杂志信息网-创作、查重、发刊有保障。

矩阵的应用论文参考文献

发布时间:2024-07-07 16:14:38

矩阵的应用论文参考文献

现代数学基础6:矩阵论/詹兴致

随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:

我觉得《矩阵理论与应用》很不错的,我也看过《矩阵理论与应用》/现代数学基础丛书 编辑推荐本书的宗旨是面向大学数学专业的高年级学生、研究生以及青年学者,针对一些重要的数学领域与研究方向,作较系统的介绍,既注意该领域的基础知识,又反映其新发展,力求深入浅出,简明扼要,注重创新。本书涉及矩阵理论的基本知识、向量与矩阵的范数、矩阵函数、线性矩阵方程、矩阵与多项式的稳定性与惯性理论等,可作为高等院校数学系高年级本科生、研究生,特别是计算数学与应用数学专业的研究生教材,也可供相关工程技术专业的教师、科研人员阅读参考。内容简介本书系统介绍现代矩阵理论与应用的基本内容与预备知识。全书共分8章。主要内容包括:矩阵理论的基本知识,向量与矩阵的范数,矩阵函数,线性矩阵方程,矩阵与多项式的稳定性与惯性理论,矩阵的广义逆,矩阵特征值的定位与扰动,非负矩阵的Perron-Frobenius理论及其推广,以及M-矩阵理论及其在数理经济学的投入一产出模型分析中的应用等。内容丰富、翔实,并配备有大量的练习题。 本书可作为高等院校数学系高年级本科生、研究生,特别是计算数学与应用数学专业的研究生教材,也可供相关工程技术专业的教师、科研人员阅读参考。目录《现代数学基础丛书》序再版序言初版序言第一章 矩阵理论的基本知识 1.1矩阵与线性变换 1.1.1矩阵与行列式,特征值与特征向量 1.1.2线性变换与矩阵表示,相似性与Jordan正规形式 1.2对称矩阵与Hermite矩阵,酉空间上的线性变换 1.2.1正规变换与正规矩阵 1.2.2 Hemlite正定与正半定矩阵 1.2.3幂等变换与幂等矩阵 参考文献第二章 范数 2.1 向量范数 2.1.1定义与例子 2.1.2分析与几何性质 2.2矩阵范数 2.2一广义矩阵范数 2.2.2矩阵范数 2.3关于向量范数与矩阵范数的进一步结果 2.3.1对偶向量范数 2.3.2绝对向量范数及其导出的矩阵范数 2.3.3广义矩阵范数与矩阵范数的补充 参考文献第三章 矩阵函数 3.1简单矩阵的函数 3.1.1定义 3.1.2简单矩阵函数的谱分解及其应用 3.2一般矩阵的函数 3.2.1一般定义与性质 3.2.2一般矩阵函数的谱分解 3.2.3矩阵函数的序列与级数 3.3矩阵函数f(A):f为解析函数情形 3.3.1矩阵值函数的分析运算与矩阵的预解式 3.3.2矩阵函数的积分形式定义与有关性质 3.4对微分方程的应用 3.4.1一阶常系数常微分方程组解的表达式 3.4.2可观测与可控的定常线性系统 参考文献第四章 线性矩阵方程与惯性理论 4.1线性矩阵方程 4.1.1矩阵的张量积 4.1.2矩阵方程的可解条件 4.1.3矩阵方程AX+XB=C 4.2矩阵惯性定理 4.2.1 JIanyHOB稳定性定理与Stein稳定性定理 4.2.2矩阵惯性定理 4.3 Routh—Hurwitz问题与Schu卜Cohn问题 4.3.1多项式对的Bezout矩阵与结式矩阵 4.3.2:Routh—Hurwitz问题与Schur-Cohn问题:复多项式的情形 4.3.3 Routh—Hurwitz问题:实多项式的情形 参考文献第五章 矩阵的广义逆 5.1基于penrose方程的λ-逆 5.1.1基本概念与{1}-逆 5.1.2其他λ-逆 5.1.3在求解线性矩阵方程问题中的应用 5.2方阵的谱广义逆 5.2.1Drazin逆 5.2.2群逆与广义左(右)逆 5.2.3矩阵的广义逆正性与单调性 参考文献第六章 特征值的定位与扰动 6.1矩阵非奇异性定理与排除定理 6.1.1严格对角占优矩阵与Gerschgorin圆盘定理 6.1.2不可约矩阵的情形 6.2对角占优矩阵的推广及其相应的排除定理 6.2.1 Brauer定理与Ostrowski定理 6.2.2 Shemesh定理与Brualdi定理 6.3矩阵特征值的扰动 6.3.1特征值的连续性结果与矩阵的谱变化 6.3.2简单矩阵的特征值扰动 参考文献第七章 非负矩阵理论 7.1 非负不可约矩阵的Perron-Frobenius理论 7.1.1最基本的结果 7.1.2 Perton-Frobenius理论的进一步结果 7.2一般非负矩阵的情形 7.2.1一般非负矩阵Peron-Frobenius理论的古典结果 7.2.2 Perron-Frobenius定理的进一步推广 7.3随机矩阵与双随机矩阵 7.3.1随机矩阵与有限齐次Markov链 7.3.2双随机矩阵 参考文献第八章 M-矩阵 8.1非奇异M_矩阵 8.1.1主子式皆为正实数的实方阵 8.1.2非奇异M一矩阵的若干特性 8.1.3G-函数与非奇异M-矩阵 8.2一般M-矩阵 8.2.1一般M-矩阵的特征 8.2.2带有“性质c”的M-矩阵 8.2.3 M一矩阵与有限齐次Markov链 8.3数理经济学中的投人一产出模型分析 8.3.1引言与开式Leontief模型 8.3.2闭式Leontief模型 参考文献符号表《现代数学基础丛书》出版书目此外你还可以看一下下面的几本书 《矩阵分析》(卷1英文版)/图灵原版数学统计学系列【作 者】:(美)霍恩、约翰逊【出版社】:人民邮电出版社 《基于判断矩阵的决策理论与方法》 姜艳萍著 科学出版社《矩阵分析及其应用》(理工类硕士研究生21世纪高等学校数学系列 《矩阵方法》(高等数学模块化系列教材)

