杂志信息网-创作、查重、发刊有保障。

旋塞阀毕业论文

发布时间:2024-07-05 07:58:29

旋塞阀毕业论文

对于苯胺,四氢呋喃,丙酮,若大量洒落在地面,将出现什么后果,如何清除,自我防护在酸性或碱性条件下做的反应,如果可能的话,产品后处理的时候,尽量中和一下。否则,产品放久之后可能会分解。 我们这儿用完重氮甲烷后,总会加点酸去破坏剩余的重氮甲烷。有位哥们胆子大直接用浓盐酸(应该用稀的盐酸或醋酸),结果和残余的碱剧烈放热,重氮甲烷的乙醚溶液呀~~~~就这样把他征服 爆炸了还有一位老师就是分液漏斗的塞子上没涂真空脂,一摩擦就把乙醚给烧起来了 好恐怖呀 大家用重氮甲烷时一定要千万注意,第一次最好有个有经验的人在旁指导,不要自己随便做,量也不要太大,亚硝基甲基脲最多25克 别贪多,要是需要量大就分几批去做 夏天用乙醚的时候一定要注意。我今年8月用乙醚萃取,只在分液漏斗里轻摇了一下,正要准备放气,炸了,还好没伤到我。我的产品阿!!! 有一次我做分液萃取,先是用50ml HCl洗涤有机相(含产品),然后再用50ml 5% NaHCO3洗涤产品,结果振摇的时候,塞子被冲开了,产品全部喷出来了。原因是没有放气。大家洗涤产品的时候一定要小心,如果洗涤会生成气体的话,一定要注意放气。就在本周,我们所一天内连续发生两起重大安全事故。某博士生在使用过氧乙酸的时候,没有带防护眼镜,结果过氧乙酸溅到眼睛,致使双眼受伤,肿得到现在还不能睁开,还不知道以后会怎样。另一个博士生在使用三乙基铝的时候,不小心弄到了手上,由于没有带防护手套,出事后也没有立刻用大量清水冲洗,结果左手皮肤严重,需要植皮。 两起事故都有一个共同点:麻痹大意,不按照安全规则操作。如果带了防护眼镜, 手套的话,后果就不会这么严重。而且资料显示,越是博士生,做实验越不谨慎。总抱着侥幸心理,认为不会出事,结果河里面淹死的就是那些会游泳的。 在有机所的五年,耳闻目睹了很多安全事故,深感多一份细心,多一份保障。现将我所知道的实验室里面的潜在危险总结如下:欢迎大家就自己知道的进行补充一、 溶剂处理方面的潜在危险。 A、溶剂无水处理前,一定要预处理 对于低沸点的溶剂,如乙醚,正戊烷等一定要先用干燥剂预先干燥,然后再加入钠丝进行回流,并且加热不能过快过高。因为,一旦溶剂里面的含水量过大,那么生成氢气很剧烈的话,溶剂极易冲出体系,然后遇见明火或正在加热的电阻丝,发生爆炸。这一点在有机所是有先例的,当时的惨状是,爆炸的冲击波从三楼冲到顶楼,把通风装置炸的粉碎。包括对面实验室的整扇窗都被推倒。 对于醚类溶剂,如果生产时间较长,或者久置不用的话,一定不要震动,同时要加入还原剂,除掉生成的过氧化合物。也是一个博士生,在处理久置不用的处理THF的装置的时候,刚一拔磨口活塞,就发生爆炸,满脸血肉模糊。 用钠处理的溶剂和卤代烷溶剂处理装置不能公用一个与大气相连的装置。有些同学为省事或节约空间,把所有溶剂处理装置中保证与大气相通的装置相连,这样做的危险是很可能如果卤代烷,特别是二氯甲烷,加热的时候温度较高,无法冷凝下来,这样,有可能密度较大的卤代烷就会顺着相同的管道,进入用钠丝干燥的溶剂的体系。一旦出现这样的事情,肯定是爆炸。大家知道,卤代烷在金属钠的作用下的偶联反应非常剧烈。 B、 废溶剂的处理,绝对不要发生酸性液体和碱性液体,氧化性液体和还原性液体的混装,这样非常危险。在有机所,废液桶爆炸不是一次两次。对于SOCl2, PCl5, PCl3绝对不能未经处理就放入废液桶,后果也很危险。二、 实验操作方面的潜在危险。 1、 对于加热、生成气体的反应,一定要小心不要成了封闭体系。 2、 应该小心滴加、冷却的反应,一定要严格遵守,不要图省事。 3、 反应前,一定要检查仪器有无裂痕。对于反应体系气压变化大的反应,大家一般都会注意。但是,有些问题就是在你想不到的时候出现。我在一次萃取的时候,量在2升左右,发现分液漏斗有一个裂痕,以为没有问题。结果,在手中刚一摇晃时,就炸开了。20%的KOH溶液喷了我一脸,更可怕的是,溶液顺着桌面进入插座,引起电源短路,然后引发火灾。 4、 对于容易爆炸的反应物,如过氧化合物,叠氮化合物,重氮化合物,无水高人盐,在使用的时候一定要小心,加热小心,量取小心,处理小心。不要因为震动引起爆炸。举三个例子如下: 某副教授在有机所进修时,加压蒸馏一容易分解的化合物,由于加热没有控制好,发生爆炸,场面极其血腥,胸口的洞缝了五十多针! 某研究生,在做关于过氧化合物的实验时,用旋转蒸发仪浓缩含有过氧化合物的溶液,完毕,不是小心地把空气放入,而是一下子就通气,结果由于空气的撞击引发爆炸,甲级甲等残废。我们今天看到的现场的照片是:一截手指头血淋淋地沾在玻璃上。(这也是加压蒸馏通气时为什么要慢慢来的原因) 某工作人员,在做叠氮化合物的实验室,反应都处理好了,他觉得反应容器要处理一下,结果在打开瓶塞的时候,一用力,爆炸。 最后是一句忠告,不清楚的实验,不了解化合物性质的实验,精神状态不好时,一定要当心(2)配体的纯度对于做不对称催化的,以及利用配体来改进某些金属催化反应的化学工作者来说 ,至关重要。但是,不同批次合成的配体,其纯度由于采用原料的不同,或者纯化 时所用的硅胶等材料的性能有所不同,就会导致反应的结果不能重复。如果前后配体的 纯度有差异,或者溶剂等使用的不同,导致反应条件筛选前后不是在可比较的前提下进 行,有可能导致一些好结果的埋没。 我们在发表论文时,详细写清楚试验的操作,试剂的纯化方法,就是为保证别人按照相同的方法处理,可以重复试验结果。因此,我们必须保证自己的实验方法是在同一条件下进行。 我们在实验过程中,确实也发现某些实验数据较难重复,这个问题不少从事不对称研究的小组都曾碰到。分析其原因,可能有以下几点: 1、配体的纯度不符合要求,所以反应的活性和对映选择性与以前的结果不相吻合,特别是分离纯化时用的溶剂和硅胶质量得不到保证,导致按照以前纯化条件得不到符合研究工作的要求纯度的配体;2、反应的操作存在误差:这突出表现在称量这一环节。由于配体和金属盐的量均只有几毫克,静电的干扰在天气干燥的时候尤为突出;3、反应的溶剂多为丙酮,CH3CN和卤代烷等难以检测其含水量的溶剂,不同批次处理的溶剂,可能含水量不同,从而导致反应结果不能重复。 为了保证实验数据的可重复性,我们摸索并建立一套配体纯度检验的方法和标准的反应条件。特别是配体30a在几个反应中展示了优异的性质后,这一要求对于开展其他研究尤为关键。 经过较长时间的实践,我们总结得到以下经验供参考: A、标准反应条件的建立 1、配体合成所用的CH3CN、三乙胺和四氯化碳按照标准方法处理,再经小量反应证明合格后(能合成出配体),保存在活化后的分子筛中供使用。 2、条件实验中所用的溶剂,如果不能通过指示剂显色来确保其无水,则严格按照标准方法处理后,再经活化后的分子筛进一步处理后,蒸出使用;对于已经筛选出的最佳溶剂,每次新处理后,均用标准反应检验,ee值与以前的实验符合后才能使用。 3、称量过程中,尽可能避免静电的干扰。 B、配体纯度方法的建立 1、对于合成的新配体,在用 磁氢谱和碳谱?定初步纯度后,先用于某一反?得到一个关于反应速率和ee值的数据;然后,用不同的展开剂再次纯化配体后并取其最纯的部分,在相同的条件下重复与前相同的反应。如果反应情况(包括速率和ee值)变化不大,表明配体的纯度已经合格;如果反应结果有明显改善,这表明配体纯度有了提高,这需要再次纯化配体,直至反应结果的不同在误差范围内,才表明配体纯度已经合格。 