 高压法转化率较高,但是为了达到高压需要用往复压缩机消耗较多的能量,低压法可以使用离心式压缩机,消耗能量较少,经济规模较小,且可以使用含氢气量较高的合成气,中压法也可以使用离心式压缩机,不需像低压法还要另加二氧化碳且改良低压法设备庞大之缺点。 合成塔为直立型管壳式,管中填充触媒,管外以沸水冷却;也可以是填充塔式,如此可以於塔测多处通入冷原料以控制反应温度。压缩后的原料气和循环之未反应气体混合,经与反应生成气体进行热交换后,进入合成塔通过触媒床进行反应,反应生成气体经过热交换冷却后,甲醇冷凝,经分离器分离出甲醇,气体再循环与原料气混合。 如此冷凝合成出之粗甲醇中含有杂质,通常低压法合成所得到的甲醇杂质含量及种类比高压法所得的少,粗甲醇中的杂质除了水分以外可以分为三大类,即低沸点化合物,乙醇,高沸点化合物。粗甲醇进一步之精致步骤及操作与设计因合成法及成品规格而不同。若成品纯度要求较低时,可以采用单塔蒸馏方式。当纯度要求较高时,可采用双塔式蒸馏。当成品纯度要求更高时,采用三塔式蒸馏较适用。於双塔式蒸馏法中,二甲迷等低沸物杂质由第一塔塔顶排出,高级醇类高沸物由第二塔塔底排出,塔顶则得到高纯度甲醇。

低压工艺流程是指采用低温、低压和高活性铜基催化剂,在5mpa左右压力下,由合成气合成甲醇的工艺流程。天然气经加热炉加热后,进入转化炉发生部分氧化反应生成合成气,合成气经废热锅炉和加热器换热后,进入脱硫器,脱硫后的合成气经水冷却和汽液分离器,分离除去冷凝水后进入合成气三段离心式压缩机,压缩至稍低于5mpa。从压缩机第三段出来的气体不经冷却,与分离器出来的循环气混合后,在循环压缩机中压缩到稍高于5mpa的压力,进入合成塔。循环压缩机为单段离心式压缩机,它与合成气压缩机一样都采用气轮机驱动。合成塔顶尾气经转化后含co2量稍高,在压缩机的二段后,将气体送入co2吸收塔,用k2co3溶液吸收部分co2,使合成气中co2保持在适宜值。吸收了co2的k2co3溶液用蒸汽直接再生,然后循环使用。合成塔中填充cuo-zno-al2o3催化剂,于5mpa压力下操作。由于强烈的放热反应,必须迅速移出热量,流程中采用在催化剂层中直接加入冷原料的冷激法,保持温度在240~270℃之间。经合成反应后,气体中含甲醇~4%(体积),送入加热器以预热合成气,塔釜部物料在水冷器中冷却后进入分离器。粗甲醇送中间槽,未反应的气体返回循环压缩机。为防止惰性气体的积累,把一部分循环气放空。粗甲醇中甲醇含量约80%,其余大部分是水。此外,还含有二甲醚及可溶性气体,称为轻馏分。水、酯、醛、酮、高级醇称为重馏分。以上混合物送往脱轻组分塔,塔顶引出轻馏分,塔底物送甲醇精馏塔(,塔顶引出产品精甲醇,塔底为水,接近塔釜的某一塔板处引出含异丁醇等组分的杂醇油。产品精甲醇的纯度可达(质量)。

一分钟读懂.甲醇生产工艺

聚烯烃毕业论文

聚乳酸是由生物发酵生产的乳酸经人工化学合成而得的聚合物,但仍保持着良好的生物相容性和生物可降解性,具有与聚酯相似的防渗透性,同时具有与聚苯乙烯相似的光泽度、清晰度和加工性,并提供了比聚烯烃更低温度的可热合性,可采用熔融加工技术,包括纺纱技术进行加工。因此聚乳酸可以被加工成各种包装用材料,农业、建筑业用的塑料型材、薄膜,以及化工、纺织业用的无纺布、聚酯纤维、医用材料等等。适合的加工方式有:真空成型、射出成型、吹瓶、透明膜、贴合膜、保鲜膜、纸淋膜,融溶纺丝等。聚乳酸(PLA)的原料主要为玉米等天然原料,降低了对石油资源的依赖,同时也间接降低了原油炼油等过程中所排放的氮氧化物及硫氧化物等污染气体的排放。为了摆脱对日趋枯竭的石油资源的依赖,大力开发环境友好的可生物降解的聚合物,替代石油基塑料产品,已成为当前研究开发的热点。根据我国可持续发展战略,以再生资源为原料,采用生物技术生产可生物降解的聚乳酸(PLA)市场潜力巨大。将粮食产品深加工,生产高附加值的产品是实现跨越式经济发展的重大举措。国内聚乳酸市场分析:我国是一个生产塑料树脂材料及消费大国,年生产各类塑料制品近1900多万吨。大力开发生产对环境友好的EDP塑料制品,势在必行,这有益于减少石油基塑料制品所带来的环境污染和对不可再生石油资源的依赖及消耗。目前,国内有多家企事业单位从事“聚乳酸〔PLA〕”聚酯材料的研究及应用工作,国家和省及部委也将PLA开发项目列入“九五”、“十五”、“863”、“973”、《火炬计划》、《星火计划》、“十一五”和《国家中长期科学科技发展规划》重点科研攻关项目。但是,目前国内PLA产业化步伐缓慢,产品经过多年的研发仅有浙江海正集团和上海同杰良生物技术有限公司等较有实力的企事业单位较有成效,江阴杲信也开发了粒子,纤维和无纺布等产品,PLA聚酯材料主要依赖国外进口,由于PLA原料进口价格比较昂贵,这也限制了PLA高分子材料在我国的应用和发展。随着我国加入世贸组织,先进的生产技术和设备及新产品大量进入国内市场,这也促使国内一些企事业单位和集团公司及乳酸生产厂家着手建立PLA产业,以国内丰富的资源优势和科研院校的技术优势及人力资源优势与国外PLA产品抗衡,并使国内能顺利的形成以PLA产品为代表的消费市场,并且能够出口创汇。经济学家及环保人士指出,在我国发展以高性能EDP材料作为治理环境污染措施之一,正在逐步取得政府的支持。国家已将EDP塑料列入国家优先发展高新技术产业重点领域(包装材料、农业应用材料、医用材料等),《中国21世纪议程》也将发展EDP塑料包装材料列入发展内容之一,生物质塑料正在推向市场、开拓市场,无论在农业用、包装用、日用、医用等领域都具有较大的市场潜力。2005年中国塑料包装材料需求量将达到550万吨,按其中1/3为难以收集的一次性塑料包装材料和制品计算,其废弃物将达到180万吨;据农业部预测,2005年地膜覆盖面积将达亿亩,所需地膜加上堆肥袋、育苗钵,农副产品保鲜膜、片、盒等需求量将达到120万吨;垃圾袋等一次性日用杂品、建筑用网、无纺布、医用卫生材料中一部分也是难以收集或不宜收集的,预计废弃物将达到440万吨,若其中50%采用EDP塑料代替的话,则EDP塑料市场需求量将达到220万吨,再加上作为资源补充替代的产品,则2005年国内EDP塑料总需求量将达到260万吨。另一方面,我国EDP塑料产品由于品质有保障,而成本相对较低。近年来澳大利亚、日本、韩国等一些国家从减量化措施出发,对我国高淀粉含量的聚烯烃部分生物降解塑料市场看好,而纷纷来华洽谈贸易和协作,目前进入国际市场的出口量达到2万吨,预计2005年出口量将达到20万吨。据此,2005年EDP塑料国内外市场总需求量将达到2800万吨,在塑料制品总计划产量(25000万吨)中占。这与国外发展趋势是基本相符的。因此,EDP塑料是一个正在发展而市场潜力巨大的新兴行业,2005年~2010年需求量年均增长率按20%计算,2010年市场需求量将达到690万吨。