关于【组合数学】的论文 生活中矩阵的应用摘要:矩阵作为一种重要的工具,在生活的方方面面都存在应用。比如科学地选彩票号码,图形的变换处理,控制监控系统都存在了矩阵的痕迹。矩阵在各个领域的应用为我们展示了矩阵的广泛实用性。矩阵实现了对组合的优化,对质量的管理优化,会变得越来越重要。关键词:矩阵 应用 优化 一.矩阵的概念在开始讨论矩阵应用前,先了解一下矩阵及相关的一些概念。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵,这一概念由19世纪英国数学家凯利首先提出。一些矩阵在农业,经济,通信等领域都存在许多特别的应用。二.矩阵的特别的应用 1.矩阵应用在选彩票号码一些彩民由于未了解“旋转矩阵”的作用,都采取旧式的复式投注方式(即完全复式),完完整整地拿去打彩,一些对复式投注进行深入研究的彩民发现进行复式投注浪费了不少成本。据研究者发现约有三分之一号码组合,实际上是不可能中奖或极难中奖的。据说在美国彩票史上,Gail Howard运用一种叫做“旋转矩阵”投注选号法,奇迹般地中出了74个大奖。这种“旋转矩阵”法,是一种基于“旋转矩阵”数学原理构造的选号法,其核心是:以极低的成本实现复式投注的效果。那么如何以极低的成本实现复式投注的最佳效果呢?这是由“旋转矩阵”法优点决定的。实际上,旋转矩阵是教你如何科学地组合号码。与完全复式投注组合号码的方法相比,旋转矩阵有着投入低、中奖保证高的优点。举个例子讲,10个号码的中6保5型的旋转矩阵的含义就是,你选择了10个号码,如果其中包含了6个中奖号码,那么运用该矩阵提供的14注号码,你至少有一注中对5个号码的奖。本矩阵只要投入28元,而相应的复式投注需要投入420元。大家知道,用10个号码,只购买其中的14注,如果你胡乱组合的话,即使这10个号码中包含有6个中奖号码,你也很可能只中得一些小奖。而运用旋转矩阵的话,就可以得到一个对5个号码的奖的最低中奖保证。旋转矩阵是世界上著名的彩票专家、澳大利亚数学家底特罗夫研究的,它可以帮助您锁定喜爱的号码,提高中奖的机会。首先您要先选一些号码,然后,运用某一种旋转矩阵,将你挑选的数字填入相应位置。如果您选择的数字中有一些与开奖号码一样,您将一定会中一定奖级的奖。当然运用这种旋转矩阵,可以最小的成本获得最大的收益,且远远小于复式投注的成本。 (1)旋转矩阵的原理在数学上涉及到的是一种组合设计:覆盖设计。而覆盖设计,填装设计,斯坦纳系,t-设计都是离散数学中的组合优化问题。2.矩阵在透视投影应用三维计算机图形学中另外一种重要的变换是透视投影。与平行投影沿着平行线将物体投影到图像平面上不同,透视投影按照从投影中心这一点发出的直线将物体投影到图像平面。这就意味着距离投影中心越远投影越小,距离越近投影越大。 最简单的透视投影将投影中心作为坐标原点,z = 1 作为图像平面,这样投影变换为 x' = x / z; y' = y / z,用齐次坐标表示为:这个乘法的计算结果是 (xc,yc,zc,wc) = (x,y,z,z)。