杂志信息网-创作、查重、发刊有保障。

分区表的研究与应用论文

发布时间:2024-07-06 03:27:14

分区表的研究与应用论文

1、sci分区有两种不同的划分标准,分别是JCR分区和中科院分区。分区标准不同,导致同一本期刊,可能属于JCR的一区,属于中科院的二区。所以,在看sci是几区之前,要先确认本单位认可哪个分区标准。 2、sci期刊目录是确定的,相关单位会把这些期刊目录,按照标准,划分所属的分区。分区确定后,不管是采用的哪个划分标准,都会出一个sci期刊分区表。本单位认可JCR分区的,就要筛选JCR分区表,认可中科院分区的,就要筛选中科院分区表。 3、分区表有了,在看sci几区就很简单了。有明确期刊名称的,根据期刊名称进行筛选,关于该期刊的所属分区,一目了然。若是想要筛选几区的期刊,可以通过选择“一区”、“二区”、“三区”、“四区”,来把同一区的期刊筛选出来。作者再根据论文研究方向等条件,缩小目标期刊范围。最终投稿的期刊,所属哪个分区,就属于几区。

分区究竟看基础版还是升级版,看升级版。

什么是分区表?

分区表是以客观数据为基础,运用科学计量学方法对国际、国内学术期刊依据影响力进行等级划分的期刊评价标准,是中国科学院文献情报中心的研究成果。分区表为我国科研、教育机构的管理人员、科研工作者提供了一份评价国际学术期刊影响力的参考数据,得到了全国各地高校、科研机构的广泛认可。

分区表于2004年首次公开发布基础版,2019年推出升级版,同时制定过渡发布方案:2019-2021年同期发布基础版和升级版,便于用户过渡、调整使用。

论文应用研究与基础研究区别

基础研究与应用研究的区别在于基础研究是指揭示规律,探明或建立理论为主要目的的科学研究。应用研究是指以解决实际的科学问题为主要目的的科学研究。

下面来详细分析一下:

一、基础研究

1、基础研究属于纯科学研究或学术探究,注重一般知识、普遍原理原则的建立。

2、基础研究的目的在于认识未知,发现普遍规律,形成和发展教育基本理论。

3、所以,业内普遍认为,当研究目的是为了在最普遍意义上对现象进行更充分的认识或当其目的是为了发现新的科学研究领域,并不考虑其直接的应用场景和应用方法时,即视为基础研究。

二、应用研究

1、应用研究是运用基础研究得出的一般原理、原则,针对某个实际问题,深入考察某一局部领域的特殊规律,即将基础研究具体化,提出较强针对性的应用原理和方法。

2、成果上可以表现为一种改进的工艺和方法、一种新的材料、设备或者产品、软件、硬件等实物研究。

其实基础研究和应用研究的区分并不绝对,只是研究的侧重点不同;

(1)二者对于心理发展的作用是相辅相成的;

(2)基础研究的成果指导着应用研究的进行;

(3)实际需要和应用研究是基础研究的推动力;

(4)应用研究的结果会丰富已有的理论。

区别:

1 基础研究:指为获得关于现象和可观察事实的基本原理及新知识而进行的实验性和理论性工作,它不以任何专门或特定的应用或使用为目的。

2 应用研究:指为获得新知识而进行的创造性的研究,它主要是针对某一特定的实际目的或目标。

3 开发研究是利用应用研究的成果和现在的知识与技术,创造新技术、新方法和新产品,是一种以生产新产品或完成工程技术任务为内容而进行的研究活动

4 基础研究是为了认识现象,获取关于现象和事实的基本原理的知识,而不考虑其直接的应用,应用研究在获得知识的过程中具有特定的应用目的。

拓展资料:

具体目标是:

1.稳步发展数学、物理、化学、天文、地学、生物科学等基础学科,形成更加合理的学科布局,在新兴交叉学科和科学前沿取得重大突破。

2.重点解决农业、能源、资源、环境、健康、信息、材料、海洋、空间等国家重大战略需求的一批关键科学问题。

3.争取在蛋白质科学、量子科学、纳米科学技术、发育与生殖生物学等科学前沿领域实现重大突破,达到国际先进水平。

4.完善和发展国家研究实验基地体系,一些研究基地达到世界一流水平。新建100个左右不同类型的国家重点实验室,稳步推进国家实验室建设;建设160个左右国家野外科学观测研究站,形成国家野外科学观测研究站网络体系。

