杂志信息网-创作、查重、发刊有保障。

目标检测的斜框论文和代码有哪些

发布时间:2024-07-06 13:37:02

目标检测的斜框论文和代码有哪些

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

运动目标的检测的其主要目的是 获取目标对象的运动参数(位置、速度、加速度等)及运动轨迹 ,通过进一步分析处理,实现对目标行为更高层级上的理解。 运动目标检测技术目的是 从序列图像中将变化区域从背景图像中提取出来 ,常用于视频监视、图像压缩、三维重构、异常检测等。

运动目标检测主流方法有帧差法、背景差法、光流法等。光流法源于 仿生学 思想,更贴近于直觉,大量昆虫的视觉机理便是基于光流法。 二十世纪五十年代心理学家Gibson在他的著作“The Perception of Visual World”中首次提出了以心理学实验为基础的光流法基本概念,而直到八十年代才由Horn、Kanade、Lucash和Schunck创造性地将灰度与二维速度场相联系,引入光流约束方程的算法,对光流计算做了奠基性的工作。

光流(optical flow):由于目标对象或者摄像机的移动造成的图像对象在连续两帧图像中的移动。

通俗说,对于一个图片序列,把每张图像每个像素在连续帧之间的运动速度和方向( 某像素点在连续两帧上的位移矢量 )找出来就是光流场。

第t帧的时A点的位置是(x1, y1),第t+1帧时A点位置是(x2,y2),则像素点A的位移矢量:(ux, vy) = (x2, y2) - (x1,y1)

如何知道第t+1帧的时候A点的位置涉及到不同的光流计算方法,主要有四种:基于梯度的方法、基于匹配的方法、基于能量的方法、基于相位的方法。

光流法依赖于三个假设:

根据所形成的光流场中 二维矢量的疏密程度 ,光流法可分为稠密光流与稀疏光流。

稀疏光流只对有 明显特征的组点 (如角点)进行跟踪,计算开销小。

(1)calcOpticalFlowPyrLK 基于金字塔LK光流算法,计算某些点集的稀疏光流。 参考论文《Pyramidal Implementation of the Lucas Kanade Feature TrackerDescription of the algorithm》 (2)calcOpticalFlowFarneback 基于Gunnar Farneback 的算法计算稠密光流。 参考论文《Two-Frame Motion Estimation Based on PolynomialExpansion》 (3)CalcOpticalFlowBM 通过块匹配的方法来计算光流 (4)CalcOpticalFlowHS 基于Horn-Schunck 的算法计算稠密光流。 参考论文《Determining Optical Flow》 (5)calcOpticalFlowSF 论文《SimpleFlow: A Non-iterative, Sublinear Optical FlowAlgo》的实现

有关传统目标检测的论文有哪些

有一个月没更博客了,捂脸 o( ̄= ̄)d

端午回家休息了几天,6月要加油~

回到正文,HOG是很经典的一种图像特征提取方法,尤其是在行人识别领域被应用的很多。虽然文章是2005年发表在CVPR上的,但近十年来还没有被淹没的文章真的是很值得阅读的研究成果了。

key idea: 局部物体的形状和外观可以通过局部梯度或者边缘的密度分布所表示。

主要步骤:

上图为论文中提供的图,个人觉得我在参考资料中列出的那篇 博客 中给出的图可能更好理解一些。

具体细节: 关于每一个过程的详细解释还是在 这篇博客 中已经写得很清楚了,这里就不再搬运了。

文章中数据集的图像大小均为:64*128, block大小为16x16, block stride为8x8,cell size为8x8,bins=9(直方图等级数);

获取到每张图的特征维度后,再用线性SVM训练分类器即可。

下图为作者而给出的示例图:

这两篇博客写的都很好,推荐阅读一波。

对于目标检测方向并不是特别熟悉,本文记录一下RCNN, fast-RCNN, faster-RCNN, mask-RCNN这4篇有关目标检测的论文笔记和学习心得。

R-CNN的意思就是Region based,主要思路就是根据一张图像,提取多个region,再将每个Region输入CNN来进行特征的提取。因此RCNN就可以分为 Region proposals , Feature extraction 两个主要部分,提取的特征就可以输入任意一个分类器来进行分类。 模型的流程图如下:

在训练的时候,首先使用的是已经训练好的CNN网络作为特征提取器,但是由于预训练是在分类数据集上,因此在应用到检测之前要做finetune。也就是说,为了将用ImageNet数据集训练的网络应用到新的任务(检测),新的数据集(region)上,作者将原来的CNN最后的1000类的fc层,更改为了 层, 代表待检测的物体的类别数。然后,对于所有的region,如果它和ground truth的重叠率大于,就认为是正类。 对于分类器的训练,作者发现选择多大的IoU来区分正类和负类非常关键。并且,对于每一类,都会训练一个分类器。