据专家预测,目前我国为实现可持续资源发展战略,已计划建立国家级生物质塑料生产基地。在今后5~10年内,我国国内将形成一个由PLA降解塑料为主的销售大市场,并且年产值几百亿元。在药物控制释放材料和骨固定材料及人体组织修复材料等方面,如能以其成功的制成几种药物控制释放系统和骨固定材料及微创导管材料并进入市场,年产值将至少也有几十亿元。在生态纤维制品方面,能开发并生产出优质的纤维制品,将有年产值100亿元的市场销售空间。在降解塑料制品方面,我国消费市场空间更大,年销售额将达到上百亿元。在一次性医疗制品方面,如能开发出既能功能性自毁又能环境分解消毁的环保一次性使用医疗器械产品,那么市场空间和利润将是巨大的,其意义更加深远。聚乳酸(PLA)是一种对人体没有毒害作用的聚酯类材料,具有良好的生物相容性、生物降解性和生物可吸收性。在各种药学和生物医学应用方面,聚乳酸与聚乙醇酸(PGA)、乳酸-乙醇酸共聚物(PLGA)等可以酶降解或化学降解,在完成其目标任务后不需要外科手术除去,因此广泛用作药物缓释、手术缝合线及骨折内固定材料等生物医用高分子材料。聚乳酸在常温下性能稳定,其降解产物为环境可再生资源——乳酸,不会对环境造成污染,也用作环保高分子材料,可采用通用的塑料加工方法,如挤出、注塑、中空成型等,制成薄膜、片材、泡沫塑料、注塑制品、中空吹塑瓶等。目前,聚乳酸合成方法有两种,一种是由乳酸直接缩聚合成聚乳酸(PC法),采用的聚合方法通常为熔融缩聚法、熔融缩聚-固相聚合法、溶液缩聚法;另一种是开环聚合法(ROP法),即先将乳酸单体经脱水环化合成丙交酯(3,6-二甲基-1,4-二氧杂环己烷-2,5-二酮),然后丙交酯开环聚合得到聚乳酸,该法可以得到相对分子质量高的聚乳酸。聚乳酸有极大的应用前景,但是其物理上的缺陷,如脆性和慢结晶速度等会阻碍PLA加工成型。国外已经有许多关于聚乳酸及其改性物的研究。近些年,我国也大力着手于聚乳酸的研究。本文对最近聚乳酸的合成方法和改性研究进行详细评述。1 聚乳酸合成方法 聚乳酸直接合成法 原理直接合成法是采用高效脱水剂和催化剂使乳酸或乳酸低聚物分子间脱水缩合成高分子质量聚乳酸,图1(略)是聚乳酸直接合成过程。采用直接法合成的聚乳酸,原料乳酸来源充足,大大降低了成本,有利于聚乳酸材料的普及,但该法得到的聚乳酸相对分子质量较低,机械性能较差,这就抑制了该法得到的聚乳酸的实际应用。直接聚合法的关键是把原料和反应过程中生成的小分子(水)除去,并控制反应温度。因为反应温度提高虽然有利于反应的正向进行,但当温度过高时,低聚物会发生裂解环化,解聚为乳酸的环状二聚体——丙交酯。在高真空状态下,水分子被带走的同时,也会带走解聚生成的丙交酯,这就促使反应向着解聚方向进行,不利于高分子质量聚乳酸的生成。所以,反应一方面要除去水分子,另一方面要抑制丙交酯的流失,这就是关键所在。 熔融缩聚法反应体系温度高于聚合物的熔点,反应在熔融状态下进行,是没有任何介质的本体聚合反应,所形成的副产物(水、丙交酯等)通过惰性气体携带或借助于体系的真空度而不断排除。优点是产物纯净,不需要分离介质;缺点是熔融缩聚法得到的产物相对分子质量不高。因为随着反应的进行,体系的黏度越来越大,小分子难以排出,平衡难以向聚合方向进行。在熔融聚合过程中,催化剂、反应时间、反应温度及真空度对产物相对分子质量的影响很大。同济大学任杰等发明了一种直接熔融制备高分子聚乳酸的方法。在惰性气体保护的环境下,向聚乳酸预聚体中加入含有两个活性官能团的扩链剂,一个官能团易与羟基反应,另一个官能团易与羧基反应,如1,2-环氧辛酰氯、环氧氯丙烷、2,4-甲苯二异氰酸酯、四甲基二异氰酸酯等,然后通过反应挤出制备聚乳酸,从而使反应得到的聚乳酸的特性黏度由预聚体的提高到。东华大学余木火等发明了一种熔融缩聚制备高分子质量聚乳酸的方法。通过以乳酸、脂肪族二元酸为起始原料,制得两端为羧基的乳酸预聚物,然后再加入一定比例的环氧树脂,于一定温度、压力条件下制得高分子质量的聚乳酸。通过优化条件可以得到粘均分子质量为13万-22万的高聚物。在催化剂的选用方面,常用的酯化反应催化剂有中强酸H2SO4、H3PO4等;过渡金属及其氧化物、盐,如Sn、Zn、SnO2、ZnO、SnCl2、SnCl4等;金属有机物,如辛酸亚锡、三乙基铝等。本课题研究组采用易与产物分离的稀土氧化物Y2O3、Nd2O3、Eu2O3催化乳酸,直接缩聚合成了粘均分子质量为×103g/mol的聚乳酸。在后续研究中又采用稀土固体超强酸SO42-/TiO2-Ce4+催化剂直接催化合成聚乳酸,得到粘均分子质量(×104g/mol)较高的聚乳酸。 熔融缩聚-固相聚合法该法是首先使反应物单体乳酸减压脱水缩聚合成低分子质量的聚乳酸,然后将预聚物在高于玻璃化温度但低于熔点的温度下进行缩聚反应。在低分子质量的乳酸预聚体中,大分子链部分被“冻结”形成结晶区,而官能团末端基、小分子单体及催化剂被排斥在无定形区,可获得足够能量通过扩散互相靠近发生有效碰撞,使聚合反应得以继续进行。通过真空或惰性气体将反应体系中的小分子副产物冰)带走,使反应平衡向正方向移动,促进预聚体分子质量的进一步提高。由于反应是在比较缓和的条件下进行,可以避免高温下的副反应,从而提高聚乳酸的纯度和质量。邢云杰等首先将L-乳酸熔融缩聚得到低分子质量的L-乳酸预聚物,预聚物在等温结晶后可以保持其在较高温度下的固相聚合条件下不融化,聚乳酸的解聚反应在固相聚合时大为抑制。在分子筛存在的条件下,真空固相聚合,得到重均分子质量在10万-15万的聚乳酸。 溶液缩聚法溶液缩聚是反应物在一种惰性溶剂中进行的缩聚反应,优点是反应温度相对较低,副反应少,容易得到较高分子质量的产物,但反应中需要大量的溶剂,因此需要增设溶剂提纯、回收设备。同济大学任杰等发明了一种用于溶液缩聚的反应装置,该装置可以达到溶剂的反复回流使用,既可用于溶剂密度小于水的反应,也可用于溶剂密度大于水的反应,大大降低了反应成本。在反应过程中,溶剂可以有效降低反应体系的黏度,吸收反应放出的热量,使反应过程平稳;溶剂可以溶解原料单体乳酸,使正在增长的聚乳酸溶解或溶胀,以利于增长反应的继续进行;溶剂还可以与缩聚时产生的小分子副产物水等形成共沸物而及时带走小分子。复旦大学钟伟等使用苯甲醚作为溶剂合成聚乳酸;黎丽等采用二甲苯作溶剂,溶液共沸合成高分子质量聚乳酸;华南理工汪朝阳等以二异氰酸酯为扩链剂、四氢呋喃为溶剂进行扩链反应合成聚乳酸,均取得了较为满意的结果。 聚乳酸开环聚合法图2(略)为聚乳酸开环聚合法的合成过程。首先,乳酸分子间脱水生成低分子质量聚乳酸;然后,在180-230℃的温度下低聚物解聚生成环状丙交酯(LA);最后,丙交酯开环聚合生成高聚物。该法可以得到相对分子质量为70万~100万的聚乳酸。常用的聚合方法主要有三种:阳离子聚合、阴离子聚合、配位聚合。其中,用于阳离子聚合的引发剂有质子酸,如RSO3H等;路易斯酸,如SnCl2、MnCl2、Sn(Oct)2等;烷基化试剂,如三氟甲基磺酸(CF3SO3CH3)等多种酸性化合物。