在进行乘法计算之后,通常齐次元素 wc 并不为 1,所以为了映射回真实平面需要进行齐次除法,即每个元素都除以 wc: 更加复杂的透视投影可以是与旋转、缩放、平移、切变等组合在一起对图像进行变换。比如给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转 这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。3.矩阵在质量问题中的运用 矩阵是从多维问题的事件中,找出成对的因素,排列成矩阵图,然后根据矩阵图来分析问题,确定关键点的方法,它是一种通过多因素综合思考,探索问题的好方法。 在复杂的质量问题中,往往存在许多成对的质量因素.将这些成对因素找出来,分别排列成行和列,其交点就是其相互关联的程度,在此基础上再找出存在的问题及问题的形态,从而找到解决问题的思路。 矩阵图的形式:A为某一个因素群,a1、a2、a3、a4、…是属于A这个因素群的具体因素,将它们排列成行;B为另一个因素群,b1、b2、b3、b4、…为属于B这个因素群的具体因素,将它们排列成列;行和列的交点表示A和B各因素之间的关系。按照交点上行和列因素是否相关联及其关联程度的大小,可以从中得到解决问题的启示。 质量管理中所使用的矩阵图,其成对因素往往是要着重分析的质量问题的两个侧面,如生产过程中出现了不合格品时,着重需要分析不合格的现象和不合格的原因之间的关系,为此,需要把所有缺陷形式和造成这些缺陷的原因都罗列出来,逐一分析具体现象与具体原因之间的关系,这些具体现象和具体原因分别构成矩阵图中的行元素和列元素。 矩阵图法的用途十分广泛.在质量管理中,常用矩阵图法解决以下问题: ①把系列产品的硬件功能和软件功能相对应,从中找出研制新产品或改进老产品的切入点,进行多变量分析、研究从何处入手以及以什么方式收集数据 。②明确应保证产品质量特性及与管理机构或保证部门的关系,使质量保证体制更可靠; ③当生产工序中存在多种不良现象,且它们具有若干个共同的原因时,搞清这些不良现象及其产生原因的相互关系,进而把这些不良现象一举消除。 ④明确产品的质量特性与试验测定仪器、试验测定项目之间的关系,力求强化质量评价体制或使之提高效率;(2)三,对矩阵应用的感悟 上述的矩阵应用说明了矩阵不仅仅是解方程组的工具,而且它是一种有用的工具,不仅仅在数学领域,还在经济,计算机领域等领域。相信在不久的未来,矩阵会变得越来越重要。矩阵的作用会越来越多地让人们发现。在线性代数数学书中,方程组可以转换为矩阵,再通过矩阵来简单,快速地解决问题。在质量管理问题上,它采用矩阵图来找出切入点,了解原因,使质量效率提高。 相信在不久的未来,矩阵对于优化问题的应用会越来越广泛,触及面会越来越多。矩阵是生活变得更简单,方便。参考文献:[1] 《科学通报》蒋昌俊,吴哲辉..,1989. [2] 求解约束矩阵方程及其最佳逼近的迭代法的研究彭亚新.湖南大学,2005.