框的回归非常重要,在对每一个region proposal使用分类器进行打分评价之后,作者使用一个回归器来预测一个新的框作为结果。这个回归器使用的特征是从CNN中提取的特征。回归器的训练中,输入是 region proposal 的 和ground truth的 ,目标是学习一种变换,使得region proposal通过该变换能够接近ground truth。同时,希望这种变换拥有尺度不变性,也就是说尺度变化的话,变换不会改变。 如下图所示,每一个regressor会学习一组参数,特征输入是pool 5的特征输出,拟合的目标是 。

Fast-RCNN 主要解决的问题是在RCNN中对于每一个region proposal都进行特征提取,会产生非常多的冗余计算,因此可以先对一张图像进行特征提取,再根据region proposal在相应的特征上进行划分得到对应region的特征(映射关系)。 这样便可以实现共享计算提高速度,但是与SPPnets不同,SPPnets在一副图像得到对应的特征后,从这张图像的特征上proposal对应的部分,采用空间金字塔池化,如下图:

RoI pooling的方法很简单,类似于空间金字塔pooling,它将proposal部分对应卷积层输出的特征(称之为RoI,因为用于做pooling的特征是 region of interest,也就是我们感兴趣的区域)划分成 块,然后对每一块求最大值,最终得到了一个 的特征图。可以看出,它只是空间金字塔pooling的一部分。 但是SPP-nets的空间金字塔也是可以求导的,那么它到底不好在哪里呢?因为当每一个RoI都可能来源于不同的图像的时候(R-CNN和SPPnets的训练策略是从一个batch的不同图像中,分别挑选一个proposal region),SPPNets的训练非常地低效,这种低效来源于在SPPnets的训练中,每个RoI的感受野都非常地大,很可能对应了原图的整个图像,因此,得到的特征也几乎对应了整张图像,所以输入的图像也就很大。 为了提高效率,Fast-RCNN首先选取 个图像,再从每个图像上选择 个RoI,这样的效率就比从每个图像提取一个RoI提高了 倍。

为了将分类和框回归结合起来,作者采用了多任务的loss,来进行联合的训练。具体来说就是将分类的loss和框回归的loss结合起来。网络的设计上非常直接,就是将RoI得到的特征接几个FC层后,分别接不同的输出层。对应于分类部分,特征会接一个softmax输出,用于分类,对于框回归部分,会接一个输出4维特征的输出层,然后分别计算loss,用于反向传播。loss的公式如下:

回归的target可以参考前面的R-CNN部分。

notes

为什么比fast还fast呢?主要原因是在这篇论文中提出了一个新的层:RPN(region proposal networks)用于替代之前的selective search。这个层还可以在GPU上运算来提高速度。 RPN的目的:

为了能够进行region proposal,作者使用了一个小的网络,在基础的卷积层输出的特征上进行滑动,这个网络输入大小为 ,输入后会映射(用 的卷积)为一个固定长度的特征向量,然后接两个并联的fc层(用 的卷积层代替),这两个fc层,一个为box-regressoin,一个为box-classification。如下图:

在每一个滑动窗口(可以参考 ),为了考虑到尽可能多的框的情况,作者设计了anchors来作为region proposal。anchors就是对于每一个滑动窗口的中心位置,在该位置对应的原图位置的基础上,按照不同的尺度,长宽比例框出 个不同的区域。然后根据这些anchors对应的原始图像位置以及区域,和ground truth,就可以给每一个滑动窗口的每一个anchor进行标记,也就是赋予label,满足一定条件标记为正类(比如和ground truth重叠大于一个值),一定条件为负类。对于正类,就可以根据ground truth和该anchor对应的原图的区域之间的变换关系(参考前面的R-CNN的框回归),得到回归器中的目标,用于训练。也就是论文中的loss function部分:

自然地,也就要求RPN的两个并联的FC层一个输出2k个值用于表示这k个anchor对应的区域的正类,负类的概率,另一个输出4k个值,用于表示框回归的变换的预测值。

对于整个网络的训练,作者采用了一种叫做 4-step Alternating Training 的方法。具体可以参考论文。

与之前的检测任务稍有不同,mask r-cnn的任务是做instance segmentation。因此,它需要对每一个像素点进行分类。 与Faster R-CNN不同,Faster R-CNN对每一个候选框产生两个输出,一个是类别,一个是bounding box的offset。Mask R-CNN新增加了一个输出,作为物体的mask。这个mask类似于ps中的蒙版。