在LA的阴离子聚合中,应用于反应的阴离子催化剂一般具有较强的亲核性和碱性,如碱金属烷氧化物等。Kasperczyk等人使用叔丁氧锂催化聚合rac-LA并研究rac-LA聚合的立构可控性。LA的配位开环聚合常用的引发剂为羧酸锡盐类、异丙醇铝、烷氧铝或双金属烷氧化合物等。其中,羧酸锡盐类,尤其是辛酸亚锡[Sn(Oct)2],投入工业生产中,易处理,在LA聚合中可与有机溶剂和熔融LA单体互溶,所以催化活性高,并且辛酸亚锡经美国FDA认定,已可作为食品添加剂。为了使PLA在生物医学领域应用更加广泛,科学家研制了一系列含生物可吸收金属的相关催化剂,比如Mg、Ca、Fe、Zn等金属催化剂,用于LA的活性聚合研究和工业化生产中,尤其是Zn盐化合物。到目前为止,乳酸锌是锌化合物中效果最佳的LA聚合催化剂,它可以更好地控制PLA的分子质量,并且LA转化率高,聚合分散度(PDI)较窄。Oota等在丙交酯开环聚合聚乳酸时,采用环状亚胺,如琥珀酰亚胺、戊二酰亚胺、苯邻二甲酰亚胺等作为聚合引发剂,在氮气流保护、较低反应温度(100-190℃)、低催化剂含量(辛酸亚锡摩尔百分含量)的反应条件下,有效地合成了聚乳酸,从而避免了以往合成的聚乳酸由于反应温度较高(180-230℃)而导致颜色较重,并且重金属催化剂含量较高,做成的食品包装制品对人体有害等一系列问题。2 聚乳酸改性研究 聚乳酸的共聚改性E•A•弗莱克斯曼发明了一种包含缩水甘油基的无规乙烯共聚物增韧的热塑性聚乳酸组合物,使得聚乳酸组合物容易熔融加工成各种具有可接受韧性的制件。所述乙烯共聚物,是指来自乙烯和至少两种其他单体的聚合物。改性聚乳酸中的共聚单体也可以选用乙交酯、乙醇酸的二聚环酯、ε-乙内酯等。这种共聚改性的方法是利用两种单体活性相近,极性也相近的性质,将两种单体混合,通过自由基共聚合,得到无规共聚物。如果两种单体活性相近,而极性相反,且竞聚率r1→0或r2→0,将两种单体混合,通过自由基聚合,可得到交替共聚物。张倩等合成一种生物医用高分子材料交替共聚乙丙交酯,兼有聚乙交酯(PGA)和PLA两种聚酯材料的优良特性。近年来,通过聚合物的化学反应制备嵌段共聚物或接枝共聚物得到人们的关注。Kazuki Fukushima等合成了高分子质量的有规立构嵌段D,L-聚乳酸:首先,熔融缩聚合成较低分子质量的D-聚乳酸和L-聚乳酸;然后将这两种构型的聚乳酸1:1等量熔融状态下混合,以形成立体配合物;最后,使熔融态的立体配合物降温进行固相聚合反应,非晶态的聚乳酸链延长为高分子质量的有规嵌段外消旋聚乳酸。研究表明,使用淀粉与D,L-丙交酯合成的淀粉D,L-丙交酯接枝共聚物能够被酸、碱和微生物完全降解,并且机械性能更佳。由于淀粉来源充足,价格便宜,因此大大降低了合成接枝共聚物的成本,有利于该材料的普及。 聚乳酸的共混改性单独的聚乳酸机械性能、柔性较差,限制了其应用的范围,而其他一些重要的聚酯,如聚(ε-2己内酯)(PCL)、聚氧化乙烯(PEO)、聚羟基脂肪酸丁酯(PHB)、聚乙醇酸(PGA)等,任何一种都有限制其广泛应用的缺陷,但共混改性材料可以弥补他们各自应用上的限制。共混改性材料兼有几种材料的优点,从而扩大了聚酯类材料的应用范围。Huiming Xiong等合成了表面密度较大的L-聚乳酸(L-PLA)-聚苯乙烯(PS)-聚甲基丙烯酸甲酯(PMMA)三元共混聚合物。他们首先在乳液中合成羟基功能化PS-PMMA复合物,然后以该复合物为分子引发剂、三乙基铝为催化剂,插入L-丙交酯,进行聚合,从而使聚合物韧性大大提高。冉祥海发明了一种三元复配聚乳酸型复合材料。该材料由聚乳酸、聚丙撑碳酸酯(PPC)、聚3-羟基丁酸酯(PHB)和各种助剂共混制成。以这种三元复配聚乳酸型复合材料为母料制备的热塑性复合材料,改善了聚乳酸制品的成型加工性、耐热性、撕裂强度及制品的尺寸稳定性。 聚乳酸的复合改性聚乳酸的脆性问题是抑制其作为骨科固定材料的重要原因之一,将聚乳酸与其他材料复合进行改性,可以使聚乳酸的脆性问题得到解决。羟基磷灰石(Hydroxyapatite)是一种胶体磷酸钙,在人体内主要分布于骨骼和牙齿中,因此可以作为骨缺损修复材料和骨组织工程载体材料,但是单独的羟基磷灰石的力学性能不适合作为骨移植材料。将表面进行过改性处理的羟基磷灰石(HA)与聚乳酸通过热煅法、热压法、流延法等进行复合,可以获得力学性能优良的HA/PLLA复合材料。上海交通大学孙康等发明了一种改性甲壳素纤维增强聚乳酸复合材料,将由湿法纺丝成形工艺制备得到的酰化改性甲壳素纤维通过含有聚乳酸胶液的浸胶槽,用缠绕机缠绕成无纬预浸布,而后将干燥、适当裁剪后的预浸料片模压成型。该复合材料界面结合、生物相容性好,相对于聚乳酸而言,降低了降解速率,具有更好的强度保持性,可更好地满足骨折内固定材料的使用要求。 聚乳酸的增塑改性增塑聚乳酸就是通过加入生物相容性的增塑剂来提高聚乳酸的柔韧性和抗冲击性能。对增塑后的聚乳酸进行热分析和机械性能表征研究其玻璃化转变温度(Tg)、弹性模量、断裂伸长率等的变化,从而来确定增塑剂的效能。Bo-Hsin Li在L-聚乳酸中混入二苯基甲烷-4,4'-二异氰酸酯(MDI),从而使聚乳酸的热性质和机械性能得到改善。通过差示扫描量热分析和热重分析,当MDI的-NCO与L-聚乳酸的-OH的摩尔比为2:1时,聚乳酸的玻璃化转变温度由55℃提高到64℃,拉伸强度由改性前的提高到。3 结语综上所述,国外对聚乳酸及其改性聚合物的研究和材料应用方面已经比较成熟,我国尚属起步阶段。聚乳酸材料虽然有无毒无害、环保等优点,但在我国并没有大量应用,主要是由于聚乳酸的生产成本居高不下,相对同类材料在价格上没有优势。因此,研究的主要方向是要降低聚乳酸的生产成本,以使这种环保材料能真正应用于我们的生活及医疗事业上。虽然丙交酯的开环聚合法可以得到高分子质量聚乳酸,但该法工艺较复杂,成本较高,所以,开发成本较低的乳酸直接合成法,有利于聚乳酸真正的实现应用于人们的生产生活中。同时,聚乳酸的合成工艺过程将直接影响聚乳酸的性能,因此,今后的研究方向主要是优化聚乳酸的合成工艺条件,寻找新的、可以回收利用的、毒性低的、高催化活性的催化剂。此外,单纯的聚乳酸机械性能较差、易破碎,制约了其应用的范围,所以通过共聚、共混、复合的方法改善聚乳酸的机械性能、热性能等也是聚乳酸研究的一个主要方向。我国大部分有关聚乳酸的研究主要集中在合成高分子质量的聚乳酸上,并且合成的分子质量分布较宽。高分子质量聚乳酸可用来做高机械强度的制品,如作为骨内固定材料;而药物传输系统载体——药物缓释剂,则需要低分子质量聚乳酸,所以在聚乳酸的可控聚合研究上需加强研究力度,通过对催化剂、引发剂、聚合时间和温度、溶剂等的选择,制备分子质量范围较窄并且分子质量可控的聚乳酸,以扩大并优化聚乳酸材料的应用希望对你有点帮助!!!!!