举例如下:对于配体30a, 先用石油醚和丙酮(4:1, v/v)的展开剂经柱层析得到一淡黄色的油状液体,虽然此液体经核磁鉴定,纯度已经很好,但是用囘f 啉配体最常用的模型反应-DA反应(eq 1)一检验, 在以Cu(OTf)2 为Lewis 酸, CH2Cl2为溶剂,-30oC的 反应条件下,却发现反应几乎不进行。再用石油醚和乙酸乙酯(1:1, v/v)的展开剂进一步纯化后,再在相同的条件下一试,反应在一小时内结束,ee值为36%。将配体再次纯化后,重试反应,反应时间和反应的ee值不变。于是认为配体已经很纯,可以用于反应的条件筛选。每次重新合成出来的配体,都在此反应条件下反应。当反应时间和ee值均与上述结果相符,表明配体纯度合格后,才能将配体用于条件反应(3)首先,你从现在起,有时间就泡在实验室,观察你的师兄们是如何操作的,每一个细节都不要放过。仔细想一想,为什么要这样操作,不懂就问,直到你弄清楚了为什么要这样操作。你也可以想清楚原因后,再去和其他师兄交换意见,看看别人的想法。当然,刚进实验室,你肯定要当当下手,多跑跑腿,这样才能和师兄们套近乎,他们也才愿意和你多交流。 其次,进入实验室后,失败是经常的,但是你一定要弄清楚失败的原因。不要在没有弄清楚原因的情况下,盲目再进行相同的实验操作。记住,分析好原因后,再做试验,做一次试验,就要排除一个可能的因素。不要因为怕导师说你反应开得少,就开一大堆试验。这样的结果是让你陷于大量的体力劳动,没有时间思考,总结提高。 在做每一个实验之前,不要查到一篇文献,就马上按照文献方法去试。反复调研文献,看一看,要得到目标产物,有哪些方法,每种方法的优点和缺点是什么,经过反复比较,选择最方便的开始。这不但是提高工作效率的捷径,而且是在培养你的判断能力,也是在积累你的经验和知识。你想,一个实验你就可以积累一系列资料,一个学期下来,你将有多大的收获?这种方法累,但是绝对有效。我相信,只要坚持,毕业的时候,你会脱胎换骨。 对于你所采用方法的文献,实验步骤的每一个细节,要问问什么这么做?如果不这样做,后果是什么?能不能用其他方法代替?参考其他合成相同产物的文献,看看别人的实验步骤又是如何?他们做了什么改动?为什么要这样改动?因为实验是相通的,这些问题你一旦掌握了,坚持一个月的时间,其他问题也就迎刃而解了。 在我的周围,有很多人一直到要博士毕业了,这些问题都没有解决,吾未见其明也。 (4) 关于DMF的无水处理方法引起这么多争议,实在出乎我的意料。不可否认,不同的实验对试剂、溶剂的纯度等各方面的要求不同。不需要严格无水的反应,你去进行严格的无水处理就是浪费时间;反之亦然。我也承认,有时候试剂中的一些微量杂质的存在,往往会使反应有出人意料的结果。在我所知道的范围(上海有机所)内,就有两个这样的例子:李安虎博士(戴立信小组)在首例通过叶立德途径实现的高立体选择性的氮杂环丙烷的反应中,使用的是未处理的国产分析纯CH3CN溶剂。文章在Angew. Chem. Int. Ed上发表后,引起了一位法国科学家的注意,但是他在重复该试验的过程中,发现直接使用商业化的分析纯CH3CN溶剂不能重复反应结果,只有在反应体系添加一定量的水后才能重复试验结果,于是专门撰文指正。我们分析原因,认为是国产试剂的含水量比进口试剂的要高;第二个例子是:袁宇博士在杂DA反应中,发现试验结果不能重复,而且所用的苯甲醛越纯,反应结果越差。从而想到了最初使用的苯甲醛可能有部分被氧化成苯甲酸,进而发现使用酸为添加剂可以大大改善反应的结果(文章发表在Chem. Eur. J)。 但是,这并不意味着我们的试验不需要严格按照标准方法。特别是当我们在进行未知领域的探索时,需要对反应成功(或者失败)的原因进行总结。如果我们反应所使用的试剂或溶剂含有少量的杂质,那我们如何保证试验的可重复性?我们又如何根据实验结果来分析,设计下一步的实验方案,改进试验结果? 按照一套标准的实验方法进行操作,对于新进实验室的同学更为重要。因为失败是新手们的常事,如果我们不能保证我们试验试剂的纯度以及无水要求是否满足等等,那么一旦实验失败了,我们如何寻找原因?到底是操作失误还是其他? 作为一名即将毕业的同学,在几年试验生涯中,深感按照标准方法试验的重要性。 可能是因为我从事的不对称催化对杂质的敏感程度较高,所以我在几年中,曾经花了很 多时间来重复,寻找原因。 我很庆幸我刚进实验室时,接受了一位师姐的忠告,即一切溶剂、试剂严格按照标准方法处理,哪怕他再繁琐。这个方法就是我推荐给大家的书《Purification of Laboratory Chemicals》,Edited by W. L. F. Armarego and D. D. Perrin, 4th Edition,这也是我们上海有机所每个课题组的导师要求学生严格执行的。因为这本书是 不断综合文献中的最新处理方法,和对各种方法的不足之处的最新发现而修订的。 在我的第一篇文章(J. Am. Chem. Soc)发表半年后,有位韩国化学家到我们所交流的时候,专门提到在他们花了半年的时间合成了一个和我合成的一模一样的配体的时候,却非常失望发现我们的文章都已经发表了。我为什么感谢那位师姐?因为我接受她的忠告后,各种溶剂严格处理,所以只花了两个星期就合成了该配体。而事实上,在我文章发表后,还有国内同行不能重复合成该配体,我们课题组的其他同学一开始的时候也不能重复合成,原因无他,他们的溶剂处理都有问题。 有同学提到,他们的处理方法是参照某某文献的,事实上,很多文献的处理方法是不完善的,也在不断变化的。所以才会有专门的丛书来总结。我想进入实验室时间较长的人,都会发现有些文献的结果是很难重复的,仔细研究他们的实验方法,你会发现有些操作是完全没有必要的,有些是错误的,当然也有可能作者有所保留。 提高我们的化学素养,其中之一就在于根据自己的知识,去判断文献的正确与否,而不是盲从。说一个减压蒸馏的问题吧。我在对一个取代的苯乙腈产品进行减压蒸馏时,由于粗品中有一定的NaBr没有能够完全除去,所以在蒸馏的过程中可能是由于NaBr的升华,造成了在进行了一段时间后真空度急剧下降,我当时没有注意到是这个问题。所以,我将近1kg的产品就那样KO了!悲惨! 因此,提请大家在进行减压蒸馏的时候一定要多加小心。最重要的一点是:在减压蒸馏过程中不要离开~!要时刻关注压力的变化,以便采取积极措施! 我做实验总是嫌麻烦,不喜欢戴胶皮手套。因为经常使用浓硝酸和双氧水,已弄到皮肤上就很痛,皮肤不是变白就是变黄。尤其最近关于巨能钙双氧水的报道,我真的好害怕那天也因为双氧水……希望XDJM不要嫌麻烦,一定要爱护自己。 还有在使用高锰酸钾的时候也要注意类似问题。在医院的皮肤外科经常会开一些高锰酸钾作为外用洗涤用药,医学名叫pp粉。由此一个PPMM托男朋友从化学系弄了一点回去洗……结果弄到全部变黄了而且很痛,主要是她把浓度配的太大了。引以为戒啊!!! 用铝镍合金滴加浓碱加氢还原,注意滴加速度一定要慢!因为反应强烈放热,可能会导致暴沸乃至爆炸事故! 另实验中反应烧瓶里添加物料一定不要超过烧瓶溶剂的2/3.有一次我加多了,结果反应过程中加热后物料体积增大的有点厉害,全部溢了出来,我的油浴锅废了..... 除掉反应后剩余的钠需要将钠用无水乙醇处理,以免发生爆炸. 还有一个实验教训,DMF不要用Na进行去水干燥。有一次我们实验室有同事将5升的烧瓶进行这个操作,结果得到一锅“粥”,估计两者发生了反应! 用硫酸镁干燥聚乙二醇,结果会是一锅粥!!! 催化加氢用的催化剂一定要防止着火!!! 