与Faster R-CNN类似的是,Mask R-CNN同样采用RPN来进行Region Proposal。但是在之后,对于每一个RoI,mask r-cnn还输出了一个二值化的mask。

不像类别,框回归,输出都可以是一个向量,mask必须保持一定的空间信息。因此,作者采用FCN来从每个RoI中预测一个 的mask。

由于属于像素级别的预测问题,就需要RoI能够在进行特征提取的时候保持住空间信息,至少在像素级别上能够对应起来。因此,传统的取最大值的方法就显得不合适。 RoI Pooling,经历了两个量化的过程: 第一个:从roi proposal到feature map的映射过程。 第二个:从feature map划分成7*7的bin,每个bin使用max pooling。

为此,作者使用了RoIAlign。如下图

为了避免上面提到的量化过程

可以参考

作者使用ResNet作为基础的特征提取的网络。 对于预测类别,回归框,mask的网络使用如下图结构:

整体看完这几篇大佬的论文,虽说没有弄清楚每一个实现细节,但是大体上了解了算法的思路。可以看出,出发点都源于深度神经网络在特征提取上的卓越能力,因此一众大神试图将这种能力应用在检测问题中。从R-CNN中简单地用于特征提取,到为了提高速度减少计算的Fast R-CNN,再到为了将region proposal集成进入整个模型中,并且利用GPU加速的RPN,也就是Faster R-CNN。再到为了应用于instance segmentation任务中,设计的RoIAlign和mask。包括bounding box regression,pooling层的设计,训练方法的选择,loss的设计等等细节,无一不体现了大师们的思考和创造力。 可能在我们这些“拿来”者的眼中,这些方法都显得“理所应当”和巧妙,好用,但是,它们背后隐藏的选择和这些选择的思考却更值得我们学习。 以及,对待每一个问题,如何设计出合理的解决方案,以及方案的效率,通用性,更是应该我们努力的方向。