关键词:超高分子 量聚乙烯 工程塑料1 引言UHMWPE是一种线型结构的具有优异综合性能的热塑性工程塑料。世界上最早由美国Allied Chemical公司于1957年实现工业化,此后德国Hoechst公司、美国Hercules公司、日本三井石油化学公司等也投入工业化生产。我国上海高桥化工厂于1964年最早研制成功并投入工业生产,70年代后期又有广州塑料厂和北京助剂二厂投入生产。限于当时条件,产物分子量约150万左右,随着工艺技术的进步,目前北京助剂二厂的产品分子量可达100万~300万以上。UHMWPE的发展十分迅速,80年代以前,世界平均年增长率为,进入80年代以后,增长率高达15%~20%。而我国的平均年增长率在30%以上。1978年世界消耗量为12,000~12,500吨,而到1990年世界需求量约5万吨,其中美国占70%。UHMWPE平均分子量约35万~800万,因分子量高而具有其它塑料无可比拟的优异的耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能。而且,UHMWPE耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。UHMWPE优异的物理机械性能使它广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。另外,由于UHMWPE优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节等在临床医学上使用。2 UHMWPE的成型加工由于UHMWPE熔融状态的粘度高达108Pa*s,流动性极差,其熔体指数几乎为零,所以很难用一般的机械加工方法进行加工。近年来,UHMWPE的加工技术得到了迅速发展,通过对普通加工设备的改造,已使UHMWPE由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其它特殊方法的成型。 一般加工技术(1)压制烧结压制烧结是UHMWPE最原始的加工方法。此法生产效率颇低,易发生氧化和降解。为了提高生产效率,可采用直接电加热法〔1〕;另外,Werner和Pfleiderer公司开发了一种超高速熔结加工法〔2〕,采用叶片式混合机,叶片旋转的最大速度可达150m/s,使物料仅在几秒内就可升至加工温度。(2)挤出成型挤出成型设备主要有柱塞挤出机、单螺杆挤出机和双螺杆挤出机。双螺杆挤出多采用同向旋转双螺杆挤出机。60年代大都采用柱塞式挤出机,70年代中期,日、美、西德等先后开发了单螺杆挤出工艺。日本三井石油化学公司最早于1974年取得了圆棒挤出技术的成功。北京化工大学于1994年底研制出Φ45型UHMWPE专用单螺杆挤出机,并于1997年取得了Φ65型单螺杆挤出管材工业化生产线的成功。(3)注塑成型日本三井石油化工公司于1974年开发了注塑成型工艺,并于1976年实现了商业化,之后又开发了往复式螺杆注塑成型技术。1985年美国Hoechst公司也实现了UHMWPE的螺杆注塑成型工艺。北京塑料研究所1983年对国产XS-ZY-125A型注射机进行了改造,成功地注射出啤酒罐装生产线用UHMWPE托轮、水泵用轴套,1985年又成功地注射出医用人工关节等。(4)吹塑成型UHMWPE加工时,当物料从口模挤出后,因弹性恢复而产生一定的回缩,并且几乎不发生下垂现象,故为中空容器,特别是大型容器,如油箱、大桶的吹塑创造了有利的条件。UHMWPE吹塑成型还可导致纵横方向强度均衡的高性能薄膜,从而解决了HDPE薄膜长期以来存在的纵横方向强度不一致,容易造成纵向破坏的问题。 特殊加工技术 冻胶纺丝以冻胶纺丝—超拉伸技术制备高强度、高模量聚乙烯纤维是70年代末出现的一种新颖纺丝方法。荷兰DSM公司最早于1979年申请专利,随后美国Allied公司、日本与荷兰联合建立的Toyobo-DSM公司、日本Mitsui公司都实现了工业化生产。中国纺织大学化纤所从1985年开始该项目的研究,逐步形成了自己的技术,制得了高性能的UHMWPE纤维〔3〕。UHMWPE冻胶纺丝过程简述如下:溶解UHMWPE于适当的溶剂中,制成半稀溶液,经喷丝孔挤出,然后以空气或水骤冷纺丝溶液,将其凝固成冻胶原丝。在冻胶原丝中,几乎所有的溶剂被包含其中,因此UHMWPE大分子链的解缠状态被很好地保持下来,而且溶液温度的下降,导致冻胶体中UHMWPE折叠链片晶的形成。这样,通过超倍热拉伸冻胶原丝可使大分子链充分取向和高度结晶,进而使呈折叠链的大分子转变为伸直链,从而制得高强度、高模量纤维。UHMWPE纤维是当今世界上第三代特种纤维,强度高达,比强度是化纤中最高的,又具有较好的耐磨、耐冲击、耐腐蚀、耐光等优良性能。它可直接制成绳索、缆绳、渔网和各种织物:防弹背心和衣服、防切割手套等,其中防弹衣的防弹效果优于芳纶。国际上已将UHMWPE纤维织成不同纤度的绳索,取代了传统的钢缆绳和合成纤维绳等。UHMWPE纤维的复合材料在军事上已用作装甲兵器的壳体、雷达的防护外壳罩、头盔等;体育用品上已制成弓弦、雪橇和滑水板等。 润滑挤出(注射)润滑挤出(注射)成型技术是在挤出(注射)物料与模壁之间形成一层润滑层,从而降低物料各点间的剪切速率差异,减小产品的变形,同时能够实现在低温、低能耗条件下提高高粘度聚合物的挤出(注射)速度。产生润滑层的方法主要有两种:自润滑和共润滑。(1)自润滑挤出(注射)UHMWPE的自润滑挤出(注射)是在其中添加适量的外部润滑剂,以降低聚合物分子与金属模壁间的摩擦与剪切,提高物料流动的均匀性及脱模效果和挤出质量。外部润滑剂主要有高级脂肪酸、复合脂、有机硅树脂、石腊及其它低分子量树脂等。挤出(注射)加工前,首先将润滑剂同其它加工助剂一起混入物料中,生产时,物料中的润滑剂渗出,形成润滑层,实现自润滑挤出(注射)。有专利报道〔4〕:将70份石蜡油、30份UHMWPE和1份氧相二氧化硅(高度分散的硅胶)混合造粒,在190℃的温度下就可实现顺利挤出(注射)。(2)共润滑挤出(注射)UHMWPE的共润滑挤出(注射)有两种情况,一是采用缝隙法〔5、6〕将润滑剂压入到模具中,使其在模腔内表面和熔融物料间形成润滑层;二是与低粘度树脂共混,使其作为产物的一部分(详见)。如:生产UHMWPE薄板时,由定量泵向模腔内输送SH200有机硅油作润滑剂,所得产品外观质量有明显提高,特别是由于挤出变形小,增加了拉伸强度。 辊压成型〔1〕辊压成型是一种固态加工方法,即在UHMWPE的熔点以下对其施加一很大的压力,通过粒子形变,有效地将粒子与粒子融合。主要设备是一带有螺槽的旋转轮和一带有舌槽的弓形滑块,舌槽与螺槽垂直。在加工过程中有效地利用了物料与器壁之间的摩擦力,产生的压力足够使UHMWPE粒子发生形变。在机座末端装有加热支台,经过模口挤出物料。如将此项辊压装置与挤压机联用,可使加工过程连续化。 热处理后压制成型〔8〕把UHMWPE树脂粉末在140℃~275℃之间进行1min~30min的短期加热,发现UHMWPE的某些物理性能出人意料地大大改善。用热处理过的UHMWPE粉料压制出的制品和未热处理过的UHMPWE制品相比较,前者具有更好的物理性能和透明性,制品表面的光滑程度和低温机械性能大大提高了。 射频加工〔9〕采用射频加工UHMWPE是一种崭新的加工方法,它是将UHMWPE粉末和介电损耗高的炭黑粉末均匀混合在一起,用射频辐照,产生的热可使UHMWPE粉末表面发生软化,从而使其能在一定压力下固结。用这种方法可在数分钟内模压出很厚的大型部件,其加工效率比目前UHMWPE常规模压加工高许多倍。 凝胶挤出法制备多孔膜〔10〕将UHMWPE溶解在挥发溶剂中,连续挤出,然后经一个热可逆凝胶/结晶过程,使其成为一种湿润的凝胶膜,蒸除溶剂使膜干燥。由于已形成的骨架结构限制了凝胶的收缩,在干燥过程中产生微孔,经双轴拉伸达到最大空隙率而不破坏完整的多孔结构。