矩阵的应用研究论文

告诉你拟就会写吗。不如我给你写得了

矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:(1)矩阵在经济生活中的应用‍可“活用”行列式求花费总和最少等类似的问题;可“借用”特征值和特征向量预测若干年后的污染水平等问题。(2)在人口流动问题方面的应用这是矩阵高次幂的应用,比如预测未来的人口数数、人口的发展趋势。(3)矩阵在密码学中的应用可用可逆矩阵及其逆矩阵对需发送的秘密消息加密和译密。(4)矩阵在文献管理中的应用比如现代搜索中往往包括几百万个文件和成千的关键词,但可以利用矩阵和向量的稀疏性,节省计算机的存储空间和搜索时间。

[1]毛纲源. 一类特殊分块矩阵为循环矩阵的循环分块矩阵的几个性质[J]. 应用数学,1995,(3). [2]游兆永,姜宗乾,. 分块矩阵的对角占优性[J]. 西安交通大学学报,1984,(3). [3]曹重光. 体上分块矩阵群逆的某些结果[J]. 黑龙江大学自然科学学报,2001,(3). [4]庄瓦金. 非交换主理想整环上分块矩阵的秩[J]. 数学研究与评论,1994,(2). [5]曹礼廉,李芳芸,柴跃廷. 一种用于MRP的分块矩阵方法[J]. 高技术通讯,1997,(7). [6]逄明贤. 分块矩阵的Cassini型谱包含域[J]. 数学学报,2000,(3). [7]杨月婷. 一类分块矩阵的谱包含域[J]. 数学研究,1998,(4). [8]何承源. R-循环分块矩阵求逆的快速傅里叶算法[J]. 数值计算与计算机应用,2000,(1). [9]马元婧,曹重光. 分块矩阵的群逆[J]. 哈尔滨师范大学自然科学学报,2005,(4). [10]游兆永,黄廷祝. 两类分块矩阵的性质与矩阵正稳定和亚正定判定[J]. 工程数学学报,1995,(2).

矩阵的迹的应用毕业论文

矩阵的迹是指线性代数中矩阵的主对角线上各个元素的总和; 矩阵的迹拥有的性质为:矩阵的迹是所有对角元的和,矩阵的迹也是所有特征值的和,若矩阵有N阶,则矩阵的迹就等于矩阵的特征值的总和,也即矩阵的主对角线元素的总和。

矩阵的迹是指线性代数中矩阵的主对角线上各个元素的总和;矩阵的迹拥有的性质为:矩阵的迹是所有对角元的和,矩阵的迹也是所有特征值的和,若矩阵有N阶,则矩阵的迹就等于矩阵的特征值的总和,也即矩阵的主对角线元素的总和。一、设有N阶矩阵A,那么矩阵A的迹(用tr(A)表示)就等于A的特征值的总和,也即矩阵A的主对角线元素的总和。1.迹是所有对角元的和2.迹是所有特征值的和3.某些时候也利用tr(AB)=tr(BA)来求迹(mA+nB)=m tr(A)+n tr(B)二、奇异值分解(Singular value decomposition )奇异值分解非常有用,对于矩阵A(p*q),存在U(p*p),V(q*q),B(p*q)(由对角阵与增广行或列组成),满足A = U*B*VU和V中分别是A的奇异向量,而B是A的奇异值。AA'的特征向量组成U,特征值组成B'B,A'A的特征向量组成V,特征值(与AA'相同)组成BB'。因此,奇异值分解和特征值问题紧密联系。如果A是复矩阵,B中的奇异值仍然是实数。SVD提供了一些关于A的信息,例如非零奇异值的数目(B的阶数)和A的阶数相同,一旦阶数确定,那么U的前k列构成了A的列向量空间的正交基。三、在数值分析中,由于数值计算误差,测量误差,噪声以及病态矩阵,零奇异值通常显示为很小的数目。将一个矩阵分解为比较简单或者性质比较熟悉的矩阵之组合,方便讨论和计算。由于矩阵的特征值和特征向量在化矩阵为对角形的问题中占有特殊位置, 因此矩阵的特征值分解。尽管矩阵的特征值具有非常好的性质,但是并不是总能正确地表示矩阵的“大小”。矩阵的奇异值和按奇异值分解是矩阵理论和应用中十分重要的内容,已成为多变量反馈控制系统最重要最基本的分析工具之一,奇异值实际上是复数标量绝对值概念的推广, 表示了反馈控制系统的输出/输入增益,能反映控制系统的特性。