5.稳定一支10万人左右的基础研究队伍,形成500个高水平研究团队,产生一批具有重要国际影响力的科学家。

6.提高科学数据、自然科技资源、科技文献等的采集、加工、集成、共享、服务的整体水平,形成适应科技创新需要的基础性工作支撑体系。

7.提高科学论文的质量,国际论文篇均引用率达到世界平均水平,取得一批原始性创新成果,获得若干具有重大影响的国际性科技奖励。

8.切实改进基础研究管理体制,优化创新环境,形成鼓励创新、宽容失败、百花齐放、百家争鸣的政策环境和学术氛围。

特点:

——具有特定的实际目的或应用目标,具体表现为:为了确定基础研究成果可能的用途,或是为达到预定的目标探索应采取的新方法(原理性)或新途径。

——在围绕特定目的或目标进行研究的过程中获取新的知识,为解决实际问题提供科学依据。

——研究结果一般只影响科学技术的有限范围,并具有专门的性质,针对具体的领域、问题或情况,其成果形式以科学论文、专著、原理性模型或发明专利为主。一般可以这样说,所谓应用研究,就是将理论发展成为实际运用的形式。

刊物坚持学术性、时代性、创新性、实效性特点。立足中国现实,侧重欠发达地区研究,致力于发表研究改革开放、经济发展和体制转型过程中出现的各种经济问题的具有原创性意义的高水平的理论文章,以推动中国尤其是西部经济的现代化和中国经济学的现代化。力求办成一个兼顾宏观、中观和微观,坚持学术特色,理论充分联系实际,以应用为主的、高品位高信息传递能力的综合性杂志。

参考资料:百度百科-基础科学研究 百度百科-应用研究 百度百科-开发研究

研究目的不同:基础研究是弄清基本的概念基本的方法,应用研究是弄清具体的问题如何为具体对象服务。

基础研究和应用基础研究的区别如下:基础研究是弄清楚生物活性物(如玻尿酸)的物质特征、运动规律等,是know what和know why;应用基础研究是弄清楚活性物如何通过工业技术获取等问题,是know how。华熙生物内部的六大研发平台就是按 “两个研究”的方向来建设的,出来的成果用到功能性护肤品板块中,再进行定向研发。比如基础研究掌握了不同分子量HA的特征和作用机理,通过应用基础研究开发“酶切技术”精准剪切得到不同大小HA,才能促成功能性护肤品中玻尿酸复配技术INFIHA目_了解更多相关信息,推荐咨询华熙生物。

树状分子的研究与应用论文

树状大分子由于其高度支化的结构和独特的单分散性使这类化合物具有特 殊的性质和功能,从而在主客体化学、催化剂、金属纳米材料、纳米复合材料、膜材料、表面活性剂、医学等研究领域都有广泛的用途。英文名dendrimer,中文名称分前缀和主语,前缀有9种之多:树形、树状、树枝形、树枝状、树型、树枝型、树枝、树突、枝状,主语有7种之多:化合物、分子、大分子、高分子、聚合物、聚体、聚合体,排列组合有至少63种名称,如无特别注明,后文中统称为树枝状分子,威海晨源独家生产

树状大分子的特殊结构和性质决定了它在多个领域的广泛应用,主要有以下几个方面:〔1〕催化剂树状大分子内部具有大量大小不一的空腔,而且分子内部和外部具有大量的活性官能团,所以可以在树状大分子内部引人催化剂的活性中心,在空腔内部完成整个催化过程;同时也可以利用端基的活性,将催化剂的活性中心连接在树状大分子的外部。〔2〕膜材料树枝状高分子作为膜材料的研究也不断引起人们的关注。树枝状高分子具有高官能团度、球形对称三维结构以及分子间和分子内不发生链缠结等结构特点,使它们具有粘度低、活性高、可控制的表面基团及化学稳定性,从而可形成具有一定特色的超薄膜。〔3〕纳米材料由于树状分子在尺寸上属于纳米级范围内,再加上独特的结构,特别适合作金属纳米粒子的主体,来合成金属纳米材料,,增大表面积、升高表面活性,从而可以提高其催化活性、吸附能力,可用做石油化工催化剂来取代昂贵的铂族金属。或者作为模板来合成纳米复合材料从而得到光、电等性能良好的材料。〔4〕生物医药枝状高分子内层的空腔和结合点可以包裹药物分子如基因、抗体和疫苗等物质,作为药物定向运输的载体。外层表面高密度可控基团,经过修饰可以改善药物的水溶性和靶向作用,通过扩散作用和降解作用实现对药物分子的控制释放。研究人员现已用其与碳纳米管和脂质体来研究通过靶向肿瘤细胞治疗癌症。此外,它还在液晶、涂层、表面活性剂、分析化学等许多方面以及有着广泛的用途,同时有望在电子、物理、医学、生物技术,材料学科有更深入的渗透,所以树状大分子还是一门十分年轻的学科,有待于更多的研究人员进行更深入更广泛的研究。