这种材料可用作防水、通氧织物和耐化学品服装,也可用作超滤/微量过滤膜、复合薄膜和蓄电池隔板等。与其它方法相比,由此法制备的多孔UHMWPE膜具有最佳的孔径、强度和厚度等综合性能。3 UHMWPE的改性 物理机械性能的改进与其它工程塑料相比,UHMWPE具有表面硬度和热变形温度低、弯曲强度以及蠕变性能较差等缺点。这是由于UHMWPE的分子结构和分子聚集形态造成的,可通过填充和交联的方法加以改善。 填充改性采用玻璃微珠、玻璃纤维、云母、滑石粉、二氧化硅、三氧化二铝、二硫化钼、炭黑等对UHMWPE进行填充改性,可使表面硬度、刚度、蠕变性、弯曲强度、热变形温度得以较好地改善。用偶联剂处理后,效果更加明显。如填充处理后的玻璃微珠,可使热变形温度提高30℃。玻璃微珠、玻璃纤维、云母、滑石粉等可提高硬度、刚度和耐温性;二硫化钼、硅油和专用蜡可降低摩擦因数,从而进一步提高自润滑性;炭黑或金属粉可提高抗静电性和导电性以及传热性等。但是,填料改性后冲击强度略有下降,若将含量控制在40%以内,UHMWPE仍有相当高的冲击强度。 交联交联是为了改善形态稳定性、耐蠕变性及环境应力开裂性。通过交联,UHMWPE的结晶度下降,被掩盖的韧性复又表现出来。交联可分为化学交联和辐射交联。化学交联是在UHMWPE中加入适当的交联剂后,在熔融过程中发生交联。辐射交联是采用电子射线或γ射线直接对UHMWPE制品进行照射使分子发生交联。UHMWPE的化学交联又分为过氧化物交联和偶联剂交联。(1)过氧化物交联过氧化物交联工艺分为混炼、成型和交联三步。混炼时将UHMWPE与过氧化物熔融共混,UHMWPE在过氧化物作用下产生自由基,自由基偶合而产生交联。这一步要保证温度不要太高,以免树脂完全交联。经过混炼后得到交联度很低的可继续交联型UHMWPE,在比混炼更高的温度下成型为制件,再进行交联处理。UHMWPE经过氧化物交联后在结构上与热塑性塑料、热固性塑料和硫化橡胶都不同,它有体型结构却不是完全交联,因此在性能上兼有三者的特点,即同时具有热可塑性和优良的硬度、韧性以及耐应力开裂等性能。国外曾报道用2,5-二甲基-2,5双过氧化叔丁基己炔-3作交联剂〔11〕,但国内很难找到。清华大学用廉价易得的过氧化二异丙苯(DCP)作为交联剂进行了研究〔12〕,结果发现:DCP用量小于1%时,可使冲击强度比纯UHMWPE提高15%~20%,特别是DCP用量为时,冲击强度可提高48%。随DCP用量的增加,热变形温度提高,可用于水暖系统的耐热管道。(2)偶联剂交联UHMWPE主要使用两种硅烷偶联剂:乙烯基硅氧烷和烯丙基硅氧烷,常用的有乙烯基三甲氧基硅烷和乙烯基三乙氧基硅烷。偶联剂一般要靠过氧化物引发,常用的是DCP,催化剂一般采用有机锡衍生物。硅烷交联UHMWPE的成型过程首先是使过氧化物受热分解为化学活性很高的游离基,这些游离基夺取聚合物分子中的氢原子使聚合物主链变为活性游离基,然后与硅烷产生接枝反应,接枝后的UHMWPE在水及硅醇缩合催化剂的作用下发生水解缩合,形成交联键即得硅烷交联UHMWPE。(3)辐射交联在一定剂量电子射线或γ射线作用下,UHMWPE分子结构中的一部分主链或侧链可能被射线切断,产生一定数量的游离基,这些游离基彼此结合形成交联链,使UHMWPE的线型分子结构转变为网状大分子结构。经一定剂量辐照后,UHMWPE的蠕变性、浸油性和硬度等物理性能得到一定程度的改善。用γ射线对人造UHMWPE关节进行辐射,在消毒的同时使其发生交联,可增强人造关节的硬度和亲水性,并且使耐蠕变性得以提高〔13〕,从而延长其使用寿命。有研究〔14〕表明,将辐照与PTFE接枝相结合,也可改善UHMWPE的磨损和蠕变行为。这种材料具有组织容忍性,适于体内移植。 加工性能的改进UHMWPE树脂的分子链较长,易受剪切力作用发生断裂,或受热发生降解。因此,较低的加工温度,较短的加工时间和降低对它的剪切是非常必要的。为了解决UHMWPE的加工问题,除对普通成型机械进行特殊设计外,还可对树脂配方进行改进:与其它树脂共混或加入流动改性剂,使之能在普通挤出机和注塑机上成型加工,这就是中介绍的润滑挤出(注射)。 共混改性共混法改善UHMWPE的熔体流动性是最有效、最简便和最实用的途径。目前,这方面的技术多见于专利文献。共混所用的第二组份主要是指低熔点、低粘度树脂,有LDPE、HDPE、PP、聚酯等,其中使用较多的是中分子量PE(分子量40万~60万)和低分子量PE(分子量<40万)。当共混体系被加热到熔点以上时,UHMWPE树脂就会悬浮在第二组份树脂的液相中,形成可挤出、可注射的悬浮体物料。(1)与低、中分子量PE共混UHMWPE与分子量低的LDPE(分子量1,000~20,000,以5,000~12,000为最佳)共混可使其成型加工性获得显著改善,但同时会使拉伸强度、挠曲弹性等力学性能有所下降。HDPE也能显著改善UHMWPE的加工流动性,但也会引起冲击强度、耐摩擦等性能的下降。为使UHMWPE共混体系的力学性能维持在一较高水平,一个有效的补偿办法是加入PE成核剂,如苯甲酸、苯甲酸盐、硬脂酸盐、己二酸盐等,可以借PE结晶度的提高,球晶尺寸的微细均化而起到强化作用,从而有效阻止机械性能的下降。有专利〔15〕指出,在UHMWPE/HDPE共混体系中加入很少量的细小的成核剂硅灰石(其粒径尺寸范围5nm~50nm,表面积100m2/g~400m2/g),可很好地补偿机械性能的降低。(2)共混形态UHMWPE的化学结构虽然与其它品种的PE相近,但在一般的熔混设备和条件下,它们的共混物都难以形成均匀的形态,这可能与组份之间粘度相差悬殊有关。采用普通单螺杆混炼得到的UHMWPE/LDPE共混物,两组份各自结晶,不能形成共晶,UHMWPE基本上以填料形式分散于LDPE基体中。熔体长时间处理和使用双辊炼塑机混炼,两组份之间作用有所加强,性能亦有进一步的改善,不过仍不能形成共晶的形态。Vadhar发现〔16〕,当采用两步共混法,即先在高温下将UHMWPE熔融,再降到较低温度下加入LLDPE进行共混,可获得形成共晶的共混物。Vadher用溶液共混法也得到了能形成共晶的UHMWPE/LLDPE共混物。(3)共混物的力学强度对于未加成核剂的UHMWPE/PE体系,其在冷却过程中会形成较大的球晶,球晶之间存在着明显的界面,而在这些界面上存在着由分子链排布不同引起的内应力,由此会导致裂纹的产生,所以与基体聚合物相比,共混物的拉伸强度常常有所下降。当受到外力冲击时裂纹会很快地沿球晶界面发展而导致最后的破碎,因此又引起冲击强度的下降。 流动改进剂改性流动改进剂促进了长链分子的解缠,并在大分子之间起润滑作用,改变了大分子链间的能量传递,从而使得链段位移变得容易,改善了聚合物的流动性。用于UHMWPE的流动改进剂主要是指脂肪族碳氢化合物及其衍生物。其中脂肪族碳氢化合物有:碳原子数在22以上的n-链烷烃及以其作主成分的低级烷烃混合物;石油分裂精制得到的石蜡等。其衍生物是指末端含有脂肪族烃基、内部含有1个或1个以上(最好为1个或2个)羧基、羟基、酯基、羰基、氮基甲酰基、巯基等官能团;碳原子数大于8(最好为12~50)并且分子量为130~2000(以200~800为最佳)的脂肪酸、脂肪醇、脂肪酸酯、脂肪醛、脂肪酮、脂肪族酰胺、脂肪硫醇等。举例来说,脂肪酸有:癸酸、月桂酸、肉豆蔻酸、棕榈酸、硬酯酸、油酸等。北京化工大学制备了一种有效的流动剂(MS2)〔17〕,添加少量(~)就能显著改善UHMWPE的流动性,使其熔点下降达10℃之多,能在普通注塑机上注塑成型,而且拉伸强度仅有少许降低。另外,用苯乙烯及其衍生物改性UHMWPE,除可改善加工性能使制品易于挤出外,还可保持UHMWPE优良的耐摩擦性和耐化学腐蚀性〔18〕;1,1-二苯基乙炔〔19〕、苯乙烯衍生物〔20〕、四氢化萘〔21〕皆可使UHMWPE获得优良的加工性能,同时使材料具有较高的冲击强度和耐磨损性。 