我的毕业论文题目是矩阵的乘法及其应用~个人感觉相当简单~我是数学与应用数学专业

两个矩阵相似时会用到 这两个矩阵的迹相等,由此可以确定一些带有有参数的矩阵

分块矩阵的应用论文答辩

分块矩阵的加法运算和乘法运算。将矩阵进行分块操作有很多的好处,特别是在高性能并行计算领域内,矩阵的分块化操作更是有很多益处。1. 分块矩阵加法运算给定矩阵A,B分别如下,矩阵A+B=C,矩阵C如下,分块矩阵的加法运算非常显然,这里就不再多费笔墨了。2. 分块矩阵的乘法运算给定矩阵A,B分别如下,(注意:这里矩阵A,B中的每一个元素都是子矩阵)矩阵A*B=C,矩阵C如下,分块矩阵的乘法运算也比较直观,但是相比于其加法运算而言,乘法运算显然会难一点。3. 分块矩阵运算小结分块矩阵做的是一个非常显然的事情是对矩阵乘法粒度的变大化。更加细一点而言,一般的矩阵乘法每一次对矩阵中的一个数进行累积和运算。而分块矩阵面向的操作对象是一个个的子矩阵,显然两者在计算的粒度上有很多的不同。至于子矩阵的粒度的大小,取决于一个线程能够用到的内存的大小和其计算能力,每一个线程能用到的内存越大,能用到的计算能力越大相应地,每一个子线程的运算处理能力就越大,子矩阵的粒度也就可以大一些。反之,则子矩阵粒度小些。最后希望能在本文中有所收获。一、分块矩阵的运算及其应用分块矩阵的基本运算:分块矩阵的运算规则与普通矩阵的运算规则相类似,包括:加法运算、数乘运算、乘法运算、转置运算,其中要特别注意的是乘法运

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

时下最时髦的就是:创新点与别人不一样的地方

分块矩阵是使得矩阵计算更加方便,这在线性代数中有介绍的.能应用于电路计算、机器人程序编制、精细的线性处理等,MATLAB就是仿真处理数据的软件,所以是相匹配的。

对角矩阵的应用毕业论文

这种老掉牙的课题写了干什么?前人已经研究的透彻不能再透彻了。既然写文章,搞研究就要真的做了点实质性的东西出来,否则只是浪费时间。

告诉你拟就会写吗。不如我给你写得了

1,求出一个矩阵的全部互异的特征值a1,a2……

2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化

3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系

4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值

扩展资料:

判断方阵是否可相似对角化的条件:

(1)充要条件:An可相似对角化的充要条件是:An有n个线性无关的特征向量;

(2)充要条件的另一种形式:An可相似对角化的充要条件是:An的k重特征值满足n-r(λE-A)=k

(3)充分条件:如果An的n个特征值两两不同,那么An一定可以相似对角化;

(4)充分条件:如果An是实对称矩阵,那么An一定可以相似对角化。

【注】分析方阵是否可以相似对角化,关键是看线性无关的特征向量的个数,而求特征向量之前,必须先求出特征值。

掌握实对称矩阵的特征值和特征向量的性质

(1)不同特征值的特征向量一定正交

(2)k重特征值一定满足满足n-r(λE-A)=k

【注】由性质(2)可知,实对称矩阵一定可以相似对角化;且有(1)可知,实对称矩阵一定可以正交相似对角化。

会求把对称矩阵正交相似化的正交矩阵

【注】熟练掌握施密特正交化的公式;特别注意的是:只需要对同一个特征值求出的基础解系进行正交化,不同特征值对应的特征向量一定正交(当然除非你计算出错了会发现不正交)。

3、实对称矩阵的特殊考点:

实对称矩阵一定可以相似对角化,利用这个性质可以得到很多结论,比如:

(1)实对称矩阵的秩等于非零特征值的个数

这个结论只对实对称矩阵成立,不要错误地使用。

(2)两个实对称矩阵,如果特征值相同,一定相似,同样地,对于一般矩阵,这个结论也是不成立的。

实对称矩阵在二次型中的应用

使用正交变换把二次型化为标准型使用的方法本质上就是实对称矩阵的正交相似对角化。

1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值

相关百科