目标检测论文代码实现

原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图像识别基准上取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测了图像中每个对象类别的单个边界框和置信度得分。这样的模型捕获了围绕对象的整幅图像上下文,但如果不天真地复制每个实例的输出数量,就无法处理图像中同一对象的多个实例。在这篇论文中提出了一个显著性启发的神经网络检测模型,它预测了一组与类无关的边界框,每个框有一个分数,对应于它包含任何感兴趣的对象的可能性。该模型自然地为每个类处理数量可变的实例,并允许在网络的最高级别上进行跨类泛化。 目标检测是计算机视觉的基本任务之一。一个解决这个问题的通用范例是训练在子图像上操作的对象检测器,并在所有的场所和尺度上以详尽的方式应用这些检测器。这一范例被成功地应用于经过区别训练的可变形零件模型(DPM)中,以实现检测任务的最新结果。对所有可能位置和尺度的穷举搜索带来了计算上的挑战。随着类数量的增加,这个挑战变得更加困难,因为大多数方法都训练每个类单独的检测器。为了解决这个问题,人们提出了多种方法,从检测器级联到使用分割提出少量的对象假设。 关于对象检测的文献非常多,在本节中,我们将重点讨论利用类不可知思想和解决可伸缩性的方法。 许多提出的检测方法都是基于基于部件的模型,最近由于有区别学习和精心设计的特征,已经取得了令人印象深刻的性能。然而,这些方法依赖于在多个尺度上详尽地应用零件模板,这是非常昂贵的。此外,它们在类的数量上是可伸缩的,这对像ImageNet这样的现代数据集来说是一个挑战。 为了解决前一个问题,Lampert等人使用分支绑定策略来避免计算所有可能的对象位置。为了解决后一个问题,Song et al.使用了一个低维部件基,在所有对象类中共享。基于哈希算法的零件检测也取得了良好的结果。 另一种不同的工作,与我们的工作更接近,是基于对象可以本地化的想法,而不必知道它们的类。其中一些方法建立在自底向上无阶级分割[9]的基础上。通过这种方式得到的片段可以使用自上而下的反馈进行评分。基于同样的动机,Alexe等人使用一种廉价的分类器对对象假设是否为对象进行评分,并以这种方式减少了后续检测步骤的位置数量。这些方法可以被认为是多层模型,分割作为第一层,分割分类作为后续层。尽管它们编码了已证明的感知原理,但我们将表明,有更深入的模型,充分学习可以导致更好的结果。 最后,我们利用了DeepLearning的最新进展,最引人注目的是Krizhevsky等人的工作。我们将他们的边界盒回归检测方法扩展到以可扩展的方式处理多个对象的情况。然而,基于dnn的回归已经被Szegedy等人应用到对象掩模中。最后一种方法实现了最先进的检测性能,但由于单个掩模回归的成本,不能扩展到多个类。 我们的目标是通过预测一组表示潜在对象的边界盒来实现一种与类无关的可扩展对象检测。更准确地说,我们使用了深度神经网络(DNN),它输出固定数量的包围盒。此外,它为每个盒子输出一个分数,表示这个盒子包含一个对象的网络信任度。 为了形式化上述思想,我们将i-thobject框及其相关的置信度编码为最后一网层的节点值: Bounding box: 我们将每个框的左上角和右下角坐标编码为四个节点值,可以写成vectorli∈R4。这些坐标是归一化的w. r. t.图像尺寸,以实现图像绝对尺寸的不变性。每个归一化坐标是由最后一层的线性变换产生的。 Confidence: 置信度:包含一个对象的盒子的置信度得分被编码为单个节点valueci∈[0,1]。这个值是通过最后一个隐藏层的线性变换产生的,后面跟着一个sigmoid。 我们可以组合边界盒位置sli,i∈{1,…K}为一个线性层。同样,我们可以将所有置信区间ci,i∈{1,…K}作为一个s型层的输出。这两个输出层都连接到最后一个隐藏层 在推理时,我们的算法生成kbound盒。在我们的实验中,我们使用ek = 100和K= 200。如果需要,我们可以使用置信分数和非最大抑制在推理时获得较少数量的高置信框。这些盒子应该代表对象。因此,它们可以通过后续的分类器进行分类,实现目标检测。由于盒子的数量非常少,我们可以提供强大的分类器。在我们的实验中,我们使用另一个dnn进行分类。 我们训练一个DNN来预测每个训练图像的边界框及其置信度得分,以便得分最高的框与图像的groundtruth对象框很好地匹配。假设对于一个特定的训练例子,对象被标记为boundingboxesgj,j∈{1,…,M}。在实践中,pre- dictionary的数量远远大于groundtruthboxm的数量。因此,我们试图只优化与地面真实最匹配的预测框子集。我们优化他们的位置,以提高他们的匹配度,最大化他们的信心。与此同时,我们将剩余预测的置信度最小化,这被认为不能很好地定位真实对象。为了达到上述目的,我们为每个训练实例制定一个分配问题。Wexij∈{0,1}表示赋值:xij= 1,如果第i个预测被赋值给第j个真对象。这项任务的目标可以表示为 其中,我们使用标准化边界框坐标之间的el2距离来量化边界框之间的不同。此外,我们希望根据分配x优化盒子的可信度。最大化指定预测的置信度可以表示为  最终的损失目标结合了匹配损失和信心损失 受式1的约束。α平衡了不同损失条款的贡献。 对于每个训练例子,我们通过解决一个最佳的赋值x*的预测到真实的盒子 约束执行赋值解决方案。这是二部匹配的一种变体,是一种多项式复杂度匹配。在我们的应用程序中,匹配是非常便宜的——每幅图像中标记的对象的数量少于一打,而且在大多数情况下只有很少的对象被标记。然后,通过反向传播优化网络参数。例如,反向传播算法的一阶导数计算w、r、t、l和c 尽管上述定义的损失在原则上是足够的,但三次修改使其有可能更快地达到更好的准确性。第一个修改是对地面真实位置进行聚类,并找到这样的聚类/质心,我们可以使用这些聚类/质心作为每个预测位置的先验。因此,鼓励学习算法为每个预测位置学习一个残差到一个先验。 第二个修改涉及到在匹配过程中使用这些先验:不是将N个groundtruth位置与K个预测进行匹配,而是在K个先验和groundtruth之间找到最佳匹配。