不知道大家的搅拌套管安装胶皮的时候有没有出现过失误,我亲眼看见一个同事由于用力过猛被玻璃套管把手扎破,最狠的是一个同事在给冷凝管接皮管时居然把手腕的筋都扎断了,决不是危言耸听,这都时血淋淋的现实! 不知道各位是否经常用高压釜反应,个人觉得这家伙的危险系数比较大,应该时刻注意压力的变化,有一个我做了很久的氨解实验,一直都是好好的,就放松了警惕,结果有一次压力突变到120kg,还好没爆炸,不然我就完了 高压没感觉有什么危险,我们单位的高压釜120kg的是个500l的,没什么问题,说到突变的情况,什么事情都有可能,搞化工8年,大火爆炸目睹的不少于8次 我的同事用玻璃针筒过滤器过滤时玻璃针筒破裂,划破手掌,差点短掉神经。 烘滴液漏斗、分液漏斗的时候,最好取下活塞之后烘,否则,由于膨胀系数不一样,活塞会把漏斗胀破我就烘坏了好几个恒压漏斗,结果浪费了老板很多money.一个1000ml恒压漏斗要40元,心都碎了。化学的危险性特别的大啊,前些天我们实验室楼上一个兄弟做的叠氮化物,那时是夏天,他一直在室温下做,也没什么问题,可是不知道那天怎么了,只是轻轻晃一下就炸的血肉模糊了还幸好他带了护目镜,镜子都碎了,但还好没有伤到眼睛 所以大家作实验一定不要报侥幸心理,一定要错杀一千也不能放过一个啊呵呵千万要小心,还有最不能让我理解的是竟有很多研究生能把没有任何处理的钠扔到垃圾桶里,我对面那组的实验室具我老师将已经发生过两次火了,都是刚着了我们组的老师看到了,帮他们灭了(他们实验室竟没有人)这种低级错误可能是很少有人犯吧。 实验中如果要用酸度计,务必遵守酸度计的使用条件如温度/湿度等 我记得我就在实验中吃了亏,分析结果不对,我从缓冲液—试剂一路找来,最后竟发现只是天气变冷了而已 一定要牢记温度的概念,每一步反应的温度都要准确记录,不要记录笼统性的室温,甚至后处理的温度都要记录。许多技术交到工厂之后,重复不出来,就有可能是温度的原因。 我有一个项目,夏天做的好好的,到了冬天,突然就不行了。后来我改了反应条件和重结晶条件,才搞出来了。吓人啊,100万的项目,如果出问题,偶就只有下课了。 高压反应釜一定要安装防爆片; 易燃爆气体,试漏一定要严格(用‘电子笔’); 用电设备不要自己检修(我们单位就有人差点送命); 有毒的实验环境一定要通风良好,戴防毒用具; 实验室要有良好的实验习惯,严格的操作规程,问责制度 大家在蒸馏或精馏过程中不要忘了开冷凝水,是严重一些不起眼的错误可能导致不可挽回的损失! 我见过有人在做无水乙醇与金属钠反应的实验之后,把残余物随手倒到水槽中,结果没有反应完全的金属钠正好碰到水槽中残余的酸,发生爆炸性的反应,一个火球飞出来,幸好没有伤到人!!! 用CaCl2干燥管之前,务必检查一下干燥管是否是通的。 我就是因为没有检查,好几次回流,温度上去后,干燥管被上升的热空气顶飞,炸裂。 我一个师弟出力高氯酸银的时候,瓶口残留的一点,塞子一磨就爆炸了,还好瓶子里面几克的东西没炸,不然他就飞了 大家使用三氯化铝的时候一定要小心,遇水会强烈反应,甚至爆炸! 做NaH的时候,搅拌不小心,瓶子破了,台面上又有水,一下子就爆炸了,真的是很危险。 用双氧水、间氯过氧苯甲酸等氧化剂的时候,后处理一定要加还原剂处理彻底,然后是非常容易爆炸的。 一次做实验时不小心沾到苯酚,烧掉一层皮,教训啊!当时还用稀NaOH洗来着。另一次忘了关水,结果第二天发水了。 说起来很惭愧,我也经历一个差点出事的实验.我有一次借用别人的悬挂式酒精喷灯时,由于用的时间较长,输酒精的塑料管(应该是橡胶管的)与喷灯的接口处着火,好在酒精不多了,一边在管的一端夹死(不让酒精流出),一边用一块大的湿抹布按灭着火处.尽管事故被及时排除,我仍然被吓出一身冷汗. 做高压反应实验的时候,一定不能够带压操作!在动阀门和螺钉时一定检查放空管是否开启,不然,可能会飞起来的,十分危险! 大家做实验一定要仔细,不可麻痹,有次我做减压蒸馏,没把冷凝系统固定牢,结果哦,溶剂从瓶口喷了出来,呜呜,产品也被喷出去了! 做过贮氢试验的LaNi5粉末不要直接倒到垃圾桶,因为颗粒极细容易氧化燃烧,我们试验室我就见过几回,还好有人在,不然后果不堪设想,最好用湿纸包住。 需要控制PH的时候,一定要用酸度计,不要用试纸,我做过一个实验,两者差了3-4,哈哈,结果可想而知 格式反应需无水四氢呋喃,用金属钠去水。蒸出来后把烧瓶放置了几天,误以为钠已经全反应,就没加醇直接加水进去,开始也没什么异常,过一会,开始冒烟......爆了!幸好只小伤。心有余悸啊! 过氧化钠与水反应,用带火星木条检验。由于平时个人的化学实验素养不怎么样。都是贪多!我取了三药匙的过氧化钠,但是只加入几滴的水,用带火星木条检验,成功。后来好奇新心起作用,我把带火星木条伸到试管底部,结果——爆炸!幸好我取试管的时候取的是硬质大试管。否则小命都没了!原因是:试管底部还有大量的过氧化钠和少量的氧气。把带火星木条伸到试管底部,首先生成二氧化碳,而二氧化碳又与过氧化钠反应生成氧气,带火星木条再与氧气反应生成二氧化碳……这样一下子产生大量气体就爆炸。 所以我们在做实验的时候,一定要严格按照用量去做。 本来是非常简单的中学实验,但是由于用量问题,几乎要了一个大学生的命! 新的砂芯漏斗使用前必须处理好,否则你就等着听响吧! 我来说说把,反应液用酸洗以后,如用NaHCO3中和,应先用水洗,不然分液时产生大量的气体。 在处理干燥剂时一定要小心,不要忙目的通过外观下结论,一定要弄清楚具体是什么,有一次我处理时看见是失效的氧化钙,结果里面有钠,乖乖,差点把小命给赔了。小心,小心,尤其是别人留下的。丙烯酸也挺危险,上次一个师妹用磨口瓶装了半瓶,放在了阳光比较强的地方,爆了,差点毁容。 缓慢升温时切记不要离人,不知毁了我多少实验!分液漏斗分离热液旋塞很容易卡死,上个月我捏碎一只,只得在手上贴上多处创口贴,再奋斗三天! 我也献丑说上几句吧,在做有机合成时,有时候最后季铵化阶段,总是做不成,因为酸碱中和迅速放热,产生泡沫,后来中和初期加入消泡剂,效果良好。 加压过柱时,要注意防止因压力过大淋洗剂冲出来。尤其是添加淋洗剂时 加氢还原是,钯炭或雷尼镍一定要当心,不要放在空气中,我有一次做辛弗林合成时,钯碳用乙醇保护时有部分钯碳露在空气中造成燃烧,爆炸。多亏当时救的及时,否则一吨多的乙醇就在旁边釜中,后果将不堪设想。各位一定要小心 减压蒸馏结束后,最好冷却后去真空。 有个厂就是因为没冷却发生暴炸,我也有次着火。 硝化处理食品样品也要注意,一般用硫酸、硝酸、高氯酸混合酸法消化,消化时一定不要求快,不然处理大量的淀粉类样品时会发生爆炸。 以无水三氯化铝作催化剂进行付-克反应,使用回流水吸收放出的氯化氢.一次,反应完成后进行冷却,温度从80度降到40度,由于没有及时排空,水倒流到物料中,结果物料都冲到天花板上了,好吓人!想起来就害怕.各位要注意产生负压的情况。 最近我做合成实验两个星期了,照着文献上做的,可是文献上在产物后处理上只用了四个字(乙醇沉析)解释就完了,将业产物从ph14以上和NaCl除去,我只好先做上一次试验性的实验了,开始的时候以为只用乙醇就可以了,所以拼命去加乙醇,累死了,浪费了5-6瓶无水乙醇,还是不能把PH值降下来,当然到后来NACL也是不能的了,后来我想了想呀,不是用乙醇沉析吗,沉就是沉下来的意思,用什么析呢,当然是无水乙醇了,那得在溶解在什么溶液当中才能起沉析作用呀?所以我一下想到了,还得不断地加水然后再加乙醇呀,这样才能得到最后的结果呀,对可溶性B-环糊精产物在水中有强溶解性在乙醇中马上会析出来变得很粘,可是再加点乙醇时再搅拌上一会就会不粘了,再搅拌时还会出现一点粘性也没有的颗粒