光的研究与应用论文

浅议影视拍摄中光线艺术运用论文范文

光线是影视拍摄当中最为重要的一个媒介素材,如果没有光线就没有影像,所以说光线不仅仅是一种拍摄过程所展现的物质条件,更加是一种艺术。下面是我为大家收集的浅议影视拍摄中光线艺术运用,欢迎阅读,希望大家能够喜欢。

摘要: 在中国电影的拍摄过程中,光线的运用是决定影视作品成败的关键因素。同时,合理的运用光线,可以让拍摄的作品具有明显的层次感和逼真的画面色彩,让整部影视作用充满艺术感。所以说,光线是影视作品中最为重要的组成部分,也是作品的灵魂和生命所。因此,本文对影视拍摄中的光线运用艺术进行探讨。

关键词: 影视拍摄;光线运用;艺术

世间万物只有在光的照耀先才能够显示出事物的形状和色彩,也只有在光的照耀下才能够拍摄出具有丰富层次感的图像[1]。所以说,在影视拍摄的过程中,光线的运用不仅仅是把影片中的人物所展现出来,更加是真实的还原人物的质感,比如说老年人脸上的皱纹能够显示的一清二楚以及玻璃光滑的程度近乎透明等。

一、影视拍摄中光线的类型

在目前的影视拍摄中,一般都是分为外景和内景这两种主要的场景进行拍摄。其中,在外景的拍摄过程中运用最多的光线是自然光,而内景的拍摄光线则是运用人工光线,所以说在不同的场景中有不同的光线类型运用。

然而,在影视拍摄的过程,内景的光线运用在很多情况下没有半大达到预期的效果,主要是因为屋内的光线比较暗,人物在拍摄的过程中没有版办法展现最好的状态。所以,在影视拍摄的过程中也会运用一些特殊的光线运用情况,当室内场景中的自然光没有办法达到拍摄的要求,可以利用扔光线进行补充,比如回光等以及聚光灯等工具[1]。除此之外,为了能够分清和探讨影视拍摄中的光线运用艺术,我们可以把光线类型基本上划分以下几种类型。

首先,根据不同的光线运用性质将其可以划分为散射光进而直射光这两种光线,其中散射光主要是来自太阳光的散射所展现的一种光线,而这种光线从某种程度上来说也是经过某些物质发射后所形成。相反,散射光如果不是由太阳光的散射所展现的一种光线,那么就是人工光中的散射光,主要是表现在白炽灯和钨丝灯所产生的散光,常常是用来显示物体的特有色调反差,但是这种光线具有明确的方向性,所以也被称之为柔光[3]。

其次,除了散射光之外还有一种直射光线,这种光线在影视拍摄的过程中被称之为硬光,主要在拍摄的光线中体现人物的立体形态和具体的'轮廓,同时也表现一些具有反差性较大的剧情人物心理变化状况等。因此,在影视拍摄的过程中,我们可以根据影视拍摄的光线要求不同进行拍摄,同时把不同类型的光线分为主光和副光以及背景光等。

二、影视拍摄过程中光线的具体运用艺术

1、控制好光线的运用比例

通过上述的文章,我们知道在影视拍摄的过程中主要使用的光线就是自然光和人工光线,而这两种光线又可以表现为边缘光和反射光。所以,影视拍摄工作者在运用光线拍摄的过程应该要控制好不用的光线比例,以此来达到良好的光线运用效果,让影视作品充满艺术魅力。与此同时,在光线比例的控制中如果没有很好的运用不同的光线进行调和,那么拍摄的结果将会直接影响拍摄的最终效果[4]。另外,光比的调过大将会让一些黑暗的地方光线变强,但是如果调和过大的话会将一些原本的较为明亮的色彩失去原有的色彩层次感。相反,如果将光线比例调适到适中的位置,那么可以让一些比较黑暗的部分能够得到正常光线的照耀,并且可以在影视拍摄过程中能够运用好光线的效果。