一旦匹配完成,就会像之前一样计算目标的置信度。此外,位置预测损失也不变:对于任何一对匹配的(目标,预测)位置,其损失定义为groundtruth和对应于匹配先验的坐标之间的差值。我们把使用先验匹配称为先验匹配,并假设它促进了预测的多样化。  需要注意的是,尽管我们以一种与类无关的方式定义了我们的方法,但我们可以将它应用于预测特定类的对象盒。要做到这一点,我们只需要在类的边框上训练我们的模型。此外,我们可以预测每个类的kbox。不幸的是,这个模型的参数数量会随着类的数量线性增长。此外,在一个典型的设置中,给定类的对象数量相对较少,这些参数中的大多数会看到很少有相应梯度贡献的训练示例。因此,我们认为我们的两步过程——首先本地化,然后识别——是一个更好的选择,因为它允许使用少量参数利用同一图像中多个对象类型的数据 我们使用的本地化和分类模型的网络架构与[10]使用的网络架构相同。我们使用Adagrad来控制学习速率衰减,128的小批量,以及使用多个相同的网络副本进行并行分布式训练,从而实现更快的收敛。如前所述,我们在定位损失中使用先验——这些是使用训练集上的均值来计算的。我们还使用α = 来平衡局部化和置信度损失。定位器可以输出用于推断的种植区以外的坐标。坐标被映射和截断到最后的图像区域。另外,使用非最大抑制对盒进行修剪,Jaccard相似度阈值为。然后,我们的第二个模型将每个边界框分类为感兴趣的对象或“背景”。为了训练我们的定位器网络,我们从训练集中生成了大约3000万幅图像,并对训练集中的每幅图像应用以下步骤。最后,样品被打乱。为了训练我们的本地化网络,我们通过对训练集中的每一幅图像应用以下步骤,从训练集中生成了大约3000万幅图像。对于每幅图像,我们生成相同数量的平方样本,使样本总数大约为1000万。对于每幅图像,样本被桶状填充,这样,对于0 - 5%、5 - 15%、15 - 50%、50 - 100%范围内的每个比例,都有相同数量的样本,其中被包围框覆盖的比例在给定范围内。训练集和我们大多数超参数的选择是基于过去使用非公开数据集的经验。在下面的实验中,我们没有探索任何非标准数据生成或正则化选项。在所有的实验中,所有的超参数都是通过对训练集。 Pascal Visual Object Classes (VOC)挑战是最常用的对象检测算法基准。它主要由复杂的场景图像组成,其中包含了20种不同的对象类别的边界框。在我们的评估中,我们关注的是2007版VOC,为此发布了一个测试集。我们通过培训VOC 2012展示了结果,其中包含了大约。11000张图片。我们训练了一个100框的定位器和一个基于深度网络的分类器。 我们在一个由1000万作物组成的数据集上训练分类器,该数据集重叠的对象至少为 jaccard重叠相似度。这些作物被标记为20个VOC对象类中的一个。•2000万负作物与任何物体盒最多有个Jaccard相似度。这些作物被贴上特殊的“背景”类标签。体系结构和超参数的选择遵循。 在第一轮中,定位器模型应用于图像中最大-最小中心方形作物。作物的大小调整到网络输入大小is220×220。单次通过这个网络,我们就可以得到上百个候选日期框。在对重叠阈值为的非最大抑制后,保留评分最高的前10个检测项,并通过21路分类器模型分别通过网络进行分类。最终的检测分数是给定盒子的定位分数乘以分类器在作物周围的最大方形区域上评估的分数的乘积。这些分数通过评估,并用于计算精确查全曲线。 首先,我们分析了本地化器在隔离状态下的性能。我们给出了被检测对象的数量,正如Pascal检测标准所定义的那样,与生成的包围框的数量相对比。在图1中,我们展示了使用VOC2012进行训练所获得的结果。此外,我们通过使用图像的最大中心面积(max-center square crop)作为输入以及使用两个尺度(second scale)来给出结果:最大中心面积(max-center crop)的第二个尺度(select3×3windows的大小为图像大小的60%)正如我们所看到的,当使用10个边界框的预算时,我们可以用第一个模型本地化的对象,用第二个模型本地化48%的对象。这显示出比其他报告的结果更好的性能,例如对象度算法达到42%[1]。此外,这个图表显示了在不同分辨率下观察图像的重要性。虽然我们的算法通过使用最大中心作物获得了大量的对象,但当使用更高分辨率的图像作物时,我们获得了额外的提升。进一步,我们用21-way分类器对生成的包围盒进行分类,如上所述。表1列出了VOC 2007的平均精度(APs)。达到的平均AP是,与先进水平相当。注意,我们的运行时间复杂度非常低——我们只使用top10框。示例检测和全精度召回曲线分别如图2和图3所示。值得注意的是,可视化检测是通过仅使用最大中心方形图像裁剪,即使用全图像获得的。然而,我们设法获得了相对较小的对象,例如第二行和第二列的船,以及第三行和第三列的羊。 在本工作中,我们提出了一种新的方法来定位图像中的对象,该方法可以预测多个边界框的时间。该方法使用深度卷积神经网络作为基本特征提取和学习模型。它制定了一个能够利用可变数量的groundtruth位置的多箱定位成本。在“一个类一个箱”方法的情况下,对1000个盒子进行非max-suppression,使用与给定图像中感兴趣的DeepMulti-Box方法相同的准则,并学习在未见图像中预测这些位置。 我们在VOC2007和ILSVRC-2012这两个具有挑战性的基准上给出了结果,在这两个基准上,所提出的方法具有竞争力。此外,该方法能够很好地预测后续分类器将探测到的位置。我们的结果表明,deepmultibox的方法是可扩展的,甚至可以在两个数据集之间泛化,就能够预测感兴趣的定位,甚至对于它没有训练的类别。此外,它能够捕获同一类物体的多种情况,这是旨在更好地理解图像的算法的一个重要特征。 在未来,我们希望能够将定位和识别路径折叠到一个单一的网络中,这样我们就能够在一个通过网络的一次性前馈中提取位置和类标签信息。即使在其当前状态下,双通道过程(本地化网络之后是分类网络)也会产生5-10个网络评估,每个评估的速度大约为1个CPU-sec(现代机器)。重要的是,这个数字并不与要识别的类的数量成线性关系,这使得所提出的方法与类似dpm的方法非常有竞争力。