阀门分球阀和闸刀阀,根据用的地方不一可分普通的和角阀。

导致针式节流阀失效的主要原因有:整体式阀杆的阀芯头硬度不够、存在原始裂纹以及原始裂纹在交变载荷作用下的扩张,外力作用使阀杆头挤裂,最终导致阀杆头部失效;对于镶硬质合金阀芯头结构的阀杆,由于阀芯头与阀杆连接的焊接工艺达不到要求,焊接处易脱落或硬质合金阀芯头脆裂,节流通道易堵死。为此,在分析节流阀阀杆机理的基础上,提出相应的改进措施,研究了新的节流阀阀杆。节流阀阀杆采取整体喷焊后,阀杆寿命提高2.5~3倍,彻底杜绝了阀芯头脱落现象,提高了节流阀节流的可靠性。Impact throttle valve failure caused the main reasons are: the overall first-stem of the valve core hardness enough, and the existence of the original crack crack in the original alternating loads of expansion, forcing the first to stem crowded split, which eventually led valve Failure at the head; Carbide spool set for the first structure of stem, spool valve rod connected to the first and welding technology达不到要求, welding or the easy shedding Carbide spool head of brittle fracture, flow Festival Road easily blocked. Therefore, in the analysis of the mechanism of the throttle valve stem on the basis of the corresponding measures for improving the throttle of a new stem. Throttle valve stem to the overall spray, stem lifespan of to 3 times that of the complete elimination of the spool first shedding phenomenon, improve the reliability of the throttle expenditure.管子(按照配管标准规格制造的) pipe 管子(不按配管标准规格制造的其他用管) tube 钢管 steel pipe 铸铁管 cast iron pipe 衬里管 lined pipe 复合管 clad pipe 碳钢管 carbon steel pipe 合金钢管 alloy steel pipe 不锈钢 stainless steel pipe 奥氏体不锈钢管 austenitic stainless steel pipe 铁合金钢管 ferritic alloy steel pipe 轧制钢管 wrought-steel pipe 锻铁管 wrought-iron pipe 无缝钢管 seamless (SMLS) steel pipe 焊接钢管 welded steel pipe 电阻焊钢管 electric-resistance welded steel pipe 电熔(弧)焊钢板卷管 electric-fusion (arc)-welded steel-plate pipe 螺旋焊接钢管 spiral welded steel pipe 镀锌钢管 galvanized steel pipe 热轧无缝钢管 hot-rolling seamless pipe 冷拔无缝钢管 cold-drawing seamless pipe 水煤气钢管 water-gas steel pipe 塑料管 plastic pipe 玻璃管 glass tube 橡胶管 rubber tube 直管 run pipe; straight pipe 管件 Fitting 弯头 elbow 异径弯头 reducing elbow 带支座弯头 base elbow k半径弯头 long radius elbow 短半径弯头 short radius elbow 长半径180°弯头 long radius return 短半径180°弯头 short radius return 带侧向口的弯头(右向或左向) side outlet elbow (right hand or left hand) 双支管弯头( 形) double branch elbow 三通 tee 异径三通 reducing tee 等径三通 straight tee 带侧向口的三通(右向或左向) side outlet tee (right hand or 1eft hand) 异径三通(分支口为异径) reducing tee (reducing on outlet) 异径三通(一个直通口为异径)reducing tee (reducing on one run) 带支座三通 base tee 异径三通(一个直通口及分支口为异径) reducing tee (reducing on one run and outlet) 异径三通(两个直通口为异径,双头式) reducing tee (reducing on both runs, bull head) 45°斜三通 45° lateral 45°斜三通(支管为异径) 45° lateral (reducing on branch) 45°斜三通(一个直通口为异径) 45° lateral (reducing on one run) 45°斜三通(一个直通口及支管为异径) 45° lateral (reducing on one run and branch) Y型三通(俗称裤衩) true “Y” 四通 cross 等径四通 straight cross 异径四通 reducing cross 异径四通(一个分支口为异径)reducing cross (reducing on one outlet) 异径四通(一个直通口及分支口为异径) reducing cross (reducing on one run and outlet) 异径四通(两个分支口为异径) reducing cross (reducing on both outlet) 异径四通(一个直通口及两个分支口为异径) reducing cross (reducing on one run and both outlet) 异径管 reducer 同心异径管 concentric reducer 偏心异径管 eccentric reducer 锻制异径管 reducing swage 螺纹支管台 threadolet 焊接支管台 weldolet 承插支管台 sockolet 弯头支管台 elbolet 斜接支管台 latrolet 镶入式支管嘴 sweepolet 短管支管台 nipolet 支管台,插入式支管台 boss 管接头 coupling, full coupling 半管接头 half coupling 异径管接头 reducing coupling 活接头 union 内外螺纹缩接(俗称补芯) bushing 管帽 cap (C) 堵头 plug 短节 nipple 异径短节 reducing nipple; swage nipple 弯管 Bend 预制弯管 fabricated pipe bend 跨越弯管(^ 形) cross-over bend 偏置弯管(~ 形) offset bend 90°弯管 quarter bend 环形弯管 cirele bend 单侧偏置90°弯管(? 形) single offset quarter bend S形弯管 “S” bend 单侧偏置U形膨胀弯管(| ?形) single offset “U” bend U形弯管 “U” bend 双偏置U膨胀弯管 double offset expansion “U” bend 斜接弯管 mitre bend 三节斜接弯管 3-piece mitre bend 折皱弯管 corrugated bend 圆度 roundness 法兰 Flange (FLG) 整体管法兰 integral pipe flange 钢管法兰 steel pipe flange 螺纹法兰 threaded flange 滑套法兰(包括平焊法兰) slip-on flange (SO); slip-on welding flange 承插焊法兰 socket welding flange 松套法兰 lap joint flange (LJF) 对焊法兰 welding neckflange (WNF) 法兰盖 blind flange, blind 孔板法兰 orifice flange 异径法兰 reducing flange 盘座式法兰 pad type flange 松套带颈法兰 loose hubbed flange 焊接板式法兰 welding plate flange 对焊环 welding neck collar (与stub end相似) 平焊环 welding-on collar 突缘短节 stub end, lap 翻边端 lapped pipe end 松套板式法兰 loose plate flange 压力级 pressure rating, pressure rating class 压力—温度等级 pressure-temperature rating 法兰密封面,法兰面 flange facing 突面 raised face (RF) 凸面 male face (MF) 凹面 female face (FMF) 榫面 tongue face 槽面 groove face 环连接面 ring joint face 全平面;满平面 flat face; full face (FF) 光滑突面 smooth raised face (SRF) 法兰面加工 facing finish 粗糙度 roughness 光滑的 smooth 齿形 serrated 均方根 root mean square (RMS) 算术平均粗糙高度 arithmetical average roughness height (AARH) 配对法兰 companion-flange 螺栓圆 bolt circle (.) 垫片 Gasket (GSKT) 垫片的型式 type of gasket 平垫片 flat gasket 环形平垫片 flat ring gasket 平金属垫片 flat metal gasket 夹棉织物的橡胶 elastomer with cotton fabric insertion 夹石棉织物的橡胶 elastomer with asbestos fabric insertion 夹石棉织物及金属丝加强的橡胶 elastomer with asbestos fabric insertion and with wire reinforcement 无石墨压缩白石棉垫片 non graphited compressed white asbestos gasket 天然白橡胶垫片 natural white rubber gasket 压缩石棉垫片 compressed asbestos class gasket 浸聚四氟乙烯的石棉垫片 PTFE impregnated asbestos gasket 夹石棉的缠绕金属垫片 spiral-wound metal gasket with asbestos filler 内环 inner ring 外环,外定位环 outer ring 波纹金属垫片 corrugated metal gasket 波纹金属包嵌石棉垫片 corrugated metal gasket with asbestos inserted 双夹套波纹金属包石棉垫片 corrugated metal double jacketed asbestos filled gasket 双夹套垫片 double jacketed gasket 金属包石棉平垫片 flat metal jacketed asbestos filled gasket 整体金属齿形垫片 solid metal serrated gasket 槽形金属垫片 grooved metal gasket 环形连接金属垫片 ring joint metal gasket 八角环形垫片 octagonal ring gasket 椭圆环形垫片 oval ring gasket 透镜式垫片 lens gasket 非金属垫片 non-metallic gasket 阀门 Valve 阀门结构、零件 阀轭 yoke 外螺纹阀杆及阀轭 outside screw and yoke (OS & Y) 阀杆 stem 内螺纹 inside screw (IS) 阀轭套 yoke sleeve 阀杆环 stem ring 阀座 valve seat (body seat) 阀座环、密封圈 seat ring 整体(阀)座 integral seat 堆焊(阀)座 deposited seat 阀芯(包括密封圈、杆等内件) trim 阀盘 disc 阀盘密封圈 disc seat 阀体 body 阀盖 bonnet 阀盖衬套 bonnet bush 螺纹阀帽 screw cap 螺纹阀盖 screw bonnet 螺栓连接的阀盖 bolted bonnet (BB) 活接阀盖(帽) union bonnet (cap) 螺栓连接的阀帽 bolted cap (BC) 焊接阀盖 welded bonnet (WB) 本体阀杆密封 body stem seal 石棉安全密封 asbestos emenen