2、运用好光线进行室内的外景背景营造

在室内的外景背景的营造中,很多时候除了拍摄道具的搭建和布置,最为主要的就是室内光线的运用。尤其是在一些拍摄场景需要在室内完成,并且还是属于一种较为大型的外景工作背景,这些大型拍摄场景的要求高以及拍摄难度大,所以如果不能合理的运用光线则会导致拍摄失败[5]。所以说,在进行室内的外景拍摄的过程中,影视拍摄者要尽量运用合理的光线营造所需要的拍摄氛围,并且让整部的拍摄作品能够有较好的光线效果。其次,在挑选合适的拍摄角度时,也要很好的运用光线的拍摄效果与之相结合,进而拍摄的过程中能够更好的表现作品的主题。

3、光线运用进行科学和合理的布局

在影视拍摄的过程中,应该要对光线的运用进行合理的布局,促使拍摄的作品具有明显的层次感和逼真的画面色彩,进而充满艺术魅力。其次,我们在日常生活中多多少少都会被光线所照射,所以光线的照射范围是比较广而杂的。所以这就要求拍摄者在影视拍摄的过程中对室内室外的场景进行综合的分析与对总体进行构思,让其拍摄的作品能够发挥理想的艺术效果,进而促使整部作品的成功[6]。另外,在影视拍摄的过程中应该要把不必要的光线尽量的避开,从而影响整部作品的最终效果。从另外一方面来说,影视拍摄者还应该要根据拍摄要求来对光线进行合理的布局,尽可能的让光线能够尽情的发挥主体作用。

三、结语

综上所述,本文对影视拍摄中的光线运用艺术进行探讨。光线在影视拍摄中具有重要的位置,并且光线的运用是决定影视拍摄的原因所在。所以说,在影视拍摄的过程中合理的运用光线是影响整部作品成功的关键。

拓展

风光摄影怎么运用光线

关于测光模式

既然要谈光线,那当然不能漏了相机的测光模式。不同的测光模式,会为同一画面带来不同的测光结果。依测光的区域范围不同,常见有以下三种模式介绍如下。

矩阵测光(权衡测光)

一般最常用的测光模式,会针对画面的平均亮度决定测光值。以风景摄影来说,矩阵测光就可以应付多数拍摄需求。

偏重中央测光

同样以整个画面的亮度作平均测光,不过会加重中央区域测光的权比,因此被摄主体占满中央区域时用此测光模式会更为精准。

重点测光此

模式仅以观景窗约3%左右的区域进行测光,再加上Nikon相机的点测光会与对焦点连动,适合场景或主体以特定部分为焦点进行测光。

摄影的第一大要素,无疑就是光线。光线就有如画画的颜料,画家用颜料在画布作画,摄影师用光线创作影像,不论是以前的底片机,还是现在最先进的数字相机,都要有光线才能拍出照片。没有光线就什么都没有了,因此只要掌握了光线的运用技巧,作品就已经成功了一半!

光线的方向

光线有分自然光和人造光,在风景摄影中讲的当然是自然光,但不论是哪种光线,都会因为它的方向性而带来不同的视觉效果。接下来要介绍的,就是不同方向光线的特性,以及拍摄方式。

顺光

当光从正面直接照射到景物,称之为顺光),虽然这种光线拍起来较平淡,但却是一般人拍照最习惯也是最常用的光线,只要对着亮部做点测光或平均测光即可拍得一张漂亮照片。

侧光

另一种在风景摄影中常碰到也是很棒的光,叫做侧光。它的意思就是光线从景物的侧面照射过来,这使得景物不但有好的明暗对比,而且更有立体感。拍法也很简单,对着亮部做点测光,再将EV值略为调整即可,至于要加多少或减多少得视现场情况而定。

侧逆光

光若是从侧后方照射在景物上则称之为侧逆光,这种光可强调对比及纹理,是拍花最理想的光线,也最有立体感。拍摄的时候,对着亮部做点测光,再将相机EV值略减一格,以避免亮部过曝,但拍风景则对着亮部测光即可拍出理想照片。