实验论文检测指标有哪些

1、论文检测包括哪些内容“检测内容”对于论文的检测,那是一定要做的,不过目前市面上有很多的论文检测系统都可以查重,可是对于学校来说,他们只认可权威的知网来查重。所以我们在进行论文修改时就要借助权威的第三方的论文查重工具来完成查重工作。这些工具的算法和知网差不多,会检测论文的目录,可以分章检测。接着就会检测到论文的摘要部分以及正文等内容。2、论文检测包括哪些内容“提前准备”面对论文的主题,大家不要急着下笔,而是在写之前要明确好自己的论点以及依据,设计好论文的结构。然后再根据自己的论文结构或者提纲去找到相应的资料,最后再开始落笔。否则,如果这个操作流程反了,先找资料再想论文的结构,那届时写出来的论文重复率一定非常高,很难降重。3、论文检测包括哪些内容“公式、图片不会检测”相信大家也清楚,在论文进行查重时,对于图片或者公式等内容是不检测的,一是论文查重系统主要针对的是论文的文字内容,二是对于图片或者公式,目前计算机无未能进行比对。而这个所谓的漏洞对于大家来说,可以充分利用。我们对于一些需要引用的文献,可以用表格或者图片的方式来处理,顺利通过检测。而对于查重工具的选择,一定要注意选择靠谱的工具,不要随意挑选那些免费的查重软件,以免因小失大,届时后悔也来不及了。相信说到这里,大家也了解了论文检测包括哪些内容,论文检测使用PaperPass这个查重系统,是高校公认的比较合理的查重工具,严格严谨,很少出现错误,性价比高,旺季做活动也花元一千字的价格,甚至还更低。需要检测论文的毕业生们可以看下。

写完一篇论文后,我们都需要检测论文,但有些人可能不知道在检测论文时会检测哪些部分,所以让paperfree小编谈谈论文检测需要检测哪些内容?1、论文正文:正文部分是论文中最重要的部分,也是查重要求最高的部分,还是论文查重率和查重比重最高的部分,这部分查重率几乎是论文的查重率,这部分必须检测。2、摘要:摘要是论文画龙点睛的部分,也是比较重要的部分,一般只有200-500字左右,但这部分的调查要求也比较严格3、论文主题:一般主题也需要查重,但查重的要求不严格,只要不抄写别人的主题即可4、引言:引言部分也要查重,引言部分一般是吸引读者的部分,查重的要求也不特别严格。5.结论:结论是对一篇论文的总结,也是对自己研究对象的期望和展望。这部分也需要在查重时进行。6.参考文献:这部分也应该与论文一起参与论文的重复检测,但只要参考文献的格式是正确的,这部分就不会有太大的问题。关于其它部分是否需要查重,如目录、感谢、附录等部分,要看自己的学校是如何规定的,只要按照自己学校的规定查重论文,就不会有其他问题。

总相似比百分之三十以下,引用只能百分之二十,用的是知网系统,系统原理如下:

硕士必检测,用的是知网系统,国家规定的。连续相同十一字算重复。

引用之后最后修改一下因为超过百分之直也算相似,比如改下表达方式,知网系统计算标准详细说明:

1.学术不端的各种行为中,文字复制是最为普遍和严重的,目前本检测系统对文字复制的检测已经达到相当高的水平。2.百分比只是描述检测文献中重合文字所占的比例大小程度,并不是指该文献的抄袭严重程度。只能这么说,百分比越大,重合字数越多,存在抄袭的可能性越大。是否属于抄袭及抄袭的严重程度需由专家审查后决定。