seal 倒密封 back seal 压力密封的阀盖 pressure-tight bonnet 动力操纵器 powered operator 电动操纵器 electric motor operator 气动操纵器 pneumatic operator 液压操纵器 hydraulic operator 快速操纵器 quick-acting operator 滑动阀杆 sliding stem 正齿轮传动 spur gear operated 伞齿轮传动 bevel gear operated 扳手操作 wrench operated 链轮 chain wheel 手轮 hand wheel 手柄 hand lever (handle) 气缸(或液压缸)操纵的 cylinder operated 链条操纵的 chain operated 等径孔道 full bore; full port 异径孔道 reducing bore, reduced port,venturi port 短型 short pattern 紧凑型(小型) compact type 笼式环 lantern ring 压盖 gland 阀杆填料 stem packing 阀盖垫片 bonnet gasket 升杆式(明杆) rising stem (RS) 非升杆式(暗杆) non-rising stem (NRS) 指示器/限位器 indicator/stopper 注油器 grease injector 可更换的阀座环 renewable seat ring 常用阀 (1)闸阀 gate valve 平行双闸板 double disc parallel seat 开口楔形闸板 split wedge 挠性整体楔形闸扳 flexible solid wedge 整体楔形闸板 solid wedge 塞型闸阀 plug gate valve 直通型闸阀 through conduit gate valve (2) 截止阀 globe valve 球心型阀盘 globe type disc 塞型阀盘 plug type disc 可转动的阀盘 swivel disc (3) 节流闪阀 throttle valve 针阀 needle valve (4) 角阀 angle valve (5) Y型阀(Y 型阀体截止阀) Y-valve (Y-body globe valve) (6) 球阀 ball valve 三通球阀 3-way ball valve 装有底轴的 trunnion mounted 耐火型 fire safe type 浮动球型 floating ball type 防脱出阀杆 blowout proof stem (7) 蝶阀 butterfly valve 对夹式(薄片型) wafer type 凸耳式 lug type 偏心阀板蝶阀 offset disc burerfly valve; eccentric butterfly valve 斜阀盘蝶阀 canted disc butterfly valve 连杆式蝶阀 link butterfly valve 8) 柱塞阀 piston type valve (9) 旋塞阀 plug valve 三通旋塞阀 three-way plug valve 四通旋塞阀 four-way plug valve 旋塞 cock 衬套旋塞 sleeve cock (10) 隔膜阀 diaphragm valve 橡胶衬里隔膜阀 rubber lined diaphragm valve 直通式隔膜阀 straight way diaphragm valve 堰式隔膜阀 weir diaphragm valve (11) 夹紧式胶管阀 pinch valve(用于泥浆、粉尘等) (12) 止回阀 check valve 升降式止回阀 lift check valve 旋启式止回阀 swing check valve, flap check valve 落球式止回阀 ball check valve 弹簧球式止回阀 spring ball check valve 双板对夹式止回阀 dual plate wafer type check valve 无撞击声止回阀 non-slam cheek valve 底阀 foot valve 切断式止回阀 stop check valve; non-return valve 活塞式止回阀 piston check valve 斜翻盘止回阀 tilting disc check valve 蝶式止回阀 butterfly check valve 其它用途的阀 安全泄气阀 safety valve (SV) 安全泄液阀 relief valve (RV) 安全泄压阀 safety relief valve 杠杆重锤式 lever and weight type 引导阀操纵的安全泄气阀 pilot operated safety valve 复式安全泄气阀 twin type safety valve 罐底排污阀 flush-bottom tank valve 电磁阀 solenoid valve, solenoid operated valve 电动阀 electrically operated valve, electric-motor operated valve 气动阀 pneumatic operated valve 低温用阀 cryogenic service valve 蒸汽疏水阀 steam trap 机械式疏水阎 mechanical trap 浮桶式疏水阀 open bucket trap, open top bucket trap 浮球式疏水阀 float trap 倒吊桶式疏水阀 inverted bucket trap 自由浮球式疏水阀 loose float trap 恒温式疏水阀 thermostatic trap 金属膨胀式蒸汽疏水阀 metal expansion steam trap 液体膨胀式蒸汽疏水阀 liquid expansion steam trap 双金属膨胀式蒸汽疏水阀 bimetallic expansion steam trap 压力平衡式恒温疏水阀 balanced pressure thermostatic trap 热动力式疏水阀 thermodynamic trap 脉冲式蒸汽疏水阀 impulse steam trap 放气阀(自动放气阀) air vent valve (automatic air vent valve) (疏水阀用) 平板式滑动闸阀 slab type sliding gate valve 盖阀 flat valve 换向阀 diverting valve, reversing valve 热膨胀阀 thermo expansion valve 自动关闭阀 self-closing gate valve 自动排液阀 self-draining valve 管道盲板阀 line-blind valve 挤压阀 squeeze valve(用于泥浆及粉尘等) 呼吸阀 breather valve 风门、挡板 damper 减压阀 pressure reducing valve, reducing valve 控制阀 control valve 膜式控制阀 diaphragm operated control valve 执行机构 actuator 背压调节阀 back pressure regulating valve 差压调节阀 differential pressure regulating valve 压力比例调节阀 pressure ratio regulating valve 未指明结构(或阀型)的阀 切断阀 block valve; shut-off valve; stop valve 调节阀 regulating valve 快开阀 quick opening valve 快闭阀 quick closing valve 隔断阀 isolating valve 三通阀 three way valve 夹套阔 jacketed valve 非旋转式阀 non-rotary valve 排污阀 blowdown valve 集液排放阀 drip valve 排液阀 drain valve 放空阀 vent valve 卸载阀 unloading valve 排出阀 discharge valve 吸入阀 suction valve 多通路阀 multiport valve 取样阀 sampling valve 手动阀 hand-operated valve; manually operated valve 锻造阀 forged valve 铸造阀 cast valve (水)龙头 bibb; bib; faucet 抽出液阀(小阀) bleed valve 旁路阀 by-pass valve 软管阀 hose valve 混合阀 mixing valve 破真空阀 vacuum breaker 冲洗阀 flush valve 第一道阀;根部阀 primary valve 根部阀 root valve 总管阀 header valve 事故切断阀 emergency valve 管道特殊件 Piping Specialty 管道特殊件(组件) 粗滤器 strainer 过滤器 filter 临时粗滤器(锥型) temporary strainer (cone type) y 型粗滤器 y-type strainer T型粗滤器 T-type strainer 永久过滤器 permanent filter 丝网粗滤器 gauze strainer 洗眼器及淋浴器 eye washer and shower 视镜 sight glass 阻火器 flame arrester 喷嘴;喷头 spray nozzle 取样冷却器 sample cooler 消声器 silencer 膨胀节 expansion joint 波纹膨胀节 bellow expansion joint 单波 single bellow 双波 double bellow 多波 multiple bellow 压力平衡式膨胀节 pressure balanced expansion 带铰链膨胀节 hinged expansion joint 轴向位移型膨胀节 axial movement type expansion joint 自均衡膨胀节(外加强环)self-equalizing expansion joint 带接杆膨胀节 tied expansion joint 万向型膨胀节 universal type expansion joint 球形补偿器 ball type expansion joint 填函式补偿器 slip type (packed type) expansion joint 单向滑动填料函补偿器 single actionpacked slip joint 管道特殊元件Piping Special Element 软管接头 hose connection (HC) 快速接头 quick coupling 金属软管 metal hose 橡胶管 rubber hose 挠性管 flexible tube 鞍形补强板 reinforcing saddles 补强板 reinforcement pad 特殊法兰 special flange 漏斗 funnel 排液环 drip ring 排液漏斗 drain funnel 插板 blank 垫环 spacer 8字盲板 spectacle blind; figure 8 blind 限流孔板 restriction orifice 爆破片 rupture disk 法兰盖贴面 protective disc 费托立克接头 victaulic coupling 端部连接 End Connection 法兰端 flanged end 坡口端 beveled end (BE) 对焊端 butt welded end 平端 plain end (PE) 承插焊端 socket welding end 螺纹端 threaded end (TE) 承口 bell end 焊接端 welding end 法兰连接(接头) flanged joint 对焊连接(接头) butt welded joint 螺纹连接,管螺纹连接 threaded joint, pipe threaded joint 锥管螺纹密封焊连接 seal-welded taper pipe threaded joint 承插焊连接(接头) socket welded joint 承插连接(接头) bell and spigot joint 环垫接头 ring joint (RJ) 万向接头 universal joint 软钎焊连接(接头) soldered joint 搭接接头,松套连接 lapped joint 外侧厚度切斜角 bevel for outside thickncss 内侧厚度切斜角 bevel for inside thickness 内外侧厚度切斜角 bevel for combined thickness 法兰式的 flanged (FLGD) 对焊的 butt welded (BW) 螺纹的 threaded (THD) 承插焊的 socket welded (SW) 小端为平的 small end plain (SEP) 大端为平的 large end plain (LEP) 两端平 both ends plain (BEP) 小端带螺纹 small end thread (SET) 大端带螺纹 large end thread (LET) 两端带螺纹 both end thread (BET) 一端带螺纹 one end thread (OET) 支管连接 branch connection 焊接支管 branch pipe welded directly to the run pipe