液晶高分子原位复合材料液晶高分子原位复合材料是指热致液晶高分子(TLCP)与热塑性树脂的共混物,这种共混物在熔融加工过程中,由于TLCP分子结构的刚直性,在力场作用下可自发地沿流动方向取向,产生明显的剪切变稀行为,并在基体树脂中原位就地形成具有取向结构的增强相,即就地成纤,从而起到增强热塑性树脂和改善加工流动性的作用。清华大学赵安赤等采用原位复合技术,对UHMWPE加工性能的改进取得了明显的效果〔22〕。用TLCP对UHMWPE进行改性,不仅提高了加工时的流动性,采用通常的热塑加工工艺及通用设备就能方便地进行加工,而且可保持较高的拉伸强度和冲击强度,耐磨性也有较大提高。 聚合填充型复合材料高分子合成中的聚合填充工艺是一种新型的聚合方法,它是把填料进行处理,使其粒子表面形成活性中心,在聚合过程中让乙烯、丙烯等烯烃类单体在填料粒子表面聚合,形成紧密包裹粒子的树脂,最后得到具有独特性能的复合材料。它除具有掺混型复合材料性能外,还有自己本身的特性:首先是不必熔融聚乙烯树脂,可保持填料的形状,制备粉状或纤维状的复合材料;其次,该复合材料不受填料/树脂组成比的限制,一般可任意设定填料的含量;另外,所得复合材料是均匀的组合物,不受填料比重、形状的限制。与热熔融共混材料相比,由聚合填充工艺制备的UHMWPE复合材料中,填料粒子分散良好,且粒子与聚合物基体的界面结合也较好。这就使得复合材料的拉伸强度、冲击强度与UHMWPE相差不大,却远远好于共混型材料,尤其是在高填充情况下,对比更加明显,复合材料的硬度、弯曲强度,尤其是弯曲模量比纯UHMWPE提高许多,尤其适用作轴承、轴座等受力零部件。而且复合材料的热力学性能也有较好的改善:维卡软化点提高近30℃,热变形温度提高近20℃,线膨胀系数下降20%以上。因此,此材料可用于温度较高的场合,并适于制造轴承、轴套、齿轮等精密度要求高的机械零件。采用聚合填充技术还可通过向聚合体系中通入氢或其它链转移剂,控制UHMWPE分子量大小,使得树脂易加工〔23〕。美国专利〔24〕用具有酸中性表面的填料:水化氧化铝、二氧化硅、水不溶性硅酸盐、碳酸钙、碱式碳酸铝钠、羟基硅灰石和磷酸钙制成了高模量的均相聚合填充UHMWPE复合材料。另有专利〔25〕指出,在60℃,且有催化剂存在的条件下,使UHMWPE在庚烷中干燥的 氧化铝表面聚合,可得到高模量的均相复合材料。齐鲁石化公司研究院分别用硅藻土、高岭土作为填料合成了UHMWPE复合材料〔26〕。 UHMWPE的自增强〔27、28〕在UHMWPE基体中加入UHMWPE纤维,由于基体和纤维具有相同的化学特征,因此化学相容性好,两组份的界面结合力强,从而可获得机械性能优良的复合材料。UHMWPE纤维的加入可使UHMWPE的拉伸强度和模量、冲击强度、耐蠕变性大大提高。与纯 UHMWPE相比,在UHMWPE中加入体积含量为60%的UHMWPE纤维,可使最大应力和模量分别提高160%和60%。这种自增强的UHMWPE材料尤其适用于生物医学上承重的场合,而用于人造关节的整体替换是近年来才倍受关注的,UHMWPE自增强材料的低体积磨损率可提高人造关节的使用寿命。4 UHMWPE的合金化UHMWPE除可与塑料形成合金来改善其加工性能外(见和),还可获得其它性能。其中,以PP/UHMWPE合金最为突出。通常聚合物的增韧是在树脂中引入柔性链段形成复合物(如橡塑共混物),其增韧机理为“多重银纹化机理”。而在PP/UHMWPE体系,UHMWPE对PP有明显的增韧作用,这是“多重裂纹”理论所无法解释的。国内最早于1993年报道采用UHMWPE增韧PP取得成功,当UHMWPE的含量为15%时,共混物的缺口冲击强度比纯PP提高2倍以上〔29〕。最近又有报道,UHMWPE与含乙烯链段的共聚型PP共混,在UHMWPE的含量为25%时,其冲击强度比PP提高一倍多〔30〕。以上现象的解释是“网络增韧机理”〔31〕。PP/UHMWPE共混体系的亚微观相态为双连续相,UHMWPE分子与长链的PP分子共同构成一种共混网络,其余PP构成一个PP网络,二者交织成为一种“线性互穿网络”。其中共混网络在材料中起到骨架作用,为材料提供机械强度,受到外力冲击时,它会发生较大形变以吸收外界能量,起到增韧的作用;形成的网络越完整,密度越大,则增韧效果越好。为了保证“线性互穿网络”结构的形成,必须使UHMWPE以准分子水平分散在PP基体中,这就对共混方式提出了较高的要求。北京化工大学有研究发现:四螺杆挤出机能将UHMWPE均匀地分散在PP基体中,而双螺杆挤出机的共混效果却不佳。EPDM能对PP/UHMWPE合金起到增容的作用。由于EPDM具备的两种主要链节分别与PP和UHMWPE相同,因而与两种材料都有比较好的亲合力,共混时容易分散在两相界面上。EPDM对复合共晶起到插入、分割和细化的作用,这对提高材料的韧性是有益的,能大幅度地提高缺口冲击强度。另外,UHMWPE也可与橡胶形成合金,获得比纯橡胶优良的机械性能,如耐摩擦性、拉伸强度和断裂伸长率等。其中,橡胶是在混合过程中于UHMWPE的软化点以上进行硫化的。5 UHMWPE的复合化UHMWPE可与各种橡胶(或橡塑合金)硫化复合制成改性PE片材,这些片材可进一步与金属板材制成复合材料。除此之外,UHMWPE还可复合在塑料表面以提高耐冲击性能。在UHMWPE软化点以上的温度条件下,将含有硫化剂的未硫化橡胶片材与UHMWPE片材压制在一起,可制得剥离强度较高的层合制品,与不含硫化剂的情况相比,其剥离强度可提高数十倍。用这种方法同样可使未硫化橡胶与塑料的合金(如EPDM/PA6、EPDM/PP、SBR/PE)和UHMWPE片材牢固地粘接在一起。参考文献:〔1〕 钟玉荣,卢鑫华.塑料〔J〕,1991,20(1):30〔2〕 孙大文.塑料加工应用〔J〕,1983(5):1〔3〕 杨年慈.合成纤维工业〔J〕,1991,14(2):48〔4〕 JP 63,161,075〔P〕〔5〕 .〔J〕,1981,27(1):8

浅析塑料摘要:从第一个塑料产品赛璐珞诞生算起,塑料工业迄今已有120年的历史。经历了天然高分子加工阶段, 合成树脂阶段,19世纪70年代聚烯烃塑料系列成为了重中之重,同时出现了多品种高性能的工程塑料,到70年代末塑料工业趋于稳定增长阶段,生产技术更加合理完善,性能优异的材料开始问世。塑料以其优异的性能在人类的生产和生活中发挥了不可估量的作用,推动了整个世界的进步. 关键词:塑料的合成 分类 降解与节能 发展前景正文:20世纪以来,在人类生活的深刻变化中,塑料材料革命发挥了极其重要的作用。特别是近50年,各种塑料由于具有广泛的用途及良好的使用性能在农业,包装,轻工,纺织,建筑,汽车,电子电气乃至航空航天,国防军工等各个领域中,与钢铁,木材,水泥构成现代工业的四大基础材料。进入21世纪,随着信息技术等高新技术的不断渗透,合成树脂即塑料性能进一步改善,应用更加广泛,对国民经济和社会发展以及人民生活水平的提高将产生越来越重要的影响。一、塑料的合成塑料的定义:塑料是以合成或天然高分子化合物维基本成分,附加填料和各种助剂,在一定的条件下塑化成行,最终能保持形状不变的材料。原料:制造塑料的原料是树脂,而单体是构成高分子化合物即合成树脂的基本结构单元。单体的来源经历过从易到难的发展过程:动物,植物,煤,石油和天然气。至今四种单体来源同时存在,石油和天然气是目前各工业国家制造塑料的最重要原料来源。制造: :从单体到塑科制品要经过聚合和加工二大步骤。聚合的方法来说有本体、悬浮、乳掖、镕液聚合法四种。通过一定的温度、压力、催化剂使单体分子活化聚合成大分子,聚合后得到没有一定的形状和强度从而无实用性粉粒状聚合物,通过挤压、注射、压延、砍塑、压制(模压、层压)等各种加工方法变成有实用价值的塑料制品,加工之前必须根据制品的使用要求添加适当的助剂最常见的有增塑剂、稳定剂(热、光稳定剂)、抗氧剂等。 二、塑料的分类塑料的分类体系比较复杂,各种分类方法也有所交叉。以下就结构和使用性质进行简单的分类介绍。按结构分:塑料高分子的结构基本有两种类型。