逆光

另外一种是光线从景物背后照射过来,称之为逆光,太阳正对着镜头,景物背着光,因此拍起来成剪影。如果要将景物拍出正常的亮度则天空必然过曝而一片死白,拍照时对着天空测光,让天空曝光适度即可。另外一种拍法是阳光透过树叶及树叶间隙,而拍出完全不同的景象,此种拍法最好是用超广角或鱼眼镜头,小光圈由下往上拍,让太阳入镜而拍出太阳光芒。此种拍法,对着亮部树叶测光即可。

活用各种光线

由前述介绍的各种光线可以知道,光线不同所造成的效果也都不同,如何妥善运用则需要多加观察和练习。光线用得好不但能化腐朽为神奇,更能画龙点睛,一只在咸丰草上小小的红边黄小灰蝶,利用光线的特性让主体和周遭环境有很大的明暗反差,小蝶有了光的照射使得整只鲜活了起来,而光线照不到的杂乱背景让它曝光严重不足而隐藏起来,于是花上的小蝶就突显而出!尤其羽翼在逆光下呈半透明,更增添美感!

另外,我们都知道光线照到的景物是亮的,没照到的地方是暗的,同时也会有影子产生,利用这特性可拍出另一种味道的作品,而其产生的就是所谓的光影效果。

红边黄小灰蝶(Nikon D300+105mm Macro。光圈F8, 快门1/250秒, ISO 200, 自动白平衡)

北疆那拉提大草原之中秋夜(Nikon D300+ 。光圈F18, 快门25秒 ISO 400, 自动白平衡)

光分为人造光和自然光。我们之所以能够看到客观世界中斑驳陆离、瞬息万变的景象,是因为眼睛接收物体发射、反射或散射的光。光与人类生活和社会实践有着密切的关系。 严格地说,光是人类眼睛所能观察到的一种辐射。由实验证明光就是电磁辐射,这部分电磁波的波长范围约在红光的微米到紫光的微米之间。波长在微米以上到1000微米左右的电磁波称为“红外线”。在微米以下到微米左右的称“紫外线”。红外线和紫外线不能引起视觉,但可以用光学仪器或摄影方法去量度和探测这种发光物体的存在。所以在光学中光的概念也可以延伸到红外线和紫外线领域,甚至X射线均被认为是光,而可见光的光谱只是电磁光谱中的一部分。光具有波粒二象性,即既可把光看作是一种频率很高的电磁波(1012~1015赫兹),也可把光看成是一个粒子,即光量子,简称光子。光是地球生命的来源之一。光是人类生活的依据。光是人类认识外部世界的工具。光是信息的理想载体或传播媒质。据统计,人类感官收到外部世界的总信息中,至少90%以上通过眼睛…… 光就其本质而言是一种电磁波,覆盖着电磁频谱一个相当宽(从X射线到远红外)的范围,只是波长比普通无线电波更短。人类肉眼所能看到的可见光只是整个电磁波谱的一部分。 当一束光投射到物体上时,会发生反射、折射、干涉以及衍射等现象。 光波,包括红外线,它们的波长比微波更短,频率更高,因此,从电通信中的微波通信向光通信方向发展,是一种自然的也是一种必然的趋势。 普通光:一般情况下,光由许多光子组成,在荧光(普通的太阳光、灯光、烛光等)中,光子与光子之间,毫无关联,即波长不一样、相位不一样,偏振方向不一样、传播方向不一样,就象是一支无组织、无纪律的光子部队,各光子都是散兵游勇,不能做到行动一致。 激光——光学的新天地 激光光束中,所有光子都是相互关联的,即它们的频率(或波长)一致、相位一致、偏振方向一致、传播方向一致。激光就好像是一支纪律严明的光子部队,行动一致,因而有着极强的战斗力。这就是为什么许多事情激光能做,而阳光、灯光、烛光不能做的主要原因。