第二章 阀门的类型和用途 阀门类型繁多,本文只介绍常用阀门 第一节 闸 阀闸阀是指关闭件(闸板)沿通路中心线的垂直方向移动的阀门。闸阀在管路中主要作切断用。闸阀是使用很广的一种阀门,一般口径DN≥50mm的切断装置都选用它,有时口径很小的切断装置也选用闸阀,闸阀有以下优点:①流体阻力小。②开闭所需外力较小。③介质的流向不受限制。④全开时,密封面受工作介质的冲蚀比截止阀小。⑤体形比较简单,铸造工艺性较好。闸阀也有不足之处:①外形尺寸和开启高度都较大。安装所需空间较大。②开闭过程中,密封面间有相对摩擦,容易引起擦伤现象。③闸阀一般都有两个密封面,给加工、研磨和维修增加一些困难。 一、闸阀的种类1. 按闸板的构造可分1)平行式闸阀:密封面与垂直中心线平行,即两个密封面互相平行的闸阀。如图2—12所示。 图2-12 图2-13在平行式闸阀中,以带推力楔块的结构最常为常见,既在两闸板中间有双面推力楔块,这种闸阀适用于低压中小口径(DN40—300mm)闸阀。也有在两闸板间带有弹簧的,弹簧能产生予紧力,有利于闸板的密封。2)楔式闸阀:密封面与垂直中心线成某种角度,即两个密封面成楔形的闸阀如图2—13所示。密封面的倾斜角度一般有2°52´,3°30´,5°, 8°, 10°等,角度的大小主要取决于介质温度的高低。一般工作温度愈高,所取角度应愈大,以减小温度变化时发生楔住的可能性。在楔式闸阀中,又有单闸板,双闸板和弹性闸板之分。单闸板楔式闸阀,结构简单,使用可靠,但对密封面角度的精度要求较高,加工和维修较困难,温度变化时楔住的可能性很大。双闸板楔式闸阀在水和蒸气介质管路中使用较多。它的优点是:对密封面角度的精度要求较低,温度变化不易引起楔住的现象,密封面磨损时,可以加垫片补偿。但这种结构零件较多,在粘性介质中易粘结,影响密封。更主要是上、下挡板长期使用易产生锈蚀,闸板容易脱落。弹性闸板楔式闸阀,它具有单闸板楔式闸阀结构简单,使用可靠的优点,又能产生微量的弹性变形弥补密封面角度加工过程中产生的偏差,改善工艺性,现已被大量采用。2. 按阀杆的构造闸阀又可分为1) 明杆闸阀:阀杆螺母在阀盖或支架上,开闭闸板时,用旋转阀杆螺母来实现阀杆的升降。如图2—12所示。这种结构对阀杆的润滑有利,开闭程度明显,因此被广泛采用。2) 暗杆闸阀:阀杆螺母在阀体内,与介质直接接触。开闭闸板时,用旋转阀杆来实现。如图2—14所示。这种结构的优点是:闸阀的高度总保持不变,因此安装空间小,适用于大口径或对安装空间受限制的闸阀。此种结构要装有开闭指示器,以指示开闭程度。这种结构的缺点是:阀杆螺纹不仅无法润滑,而且直接接受介质侵蚀,容易损坏。 图2-14 图2-15二、闸阀的通径收缩如果一个阀体内的通道直径不一样(往往都是阀座处的通径小于法兰连接处的通径),称为通径收缩。如图2—15所示。通径收缩能使零件尺寸缩小,开、闭所需力相应减小,同时可扩大零部件的应用范围。但通径收缩后。流体阻力损失增大。在某些部门的某些工作条件下(如石油部门的输油管线),不允许采用通径收缩的阀门。这一方面是为了减小管线的阻力损失,另一方面是为了避免通径收缩后给机械清扫管线造成障碍。第二节 截止阀截止阀是关闭件(阀瓣)沿阀座中心线移动的阀门。截止阀在管路中主要作切断用。截止阀有以下优点:1. 在开闭过程中密封面的摩擦力比闸阀小,耐磨。2. 开启高度小。3. 通常只有一个密封面,制造工艺好,便于维修。截止阀使用较为普遍,但由于开闭力矩较大,结构长度较长,一般公称通径都限制在DN≤200mm以下。截止阀的流体阻力损失较大。因而限制了截止阀更广泛的使用。截止阀的种类很多,根据阀杆上螺纹的位置可分:一、上螺纹阀杆截止阀截止阀阀杆的螺纹在阀体的外面。其优点是阀杆不受介质侵蚀,便于润滑,此种结构采用比较普遍。如图 2—8所示。二、下螺纹阀杆截止阀截止阀阀杆的螺纹在阀体内。这种结构阀杆螺纹与介质直接接触,易受侵蚀,并无法润滑。此种结构用于小口径和温度不高的地方。如图 2—9所示。 图2-8 图2-9根据截止阀的通道方向,又可分为;直通式截止阀,角式截止阀和三通式截止阀,后两种截止阀通常做改变介质流向和分配介质用。 第三节 节流阀 节流阀是指通过改变通道面积达到控制或调节介质流量与压力的阀门。节流阀在管路中主要作节流使用。最常见的节流阀是采用截止阀改变阀瓣形状后作节流用。但用改变截止阀或闸阀开启高度来作节流用是极不合适的,因为介质在节流状态下流速很高,必然会使密封面冲蚀磨损,失去切断密封作用。同样用节流阀作切断装置也是不合适的。常见的节流阀如图 2 —10所示。 图2-10节流阀的阀瓣有多种形状,常见的有:1. 钩形阀瓣,常用于深冷装置中的膨胀阀。如图 2—11a所示。2. 窗形阀瓣,适用于口径较大的节流阀如图2—11b所示。3. 塞形阀瓣,适用于中小口径节流阀,使用较普遍。如图 2—11C所示。 a b c 图2-11 第 四 节 止 回 阀 止回阀是指依靠介质本身流动而自动开、闭阀瓣,用来防止介质倒流的阀门。止回阀根据其结构可分一、升降式止回阀:阀瓣沿着阀体垂直中心线滑动的止回阀,如图2—16所示。 图2-16 图2-17升降式止回阀只能安装在水平管道上,在高压小口径止回阀上阀瓣可采用圆球。升降式止回阀的阀体形状与截止阀一样(可与截止阀通用),因此它的流体阻力系数较大。二、旋启式止回阀:阀瓣围绕阀座外的销轴旋转的止回阀,如图2—17所示。旋启式止回阀应用较为普遍。三、碟式止回阀:阀瓣围绕阀座内的销轴旋转的止回阀。如图2—18所示。碟式止回阀结构简单,只能安装在水平管道上,密封性较差。四、管道式止回阀,阀瓣沿着阀体中心线滑动的阀门。如图2—19所示。 图2-18 图2-19管道式止回阀是新出现的一种阀门,它的体积小,重量较轻,加工工艺性好,是止回阀发展方向之一。但流体阻力系数比旋启式止回阀略大。 第五节 旋塞阀 旋塞阀是指关闭件(塞子)绕阀体中心线旋转来达到开启和关闭的一种阀门。旋塞阀在管路中主要用作切断、分配和改变介质流动方向的。旋塞阀是历史上最早被人们采用的阀件。由于结构简单,开闭迅速(塞子旋转四分之一圈就能完成开闭动作),操作方便,流体阻力小,至今仍被广泛使用。目前主要用于低压,小口径和介质温度不高的情况下。旋塞阀的塞子和塞体是一个配合很好的圆锥体,其锥度一般为1:6和1:7。 一、紧定式旋塞阀紧定式旋塞阀通常用于低压直通管道,密封性能完全取决于塞子和塞体之间的吻合度好坏,其密封面的压紧是依靠拧紧下部的螺母来实现的。一般用于PN≤。如图2—1所示。 图2-1 图2-2二、填料式旋塞阀。填料式旋塞阀是通过压紧填料来实现塞子和塞体密封的。由于有填料,因此密封性能较好。通常这种旋塞阀有填料压盖,塞子不用伸出阀体,因而减少了一个工作介质的泄漏途径。这种旋塞阀大量用于PN≤1Mpa的压力,如图2—2所示。 三、自封式旋塞阀自封式旋塞阀是通过介质本身的压力来实现塞子和塞体之间的压紧密封的。塞子的小头向上伸出体外,介质通过进口处的小孔进入塞子大头,将塞子向上压紧,此种结构一般用于空气介质。如图2—3所示。四、油封式旋塞阀近年来旋塞阀的应用范围不断扩大,出现了带有强制润滑的油封式旋塞阀。由于强制润滑使塞子和塞体的密封面间形成一层油膜。这样密封性能更好,开闭省力,防止密封面受到损伤。如图2—4所示。 图2-3 图2-4 第六节 球阀 球阀和旋塞阀是同属一个类型的阀门,只有它的关闭件是个球体,球体绕阀体中心线作旋转来达到开启、关闭的一种阀门。球阀在管路中主要用来做切断、分配和改变介质的流动方向。球阀是近年来被广泛采用的一种新型阀门,它具有以下优点:1. 