3.在技术上,采取了多种手段来最大可能的防止恶意行为,包括一系列严格的身份认证,日志记录等。4.对句子也有相应的处理,有一个句子相似性的算法。并不是句子完全一样才判断为相同。句子有句子级的相似算法,段落有段落级的相似算法,计算一篇文献,一段话是否与其他文献文字相似,是在此基础上综合得出的。5.检测系统不下结论,是不是抄袭最后还有人工审查这一关,所以,专家会有相应判断。

扩展资料:

写毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,使学生得到从事本专业工作和进行相关的基本训练。毕业论文应反映出作者能够准确地掌握所学的专业基础知识,基本学会综合运用所学知识进行科学研究的方法,对所研究的题目有一定的心得体会,论文题目的范围不宜过宽,一般选择本学科某一重要问题的一个侧面。

毕业论文的基本教学要求是:

1、培养学生综合运用、巩固与扩展所学的基础理论和专业知识,培养学生独立分析、解决实际问题能力、培养学生处理数据和信息的能力。

2、培养学生正确的理论联系实际的工作作风,严肃认真的科学态度。

3、培养学生进行社会调查研究;文献资料收集、阅读和整理、使用;提出论点、综合论证、总结写作等基本技能。

毕业论文是毕业生总结性的独立作业,是学生运用在校学习的基本知识和基础理论,去分析、解决一两个实际问题的实践锻炼过程,也是学生在校学习期间学习成果的综合性总结,是整个教学活动中不可缺少的重要环节。撰写毕业论文对于培养学生初步的科学研究能力,提高其综合运用所学知识分析问题、解决问题能力有着重要意义。

毕业论文在进行编写的过程中,需要经过开题报告、论文编写、论文上交评定、论文答辩以及论文评分五个过程,其中开题报告是论文进行的最重要的一个过程,也是论文能否进行的一个重要指标。

毕业论文是学术论文的一种形式,为了进一步探讨和掌握毕业论文的写作规律和特点,需要对毕业论文进行分类。由于毕业论文本身的内容和性质不同,研究领域、对象、方法、表现方式不同,因此,毕业论文就有不同的分类方法。

按内容性质和研究方法的不同可以把毕业论文分为理论性论文、实验性论文、描述性论文和设计性论文。后三种论文主要是理工科大学生可以选择的论文形式,这里不作介绍。文科大学生一般写的是理论性论文。理论性论文具体又可分成两种:

一种是以纯粹的抽象理论为研究对象,研究方法是严密的理论推导和数学运算,有的也涉及实验与观测,用以验证论点的正确性。

另一种是以对客观事物和现象的调查、考察所得观测资料以及有关文献资料数据为研究对象,研究方法是对有关资料进行分析、综合、概括、抽象,通过归纳、演绎、类比,提出某种新的理论和新的见解。

按议论的性质不同可以把毕业论文分为立论文和驳论文。立论性的毕业论文是指从正面阐述论证自己的观点和主张。一篇论文侧重于以立论为主,就属于立论性论文。立论文要求论点鲜明,论据充分,论证严密,以理和事实服人。

驳论性毕业论文是指通过反驳别人的论点来树立自己的论点和主张。如果毕业论文侧重于以驳论为主,批驳某些错误的观点、见解、理论,就属于驳论性毕业论文。驳论文除按立论文对论点、论据、论证的要求以外,还要求针锋相对,据理力争。

按研究问题的大小不同可以把毕业论文分为宏观论文和微观论文。凡届国家全局性、带有普遍性并对局部工作有一定指导意义的论文,称为宏观论文。它研究的面比较宽广,具有较大范围的影响。反之,研究局部性、具体问题的论文,是微观论文。它对具体工作有指导意义,影响的面窄一些。

参考资料:百度百科-毕业论文

为了防止和打击学术不端行为,高校对论文的撰写和检测有一定的要求,这也是我们在撰写论文和检测论文时必须遵守的。那么论文检测要求有哪些?paperfree小编给大家讲解。 1.首先是字数的要求。一般来说,本科毕业论文的字数应该在5000字以上,而硕士毕业论文的字数应该在3万字以上,博士生的要求更严格,论文的字数应该在5万字以上,这是论文检测必须实现的。 2.在论文文档的格式方面,目前大多数论文检测系统在检测论文时都需要word文档。因此,建议您在撰写论文时使用此格式。虽然其他格式可以转换为word格式,但可能会对论文的具体内容产生一定的影响。 3.此外,还涉及论文具体内容的格式,如目录应自动生成、目录一词应单独列出并占用一行;参考文献应设置序列号,不同类型的参考文献应按相关要求列出。 4.为了保证论文检测的可靠性,建议您选择安全可信的论文检测系统。同时,论文检测系统还需要有足够丰富的数据库和先进科学的查重算法,以实现论文内容的准确识别和比较。 5.除上述内容外,论文检测系统对查重字数也有一定限制。如果超过字数,可能需要分段上传。