光通信从一开始就是为传送基于电路交换的信息的,所以客户信号一般是TDM的连续码流,如PDH、SDH等。随着计算机网络,特别是互联网的发展,数据信息的传送量越来越大,客户信号中基于分组交换的分组信号的比例逐步增加。分组信号与连续码流的特点完全不同,它具有随机性、突发性,因此如何传送这一类信号,就成为光通信技术要解决的重点。 另外,传送数据信号的光收发模块及设备系统与传统的传送连续码流的光收发模块及设备系统是有很大区别的。在接入网中,所实现的系统即为ATM-PON、EPON或GPON等。在核心网,实现IP等数据信号在光层(包括在波分复用系统)的直接承载,就是大家熟知的IP over Optical的技术。 由于SDH系统的良好特性及已有的大量资源,可充分利用原有的SDH系统来传送数据信号。起初只考虑了对ATM的承载,后来,通过SDH网络承载的数据信号的类型越来越多,例如FR、ATM、IP、10M-baseT、FE、GE、10GE、DDN、FDDI、Fiber Channel、FICON、ESCON等。 于是,人们提出了许多将IP等信号送进SDH虚容器VC的方法,起初是先将IP或Ethernet装进ATM,然后再映射进SDH传输,即IP/Ethernet over ATM,再over SDH。后来,又把中间过程省去,直接将IP或Ethernet送到SDH,如PPP、LAPS、SDL、GFP等,即IP over SDH、POS或EOS。 不断增加的信道容量 光通信系统能从PDH发展到SDH,从155Mb/s发展到10Gb/s,近来,40GB/s已实现商品化。同时,还正在探讨更大容量的系统,如160Gb/s(单波道)系统已在实验室研制开发成功,正在考虑为其制定标准。此外,利用波分复用等信道复用技术,还可以将系统容量进一步提高。目前32×10Gb/s(即320Gb/s)的DWDM系统已普遍应用,160×10Gb/s(即)的系统也投入了商用,实验室中超过10Tb/s的系统已在多家公司开发出来。光时分复用OTDM、孤子技术等已有很大进展。毫无疑问,这些对于骨干网的传输是非常有利的。 信号超长距离的传输 从宏观来说,对光纤传输的要求当然是传输距离越远越好,所有研究光纤通信技术的机构,都在这方面下了很大工夫。特别是在光纤放大器出现以后,这方面的记录接连不断。不仅每个跨距的长度不断增加,例如,由当初的20km、40km,最多为80km,增加到120km、160km。而且,总的无再生中继距离也在不断增加,如从600km左右增加到3000km、4000km。 从技术的角度看,光纤放大器其在拉曼光纤放大器的出现,为增大无再生中继距离创造了条件。同时,采用有利于长距离传送的线路编码,如RZ或CS-RZ码;采用FEC、EFEC或SFEC等技术提高接收灵敏度;用色散补偿和PMD补偿技术解决光通道代价和选用合适的光纤及光器件等措施,已经可以实现超过STM-64或基于10Gb/s的DWDM系统,4000km无电再生中继器的超长距离传输。 光传输与交换技术的融合 随着对光通信的需求由骨干网逐步向城域网转移,光传输逐渐靠近业务节点。在应用中人们觉得光通信仅仅作为一种传输手段尚未能完全适应城域网的需要。作为业务节点,比较靠近用户,特别对于数据业务的用户,希望光通信既能提供传输功能,又能提供多种业务的接入功能。这样的光通信技术实际上可以看作是传输与交换的融合。目前已广泛使用的基于SDH的多业务传送平台MSTP,就是一个典型的实例。 基于SDH的MSTP是指在SDH的平台上,同时实现TDM、ATM、以太网等业务的接入处理和传送,提供统一网管的多业务节点设备。实际上,有些MSTP设备除了提供上述业务外,还可以提供FR、FDDI、Fiber Channel、FICON、ESCON等众多类型的业务。 除了基于SDH的MSTP之外,还可以有基于WDM的MSTP。实际上是将WDM的每个波道分别用作各个业务的通道,即可以用透传的方式,也可以支持各种业务的接入处理,如在FE、GE等端口中嵌入以太网2层甚至3层交换功能等,使WDM系统不仅仅具有传送能力,而且具有业务提供能力。 进一步在光层网络中,将传输与交换功能相结合的结果,则导出了自动交换光网络ASON的概念。ASON除了原有的光传送平面和管理平面之外,还增加了控制平面,除了能实现原来光传送网的固定型连接(硬连接)外,在信令的控制下,还可以实现交换的连接(软连接)和混合连接。即除了传送功能外,还有交换功能。 互联网发展需求与下一代全光网络发展趋势 近年来,随着互联网的迅猛发展,IP业务呈现爆炸式增长。预测表明,IP将承载包括语音、图像、数据等在内的多种业务,构成未来信息网络的基础;同时以WDM为核心、以智能化光网络(ION)为目标的光传送网进一步将控制信令引入光层,满足未来网络对多粒度信息交换的需求,提高资源利用率和组网应用的灵活性。因此如何构建能够有效支持IP业务的下一代光网络已成为人们广泛关注的热点之一。 对承载业务的光网络而言,下一步面临的主要问题不仅仅是要求超大容量和宽带接入等明显需求,还需要光层能够提供更高的智能性和在光节点上实现光交换,其目的是通过光层和IP层的适配与融合,建立一个经济高效、灵活扩展和支持业务QoS等的光网络,满足IP业务对信息传输与交换系统的要求。 智能化光网络吸取了IP网的智能化特点,在现有的光传送网上增加了一层控制平面,这层控制平面不仅用来为用户建立连接、提供服务和对底层网络进行控制,而且具有高可靠性、可扩展性和高有效性等突出特点,并支持不同的技术方案和不同的业务需求,代表了下一代光网络建设的发展方向。 研究表明,随着IP业务的爆发性增长,电信业和IT业正处于融合与冲突的“洗牌”阶段,新技术呼之欲出。尤其是随着软件控制(“软光”技术)的使用,使得今天的光网络将逐步演进为智能化的光网络,它允许运营者更加有效地自动配置业务和管理业务量,同时还将提供良好的恢复机制,以支持带有不同QoS需求的业务,从而使运营者可以建设并灵活管理的光网络,并开展一些新的应用,包括带宽租赁、波长业务、光层组网、光虚拟专用网(OVPN)等新业务。 综上所述,以高速光传输技术、宽带光接入技术、节点光交换技术、智能光联网技术为核心,并面向IP互联网应用的光波技术已构成了今天的光纤通信研究热点,在未来的一段时间里,人们将继续研究和建设各种先进的光网络,并在验证有关新概念和新方案的同时,对下一代光传送网的关键技术进行更全面、更深入地研究。 从技术发展趋势角度来看,WDM技术将朝着更多的信道数、更高的信道速率和更密的信道间隔的方向发展。从应用角度看,光网络则朝着面向IP互联网、能融入更多业务、能进行灵活的资源配置和生存性更强的方向发展,尤其是为了与近期需求相适应,光通信技术在基本实现了超高速、长距离、大容量的传送功能的基础上,将朝着智能化的传送功能发展。打字不易,如满意,望采纳。