流体阻力小,其阻力系数与同长度的管段相等。2. 结构简单、体积小、重量轻。3. 紧密可靠,目前球阀的密封面材料广泛使用塑料、密封性好,在真空系统中也已广泛使用。4. 操作方便,开闭迅速,从全开到全关只要旋转90°,便于远距离的控制。5.维修方便,球阀结构简单,密封圈一般都是活动的,拆卸更换都比较方便。6.在全开或全闭时,球体和阀座的密封面与介质隔离,介质通过时,不会引起阀门密封面的侵蚀。7.适用范围广,通径从小到几毫米,大到几米,从高真空至高压力都可应用。球阀已广泛应用于石油、化工、发电、造纸、原子能、航空、火箭等各部门,以及人们日常生活中。球阀按结构形式可分:一、浮动球球阀球阀的球体是浮动的,在介质压力作用下,球体能产生一定的位移并紧压在出口端的密封面上,保证出口端密封。如图2—5所示。 浮动球球阀的结构简单,密封性好,但球体承受工作介质的载荷全部传给了出口密封圈,因此要考虑密封圈材料能否经受得住球体介质的工作载荷。这种结构,广泛用于中低压球阀。二、固定球球阀球阀的球体是固定的,受压后不产生移动。固定球球阀都带有浮动阀座,受介质压力后,阀座产生移动,使密封圈紧压在球体上,以保证密封。通常在与球体的上、下轴上装有轴承,操作扭距小,适用于高压和大口径的阀门。如图2—6所示。为了减少球阀的操作扭矩和增加密封的可靠程度,近年来又出现了油封球阀,既在密封面间压注特制的润滑油,以形成一层油膜,即增强了密封性,又减少了操作扭矩,更适用高压大口径的球阀。三、弹性球球阀球阀的球体是弹性的。球体和阀座密封圈都采用金属材料制造,密封比压很大,依靠介质本身的压力已达不到密封的要求,必须施加外力。这种阀门适用于高温高压介质。如图2—7所示。弹性球体是在球体内壁的下端开一条弹性槽,而获得弹性。当关闭通道时,用阀杆的楔形头使球体涨开与阀座压紧达到密封。在转动球体之前先松开楔形头,球体随之恢复原原形,使球体与阀座之间出现很小的间隙,可以减少密封面的摩擦和操作扭矩。球阀按其通道位置可分为直通式,三通式和直角式。后两种球阀用于分配介质与改变介质的流向。第七节 蝶阀蝶板在阀体内绕固定轴旋转的阀门,叫蝶阀。1.作为密封型的蝶阀,是在合成橡胶出现以后,才给它带来了迅速的发展,因此它是一种新型的截流阀。在我国直至二十世纪八十年代,蝶阀主要作用于低压阀门,阀座采用合成橡胶,到九十年代,由于国外交流增多,硬密封〈金属密封〉蝶阀得以迅速发展。目前已有多家阀门厂能稳定地生产中压金属密封蝶阀,使蝶阀应运领域更为广泛。2.蝶阀能输送和控制的介质有水、凝结水、循环水、污水、海水、空气、煤气、液态天然气、干燥粉末、泥浆、果浆及带悬浮物的混合物。目前国产蝶阀参数如下:公称压力:——公称统径:DN100——3000mm工作温度:≤425℃3.蝶阀种类:根据连接方式:法兰式、对夹式。根据密封面材料;软密封、硬密封。根据结构形式,蝶阀可分成以下类型: ——板式 ——斜板式 ——偏置板式 ——杠杆式4.蝶阀的特点:(1)结构简单,外形尺寸小。由于结构紧凑,结构长度短,体积小,重量轻,适用于大口径的阀门。(2)流体阻力小,全开时,阀座通道有效流通面积较大,因而流体阻力较小。(3)启闭方便迅速,调节性能好,蝶板旋转90°既可完成启闭。通过改变蝶板的旋转角度可以分级控 制流量。(4)启闭力矩较小,由于转轴两侧蝶板受介质作用基本相等,而产生转矩的方向相反,因而启闭较省力。(5)低压密封性能好,密封面材料一般采用橡胶、塑料、故密封性能好。受密封圈材料的限制,蝶阀的使用压力和工作温度范围较小。但硬密封蝶阀的使用压力和工作温度范围,都有了很大的提高。5.蝶阀的结构蝶阀主要由阀体、蝶板、阀杆、密封圈和传动装置组成。蝶阀的结构见图1--21。(1)阀体 阀体呈圆筒状,上下部分各有一个圆柱形凸台,用于安装阀杆。蝶阀与管道多采用法兰连接;如采用对夹连接,其结构长度最小。(2)阀杆 阀杆是蝶板的转轴,轴端采用填料函密封结构,可防止介质外漏。阀杆上端与传动装置直接相接,以传递力矩。(3)蝶板 蝶板是蝶阀的启闭件。根据蝶板在阀体中的安装方式,蝶阀可以分成以下几种形式:①中心对称板。见图1--21(A),阀杆固定在蝶板的径向中心孔上,阀杆与蝶板均垂直安装(a) (b) (c) (d) 图1-2 蝶阀结构图a: 板式 b:斜板式 c:偏置板式 d:杠杆式二、非密封形蝶阀:关闭时不能保证密封的蝶阀。在管路中只能做节流用,密封圈通常是用金属制成的。第八节 安全阀 安全阀是防止介质压力超过规定数值起安全作用的阀门。 安全阀在管路中,当介质工作压力超过规定数值时,阀门便自动开启,排放出多余介质;而当工作压力恢复到规定值时,又自动关闭。一、安全阀常用的术语 1、开启压力:当介质压力上升到规定压力数值时,阀瓣便自动开启,介质迅速喷出,此时阀门进口处压力称为开启压力。 2、排放压力;阀瓣开启后,如设备管路中的介质压力继续上升,阀瓣应全开,排放额定的介质排量,这时阀门进口处的压力称为排放压力。 3、关闭压力:安全阀开启,排出了部分介质后,设备管路中的压力逐渐降低,当降低到小于工作压力的预定值时,阀瓣关闭,开启高度为零,介质停止流出。这时阀门进口处的压力称为关闭压力,又称回座压力。 4、工作压力;设备正常工作中的介质压力称为工作压力。此时安全阀处于密封状态。 5、排量:在排放介质阀瓣处于全开状态时,从阀门出口处测得的介质在单位时间内的排出量,称为阀的排量。二、安全阀的种类 1、根据安全阀的结构可分 ⑴重锤(杠杆)式安全阀:用杠杆和重锤来平衡阀瓣的压力。重锤式安全阀靠移动重锤的位置或改变重锤的重量来调整压力。它的优点在于结构简单;缺点是比较笨重回座力低。这种结构的安全阀只能用于固定的设备上。如图2--22所示。 ⑵弹簧式安全阀:利用压缩弹簧的力来平衡阀瓣的压力并使之密封。弹簧式安全阀靠调节弹簧的压缩量来调整压力。它的优点在于比重锤式安全阀体积小、轻便,灵敏度高,安装位置不受严格限制;缺点是作用在阀杆上的力随弹簧变形而发生变化。同时必须注意弹簧的隔热和散热问题。弹簧式安全阀的弹簧作用力一般不要超过2000公斤。因为过大过硬的弹簧不适于精确的工作。如图2--23所示。 ⑶脉冲式安全阀:脉冲式安全阀由主阀和辅阀组成。主阀和辅阀连在一起,通过辅阀的脉冲作用带动主阀动作。如图2--24所示。 图2-22 图2-23 图2-24 脉冲式安全阀通常用于大口径管路上。因为大口径安全阀如采用重锤或弹簧式时都不适应。脉冲式安全阀由主阀和辅阀两部分组成。当管路中介质超过额定值时,辅阀首先动作带动主阀动作,排放出多余介质。 2、根据安全阀阀瓣最大开启高度与阀座通径之比,又为分可: ⑴微启式:阀瓣的开启高度为阀座通径的1/20~1/10。如图2--25所示。由于开启高度小,对这种阀的结构和几何形状要求不象全启式那样严格,设计、制造、维修、和试验都比较方便,但效率较低。 ⑵全启式:阀瓣的开启高度为阀座通径的1/4~1/3。如图2--26所示。 图 2-25 图2-26 全启式安全阀是借助气体介质的膨胀冲力,使阀瓣达到足够的升高和排量。它利用阀瓣和阀座的上、下两个调节环,使排出的介质在阀瓣和上下两个阀节环之间形成一个压力区,使阀瓣上升到要求的开启高度和规定的回座压力。此种结构灵敏度高,使用较多,但上、下调节环的位置难于调整,使用须仔细。3、根据安全阀阀体构造又可分⑴全封闭式:排放介质时不向外泄漏,而全部通过排泄管放掉。⑵半封闭式:排放介质时,一部分通过排泄管排放,另一部分从阀盖与阀杆配合处向外泄漏。⑶敞开式:排放介质时,不引到外面,直接由阀瓣上访排泄