第一种是线型结构,具有这种结构的高分子化合物称为线型高分子化合物。线型高分子制成的是热塑性塑料,加热可熔融可再造,常见的热塑性树脂有:聚乙烯、聚氯乙烯、聚苯乙烯、聚酰胺、聚甲醛、聚碳酸酯、聚苯醚、聚砜、橡胶等。其优点是加工成型简便,具有较高的机械能。缺点是耐热性和刚性较差。第二种是体型结构 ,具有这种结构的高分子化合称为体型高分子化合物,由体型高分子制成的是热固性塑料,因其形成键与键之间的不可逆共价键从而不能再熔融和流动而无法从新塑造。它包括大部分的缩合树脂,热固性树脂的优点是耐热性高,受压不易变形。其缺点是机械性能较差。热固性树脂有酚醛、环氧、氨基、不饱和聚酯以及硅醚树脂等。 按使用特性分:1、通用塑料:一般是指产量大、用途广、成型性好、价格便宜的塑料。如聚乙烯、聚丙烯、酚醛等。2、工程塑料:一般是指能承受一定外力作用,具有良好的机械性能和耐高、低温性能,尺过稳定性较好,可以用作工程结构件的塑料。如聚酰胺、聚砜等。在工程塑料中又将其分为通用工程塑料盒特种工程塑料两大类。三、塑料的应用:国内塑料制品市场未来需求主要集中在包装、建筑、农用、工业交通及电子通讯等几个方面;体育健身器材和医疗器械行业应用将大幅增长;玩具行业有可能转为使用具有环保特性的塑料;ABS树脂在建材管材和管件、医疗器械和合金共混物等的应用上也有良好前景。工程塑料仍将是增长最快的领域。工程塑料是电子信息、交通运输、航空航天、机械制造业的上游产业,在国民经济中占据着重要的地位,其发展不仅对国家支柱产业和现代高新技术产业起着支撑的作用,同时也推动传统产业改造和产品结构的调整。近年来,随着我国制造业的快速发展,工程塑料的应用领域日趋广。评价:由其具有强烈抗腐蚀能力,重量轻且坚固,加工方便又高效,原料广而廉还可以用于制备燃料油盒燃料气从而降低的原油的消耗,用途广泛立于材料之林,但是塑料也有不足之处,这是创造一系列改性品种的动力,总起来说塑料尺寸不稳定,容易老化,可燃,必须加各种不同助剂来改善。某些塑料制品有毒性,普通塑料具有抗氧化,难腐蚀,难降解使回收利用废弃塑料时十分困难,生态环境危害极大。此外塑料是由石油炼制的产品制成的,而石油资源是有限的。 随着人类文明的进步,人们开始重视自然环境以及人类的可持续发展,这凸显了废旧塑料所带来的环境问题,白色污染”成为了一个全球性问题,而且由于石油等资源的有限性,人们开始注重资源更加有效的利用。这些都为塑料的发展即带来了挑战也带来了机遇,随着可降解塑料和废旧塑料的回收利用技术的研发,在逐渐减少对生态环境的危害的同时,塑料在材料生产与应用中,目前和将来的能耗、材料成本以及材料使用中的节能优势使其有了更大的发展空间。 四、发展方向:将来最主要的是充分利用具有多种性能和加工工艺优越性的现有材料。增强其在较高温度下使用保持较高强度,降低塑料强度和变形性能的时间和温度的依赖关系,加强研究塑料的燃烧特性,在老化影响因素下使塑料稳定。白色污染主要是由废旧塑料高分子的难降解性以及添加剂的毒害性引起的,目前,世界各国都在大力投入可降解塑料的研发和废旧塑料的回收利用技术的研发。在积极开发塑料回收利用技术的同时,研究开发生物降解塑料成为当今的研究热点。而且为了适应市场需求和高科技发展的需要,开发高性能,功能性材料也将成为热点。塑料的降解和节能1可降解塑料制品研究现状一般来说,塑料除了热降解外,在自然环境中的光降解和生物降解都比较慢。用C14同位素跟踪考察塑料在土壤中的降解,结果表明,塑料的降解速度随着环境条件的不同而有所差异,但通常都需要200~400年 为了解决这一问题,世界各国投入了大量的研发力量来开发和应用可降解塑料。可降解塑料是指一类其制品的各项性能可满足使用要求,在保存期内性能不变,而使用后在自然环境条件下能降解成对环境无害的物质的塑料,从而对环境进行保护 塑料的降解主要是高分子化学键断裂所引起的,其降解的方式和程度与环境条件有关。其主要降解方式有:水解降解、氧化降解、微生物降解和机械降解。但从实际应用的角度,一般是运用光降解、光-生物双降解和生物降解等方式 2节能:在用塑料等合成材料同样可以制造出与传统材料效用相同或相近的制品上替代使用,以求节省材料生产、加工能耗;在使用等合成材料后可以让用能过程或设备节约能源。 实例:据估算,美国1978年使用了150,000吨塑料用于创造冰箱和冶藏箱的部分绝热作用的部件,节约了60%重量的金属或玻璃。不用塑料而用玻璃或金属则需耗能23万亿英热单位,二用塑料部件耗能万亿英热单位,节约了能量万亿英热单位,相当于120万桶原油。 五、结尾:随着能源危机的时隐时现带来的压力,节能已成为主流话题,而塑料以其在生产及使用中的节能优势将必定获得更大的发展。而且各国对可降解塑料的研发和废旧塑料的回收利用技术的大力支持,白色污染的危害性逐渐减少,绿色塑料的出现指日可待。源于自然,归于自然,塑料的前景无限光明!

随着社会主义现代化建设的不断发展,环境保护作为我国的一项基本国策已越来越受到人们的关心与重视。发达国家曾经走过一条先污染后治理的弯路,并为此付出了高昂的代价。我们作为发展中国家,现代化建设刚刚起步,理应吸取发达国家的经验教训,在进行现代化建设的同时,尽量减少污染,走一条发展与治理同步、以预防为主的环保工作新道路。为此,必须大力普及环境科学知识,提高人们的环境意识。 一、培养学生环境意识的必要性与紧迫性 我国的环境状况并不容乐观。大气污染、水污染等已经给人们的生产、生活带来灾害性影响。曾经风景如画的南京十里秦淮,如今已是垃圾充溢臭气熏天的“龙须沟”,淮河水无法饮用,大运河鱼虾绝迹,九七年的黄河断流,九八年的长江洪水,去年的沙尘暴等等,其后果已是触目惊心。至于城市的酸雨、近海的赤潮、湖水的干涸等,早已不再是新闻。因此,提高全民族的环境保护意识,已经摆上了国民教育的重要议事议程。而中学生正处于世界观与人生观形成的关键时期,环保意识一旦形成,对其一生的社会行为乃至对整个中国的经济发展与环境保护,无疑将产生巨大的影响作用。培养学生的环境保护意识,是一件事关未来、影响深远的大事情。 二、化学教育在培养学生环境意识中的重要地位 化 学 学 科 的特点,决定了化学教育在培养学生环境意识中占有重要地位。它同物理、生物等都是对学生进行环境教育的主要学科。许多污染物的成分、特性、形成过程、对人类生产生活的危害以及如何防治等,都与化学教学内容有着密切的联系。初中、高中化学教学大纲中也明确提出,化学教育应培养学生关心自然、关心社会的情感,对学生进行环境保护意识的教育。 三、化学教育如何培养学生的环境意识 在化学教育中,化学教师应有意识的对学生进行环境教育,概括起来,主要有以下几个途径: 1、在化学课堂教学中,渗透环境教育 在中学化学教材中,包含许多与环境保护有关的内容,例如作为大气污染物中的头两号“杀手”so2和co,在初中课本和高中一年级课本中都做过初步和系统地学习。教师在讲授该节内容时,就应给学生讲清so2、co的产生、特性及对人类的危害,并可根据学生的实际情况,讲解如何避免so2、co的产生及so2、co中毒后如何处理等。并由so2的特性讲解“酸雨”这种污染物的形成及危害。对于大气污染中的另一“杀手”——光化学烟雾,在高中第二册(试验本)教材中也介绍过,教师可结合1942年的美国洛杉矶光化学烟雾事件,给学生讲清其形成过程及危害,从而提高学生对环境污染的重视程度。 2、在化学试验过程中,进行环境教育 化学试验作为化学教学的重要组成部分,同样担负着对学生进行环境教育的重要职责,并且较之课堂教学更具有直观性。一方面,教师可以以环境污染物为试验样品,进行观察分析与研究。例如测定大气飘尘的浓度、测定雨水的ph值、用so2形成硫酸、硝酸的过程等等。另一方面,化学教师在自己做或指导学生做实验时,也可以切身实地的进行环境教育。例如在做有有毒性气体(如so2、co等)放出的试验时,可增加尾气处理装置,以减少有毒气体排放。对实验结束后的试验废液、废物应放入指定地点,这样既可减少污染物污染,也教育学生环境保护要身体力行,从自身做起,只有这样,才能形成良好的环保习惯。 3、在化学课外活动中,加强环境教育 一方面,可以通过化学课外兴趣小组,开展环境保护活动。例如组织学生测定大气污染物浓度、测定附近河、湖水的酸碱度,到附近工厂进行污水排放观察及污水处理参观,利用节假日到野外收集废电池等等,让学生亲身体验环境污染的程度及其危害性,增强环境观念。另一方面,要教育学生在日常生活中,从自身做起,从一点一滴的小事做起,时刻牢记环保使命,充分利用节约能源(如节水、节电、充分燃烧煤气、石油液化气等),合理分类存放生活垃圾(如电池回收、不乱到污水等),不使用污染环境的物品(如含p洗衣粉、喷发胶等),敢于同浪费资源、污染环境的行为作斗争,努力将环境污染降低到最低程度,保护好我们的家园。 总之,利用化学教学培养学生的环境意识,有着其他学科所不具备的优越条件。广大中学教师应充分利用这一优越性,为保护好我们的生活环境,使我国的现代化建设在未