论文策略研究和应用研究的区别

研究目的不同:基础研究是弄清基本的概念基本的方法,应用研究是弄清具体的问题如何为具体对象服务。

本质不同,特点不同。1、本质不同,现状研究:根据实际情况研究,目的在于从现实中找到问题所在,策略研究:为获得新知识而进行的创造性研究,集中于特定的目的或目标。2、特点不同,现实研究:通过根据实地调查研究找到解决现存问题的方法。策略研究:为基础研究的结果确定可能的用途,或探索为达到预定目标应采用的新方法或方法。现状是指当前的状况。

一、指代不同

1、基础研究:指认识自然现象、揭示自然规律,获取新知识、新原理、新方法的研究活动。

2、应用研究:指为获得新知识而进行的创造性的研究,它主要是针对某一特定的实际目的或目标。

二、特点不同

1、基础研究:为了认识现象,获取关于现象和事实的基本原理的知识,而不考虑其直接的应用。

2、应用研究:具有特定的实际目的或应用目标,具体表现为了确定基础研究成果可能的用途,或是为达到预定的目标探索应采取的新方法(原理性)或新途径。

三、准则不同

1、基础研究:没有特定的应用目的或目标主要表现在,在进行研究时对其成果的实际应用前景如何并不很清楚,或者虽然确知其应用前景但并不知道达到应用目标的具体方法和技术途径。

2、应用研究:应用研究在获得知识的过程中具有特定的应用目的。或是发展基础研究成果确定其可能用途,或是为达到具体的、预定的目标确定应采取的新的方法和途径。应用研究虽然也是为了获得科学技术知识

参考资料来源:百度百科-应用研究

参考资料来源:百度百科-基础科学研究

相关百科