论文检测有哪些

你好,会检测一下部分:一、论文的主题。别人首先看到的是论文的主题。如果毕业论文是模仿的,就不需要看论文都能得知,所以论文的主题也需要检测。二、论文摘要部分,这是论文的总结,也是论文的终结点。由此可见,论文摘要的重要性,所以这一部分也需要检测。而论文摘要也是论文不可缺少的一部分,因此必须对其进行查重。三、论文的主体部分,这是论文最重要的部分。没有重复是不可能的,一般是论文重复内容比例最大的部分,也是查重率最高的部分,因此学校都会特别关注这部分的查重率。四、阐述毕业论文的结论。这一部分是研究的最后结论,也需要进一步的研究,但总的来说,这一部分基本没有重复问题。五、论文的致谢和参考文献部分,致谢部分需要查重,也有很多同学是自己摘抄的,很容易出现重复率过高的情况,也是我们需要注意的,参考文献部分一般也会一起提交查重,但只要自己的格式正确,这部分的查重率就不会计入最终的查重率。

论文是要进行查重检测的,查重的话是有一个软件可以用,知网可以用万方把你的论文插进去,放进去之后就能够比对他所收录的所有的论文了

首先是毕业论文的主题。别人首先看到的是毕业论文的主题。如果毕业论文是模仿的,就不需要看论文都能得知,所以毕业论文的主题也需要检测。然后是毕业论文摘要部分,这是毕业论文的总结,也是毕业论文的终结点。由此可见,毕业论文摘要的重要性,所以这一部分也需要检测。而毕业论文摘要也是毕业论文不可缺少的一部分,因此必须对其进行查重。然后是论文的主体部分,这是论文最重要的部分。没有重复是不可能的,一般是毕业论文重复内容比例最大的部分,也是查重率最高的部分,因此学校都会特别关注这部分的查重率。然后就到了阐述毕业论文的结论。这一部分是论文研究的最后结论,也需要进一步的研究,但总的来说,这一部分基本没有重复问题。如果我的毕业论文的结论不是所研究课题的结论,就会不对应。最后是毕业论文的致谢和参考文献部分,致谢部分需要查重,也有很多同学是自己摘抄的,很容易出现重复率过高的情况,也是我们需要注意的,参考文献部分一般也会一起提交查重,但只要自己的格式正确,这部分的查重率就不会计入最终的查重率。

1、论文检测包括哪些内容“检测内容”对于论文的检测,那是一定要做的,不过目前市面上有很多的论文检测系统都可以查重,可是对于学校来说,他们只认可权威的知网来查重。所以我们在进行论文修改时就要借助权威的第三方的论文查重工具来完成查重工作。这些工具的算法和知网差不多,会检测论文的目录,可以分章检测。接着就会检测到论文的摘要部分以及正文等内容。2、论文检测包括哪些内容“提前准备”面对论文的主题,大家不要急着下笔,而是在写之前要明确好自己的论点以及依据,设计好论文的结构。然后再根据自己的论文结构或者提纲去找到相应的资料,最后再开始落笔。否则,如果这个操作流程反了,先找资料再想论文的结构,那届时写出来的论文重复率一定非常高,很难降重。3、论文检测包括哪些内容“公式、图片不会检测”相信大家也清楚,在论文进行查重时,对于图片或者公式等内容是不检测的,一是论文查重系统主要针对的是论文的文字内容,二是对于图片或者公式,目前计算机无未能进行比对。而这个所谓的漏洞对于大家来说,可以充分利用。我们对于一些需要引用的文献,可以用表格或者图片的方式来处理,顺利通过检测。而对于查重工具的选择,一定要注意选择靠谱的工具,不要随意挑选那些免费的查重软件,以免因小失大,届时后悔也来不及了。相信说到这里,大家也了解了论文检测包括哪些内容,论文检测使用PaperPass这个查重系统,是高校公认的比较合理的查重工具,严格严谨,很少出现错误,性价比高,旺季做活动也花元一千字的价格,甚至还更低。需要检测论文的毕业生们可以看下。

相关百科