煤气化制甲醇毕业论文

煤的工业分析也称煤的实用分析、近似分析或技术分析,包括煤的外在水分、内在水分、全水分、分析煤样水分、灰分、挥发分、固定碳、全硫和各种硫及发热量等项目。作为校正挥发分、发热量和元素成分碳含量等需用的,碳酸盐中二氧化碳含量也属工业分析范围。一般把煤的水分、灰分、挥发分和固定碳称作煤的半工业分析,如包括硫分和发热量等分析项目,就称作煤的全工业分析。煤的工业分析是煤质分析中最基本的也是最重要的分析项目,因此凡是以煤为原料或燃料的工业部门都需要进行煤的工业分析。煤质分析化验分为两类,一类是测定煤所固有的成分如碳、氢、氧、氮等,称为元素分析,其测定结果是作为对煤进行科学分类的主要依据,在生产上,是计算发热量、热平衡、物料平衡的依据;另一类是在人为规定的条件下,(鹤壁市华诺电子科技有限公司)根据技术需要测定煤经转化生成的物质或呈现的性质如灰分、挥发分等,称作技术分, 根据水分、灰分、挥发分和固定碳含量四项基本测定结果,对煤中有机质、无机质的含量、性质等有了初步了解,并可初步判断煤的种类、加工利用效果及工业用途等。煤的工业分析是煤质分析中最基本的也是最重要的分析项目。

节约、合理利用能源,保护环境气态燃料比液态燃料燃烧充分,液态燃料比固态燃烧充分,把固态变成液态可以燃烧的更充分,减少能源浪费煤燃烧不充分会产生CO,既浪费又有污染,而且煤中含有杂质,比如S燃烧后会产生SO2污染空气

巨野煤田煤质分析及科学利用评价摘要]从工业、元素、工艺性质方面,对巨野煤田煤质进行了详细的分析,根据其煤质特点,进行科学论证,得出巨野煤田是优质动力用煤和炼焦用煤的结论,可以用来制备水煤浆,用于煤气化合成氨、合成甲醇及后续产品,用作焦化原料等。[关键词]煤质分析;煤质特点;科学利用;评价1巨野煤田煤质分析煤的工业分析工业分析是确定煤组成最基本的方法。在指标中,灰分可近似代表煤中的矿物质,挥发分和固定碳可近似代表煤中的有机质。衡量煤灰分性能指标主要有灰分含量、灰分组成、煤灰熔融性(DT、ST、HT和FT)。其中煤灰熔融性是动力用煤和气化用煤的重要性能指标。一般以煤灰软化的温度(即灰熔点ST)作为衡量煤灰熔融性的指标。龙固矿钻孔煤样工业分析结果(表1)变形温度(DT)为煤灰锥体尖端开始弯曲或变圆时的温度;软化温度(ST)为煤灰锥体弯曲至锥尖触及底板变成球形时的温度;半球温度(HT)为灰锥形变至近似半球形,即高约等于底长的一半时的温度;流动温度(FT)为煤灰锥体完全熔化展开成高度< mm薄层时的温度。彭庄矿钻孔煤样工业分析结果(表2)2煤质特点及科学利用评价巨野煤田煤质特点由煤炭科学研究总院《巨野矿区煤质特征及菜加工利用途径评价》可以看出巨野煤田煤质有如下特点:①灰分含量低,属于中、低灰煤层。②挥发分含量高,各煤层原煤的挥发分含量在33%以上,且差异不大,均属于高挥发分煤种。③磷含量特低;硫分含量上低下高。④干燥基低位热值高。各层煤的都比较高,且随原煤灰分的降低而升高。⑤粘结指数、胶质层厚度和焦油产率均较高。⑥碳、氢含量较高。碳含量在~之间,氢含量在~之间,C/H比值<16。⑦灰熔点上高下低。成浆性实验评价2008年1月,华东理工大学对巨野煤田龙固矿(1#)、赵楼矿(2#)和彭庄矿(3#)原煤进行成浆性实验及评价。成浆浓度实验成浆浓度是指剪切速率100 s-1,粘度为1 000 mPa·s,水煤浆能达到的浓度。采用双峰级配制浆,粗颗粒与细颗粒质量比为3∶7;选取腐殖酸盐作为添加剂,用量为煤粉质量的1%。制成一系列浓度的水煤浆,测量其流动性,观察水煤浆的表观粘度随成浆浓度上升的变化规律,结果如表10所示。由表10看出,随着煤浆浓度增大,煤浆表观粘度也明显升高。本实验3种煤样成浆浓度分别为龙固矿66%(wt);赵楼矿67%(wt);彭庄矿68%(wt)。流变性实验水煤浆流变特性是指受外力作用发生流动与变形的特性。良好的流变性和流动性是气化水煤浆的重要指标之一。将实验用煤制成适宜浓度的水煤浆,然后用NXS-4 C型水煤浆粘度计测定其粘度。将水煤浆的表观粘度随剪切变化的规律绘制成曲线,观察水煤浆的流变特性,见表11。从表11可以看出,3种煤制成的水煤浆中,随着剪切速率增大,表观粘度都随之降低,均表现出一定的屈服假塑性。屈服假塑性有利于气化水煤浆的储存、泵送和雾化。实验结论煤粉粗粒度(40~200目)和细颗粒(<200目)质量比为3∶7,腐殖酸盐作为添加剂,添加量为煤粉质量的1%时,龙固矿煤浆浓度为66%(wt)、赵楼矿煤浆浓度为67%(wt)、彭庄矿煤浆浓度为68%(wt),满足加压气流床水煤浆气化技术对水煤浆浓度的要求。原料煤的应用适合于制备水煤浆水煤浆不但是煤替代重油的首选燃料,而且是加压气流床水煤浆气化制备合成气的重要原料。同时它又是一种很有前途的清洁工业燃料。实践上,华东理工大学“巨野煤田原煤成浆性实验评价报告”表明:巨野煤田各矿井原料煤均适合于制备高浓度稳定水煤浆。用于煤气化合成氨、合成甲醇及后续产品巨野煤田原煤属于高发热量的煤种(弹筒热平均值在28~31 MJ/kg之间),该煤有利于降低氧气和能量消耗,并能提高气化产率;因灰熔点较高(>1 300℃),有利于固态排渣。根据鞍钢和武钢分别使用双鸭山和平项山1/3焦煤作高炉喷吹的经验,巨野煤田的1/3焦煤与双鸭山和平顶山1/3焦煤一样成浆性较好,其1/3焦煤洗精煤可以制成水煤浆,作为德士古(Texaco)水煤浆气化炉高炉喷吹用原料。煤气化得到的合成气既可通过变换用于合成氨/尿素,又可经净化脱硫合成甲醇或二甲醚。以甲醇为基础可进一步合成其他约120余种化工产品。另外,还可利用甲醇制备醇醚燃料及合成液体烃燃料等。用作焦化原料焦化用于生产冶金焦、化工焦,其副产焦炉煤气可用于合成甲醇或合成氨,副产煤焦油进行分离和深加工后可得到一系列化工原料及化工产品。由表12看出,巨野煤田大槽煤经过洗选以后,可以供将来的400万t/a焦化厂或者上海宝钢等大型钢铁企业生产I级焦炭时作配煤炼焦使用;灰分≤的8级精煤(2#),也可供华东地区的中小型焦化企业生产2级和3级冶金焦的配煤炼焦使用。此外,该煤也可以单独炼焦,但所生产焦炭的孔隙率偏高,最好进行配煤炼焦。远景目标———煤制油煤直接液化可得到汽油、煤油等多种产品。巨野煤田的大部分煤层均为富油煤,尤其是15煤层平均焦油产率>12%,属高油煤;根据元素分析计算的碳氢比各煤层均<16%;大部分煤层挥发分>35%的气煤和气肥煤通过洗选后的精煤挥发分>37%,而其灰分<10%。因此,巨野煤田的煤炭都是较好的液化用原料煤。煤间接液化可制取液体烃类。煤经气化后,合成气通过F-T合成,可以制取液体烃类,如汽油、柴油、石腊等化工产品及化工原料。3结语综上所述,巨野煤田第三煤层大槽煤属于低灰、低硫、低磷、结焦性好、挥发分高、发热量高的煤炭资源,其中的气煤、1/3焦煤、气肥煤、肥煤、天然焦等是国内紧缺的煤种,它们的洗精煤不仅可作为炼焦用煤、动力用煤,而且是制备水煤浆和高炉喷吹气化的重要原料。因此,菏泽大力发展煤气化合成氨和甲醇并拉长产业链搞深度加工是必然的正确选择。

相关百科