蝶阀阀门的毕业论文

是学士论文还是硕士论文!?学士500 硕士1500 要的联系

蝶阀是工业生产管路系统最常用到的阀门之一,组成部分主要有阀体、阀座、阀杆、蝶板和传动装置。蝶阀的种类很多,分类方式也是多种多样。按连接形式可以有对夹蝶阀、法兰蝶阀和焊接蝶阀等。按驱动形式又可以分为手柄蝶阀、涡轮蝶阀、气动蝶阀、电动蝶阀等等。蝶阀工作原理蝶阀是通过操作传动装置来旋转阀杆,同时阀杆又带动蝶板转动来实现开启和关闭的。在蝶阀的阀体圆柱形通道内,圆盘形蝶板连通着阀杆,阀杆旋转会带动蝶板旋转来做流量控制,旋转角度为0度~90度之间,当蝶板旋转到达90度,蝶阀在管道中即处于全开位置,此时只有蝶板的厚度是流体经过的唯一阻力,流阻非常小,同时当蝶板旋转角度在0-90之间时,可以用来调节介质流量。

蝶阀的结构及工作原理

本文详细分析蝶阀的结构及工作原理。如果觉得回答对您有所帮助的话,麻烦您高抬贵手,给美国威盾VTON阀门点个赞。

蝶阀的密封副有金属对金属的硬密封,也有金属对橡胶或塑料的软密封。密封圈可以放在蝶板上,也可以放在阀体上。本文详细分下密封蝶阀结构。

根据蝶板在阀中的放置位置,蝶阀又可做成中心对称的(I型),叫进口中线蝶阀、偏置(H型)的(单偏心、双偏心和三偏心,分别叫进口单偏心蝶阀,双偏心蝶阀,三偏心蝶阀)或变偏心型蝶阀。

蝶阀的密封结构形式有:单偏心密封、双偏心密封、三偏心密封、变偏心密封,各种结构类型蝶阀的密封原理简述如下:

(1)中线蝶阀

中线蝶阀,阀杆轴心线与蝶板中心平面在同一个平面内并与阀体管道中心线垂直相交,且蝶板两边面积对于阀杆轴线对称。中线蝶阀一般制成衬胶的形式,由于结构简单,中心对称(I型)双向密封效果一样,并且流阻较小,开关力矩也小,因此在中、小型蝶阀上广泛应用。但轴头由于经常处于摩擦状态,比其他部位磨损快,容易在此处泄漏,因此衬胶蝶阀中有时在轴头衬有四氟薄膜以减少摩擦或增加弹簧以补偿磨损等。显然,中线型如做成金属对金属,要密封有些困难,斜置板和偏置板蝶阀轴头没有磨擦,但它们的流阻和密封力矩都比中心对称蝶板要大。VTON水用的常规的蝶阀,一般采用中线结构。

2、单偏心密封蝶阀的密封原理

由于在单偏心蝶阀的基础上将蝶板的回转中心(既阀门轴中心)与阀体中心线形成尺寸偏置,使得蝶阀在开启过程中,蝶板的密封面会比单偏心密封蝶阀更快地脱离阀座密封面,蝶板转动至 8°~12° 时,蝶板密封面完全脱离阀座密封,完全开启时,两密封面之间形成一个更大的间隙,该类蝶阀的设计,大大降低了两密封面之间的机械磨损及拥挤压变形,使蝶阀的密封性能更为提高。

3、双偏心密封蝶阀的密封原理

由于在双偏心蝶阀的基础上将阀座中心线再与阀体中心线形成一个 β 角偏置,使得蝶阀在启阀过程中,蝶板的密封面在开启瞬间立即脱离阀座密封面,而在关闭瞬间才会接触并压紧阀座密封面。当完全开启时,两密封面之间形成一个与双偏心密封蝶阀相同的间隙,该类蝶阀的设计,彻底消除了两密封面之间的机械磨损和擦伤,使蝶阀的密封性能和使用寿命都得到大大提高。VTON硬密封蝶阀和对夹式硬密封蝶阀,焊接蝶阀,一般采用的是双偏心结构。

4、三偏心蝶阀

三偏心蝶阀是将正锥角旋转一个角度,改为斜锥角,这样偏心e可以减小,开启力矩也随之减小。当然这只是直观地理解,实际轴心应设置在什么地方还是应该采用三维做运动分析,判断密封副是否会产生干涉。值得指出的是三偏心蝶阀的密封圈不但可以设计成多层次式,也可以做成像Neles那样的U形或O形圈,有些时候甚至可以采用橡胶、四氟等非金属材料,但是采用非金属弹性密封材料,是否有必要做成三偏心值得商榷(双偏心即可)。

5、变偏心密封蝶阀的密封原理

变偏心蝶阀的独特之处在于安装蝶板的阀杆轴是一个三段轴式结构,此三段轴式阀杆两段轴段同心,而中心段轴中心线与两端轴线偏离一个中心距,蝶板就安装在中间轴段上。这样的偏心结构使得蝶板在全开位置时成为双偏心状,而在蝶板转动到关闭位置时则成为单偏心状。由于偏心轴的作用,在接近关闭时,蝶板向阀座的密封锥面内移进一个距离,蝶板与阀座的密封的密封面相吻合达到可靠的密封性能。

由于蝶板的回转中心(即阀门轴中心)与蝶板密封截面按偏心设置,使得蝶阀在开启过程中,蝶板密封面逐渐脱离阀座密封面,蝶板转动至 20°~25° 时,蝶板密封面完全脱离阀座密封面,完全开启时,两密封面之间形成间隙,从而使得蝶阀在启闭过程中,两密封面之间相对机械磨损及挤压大为降低,从而保证了蝶阀的密封。

蝶阀是一种关闭件为蝶板的阀门,它通常由蝶板、阀体、阀杆和密封件等组成。蝶阀主要用于管道系统中的调节和开关,具有以下优点:

恒温阀毕业论文

这问题说的应该是散热器恒温控制阀的感温元件-温包吧 恒温阀的组成元件中 用来感受温度变化并产生驱动动作的部件 叫做感温包 温包中的工质分为液体、固体(石蜡)或气液混合体 跟据温包内感温介质不同 恒温阀可分为固体温包型、液体温包型和气体温包型 其中固体温包介质多为石蜡 相比而言 石蜡温包的使用寿命较短 一般在固体温包中都会掺入金属粉以提高调节性 但是在使用中介质受高温后金属粉会发生沉淀 造成调节性降低或失效 所以石蜡温包寿命通常不超过5年 而液体及气体温包寿命可以达到20年以上 另外石蜡温包在感应灵敏度、温度控制稳定性上也远不如液体及气体温包 因此石蜡温包的恒温阀在欧洲已属落后淘汰的产品 不过由于石蜡温包价格便宜 国内还有一些厂家在生产使用 液体温包适用性广泛 性能也很稳定 从性价比来看远远优于石蜡温包 是目前国内外市场主导产品 而气体温包价格很高 没有太高的实用性和市场空间 很少被采用 北京瑞林恒基 专业散热器恒温控制阀生产厂家 产品采用液体温包元件 拥有多项专利设计 性价比高 节能性好 有兴趣的朋友可以按用户名咨询

恒温混水阀门往往是配合热水器安装的一种特殊的阀门类的产品,只能够起到一个连接的作用,但是这种恒温混水阀门就不太一样了,它可以达到控制和调整的目的,比如说我们在使用热水器的时候,想要得到一定范围温度以内的温水,那么通过这种方法可以控制冷水和热水之间比例的搭配,相信就可以尽可能的在较短的时间内达到较为满意的效果了。

一、混水阀和恒温混水阀的区别:

混水阀:是自己调节水温比如你洗着洗着感觉水太热可以自己调节一下;

恒温混水阀:是在使用的时候设定好温度,然后再使用的时候太阳能里面有个温度调节事温度一直在自己设定温度范围内。

二、恒温混水阀工作原理

在恒温混水阀的混合出口处,装有一个热敏元件,利用感温元件的特性推动阀体内阀芯移动,自动调节冷热水进水口的开度,当温度调节旋纽设定某一温度后,不论冷、热水进水温度、压力如何变化,进入出水口的冷热水比例都能随之变化,从而使出水温度始终保持恒定,调温旋纽可在产品规定温度范围内任意设定,恒温混水阀将自动维持出水温度。

三、混水阀优点:

1、在不消耗额定动力条件下将高温水调节为所需温度的热水(混水);

2、中止供水端的冷水或热水时,恒温龙头能够主动封闭出水,防止烫坏和冷激事端;

3、即便在冷热水源有压力或温度动摇时,保证混水温度安稳,革除淋浴中烫坏和冷激损害。国外混水阀在国外商场有很大的发展空间,因素在于冷热水源压力安稳、水质洁净,热水温度安稳。而国外的混水阀在我国国内,却面临着极大的应战。国内冷热水源压力不安稳,太阳能储温、储压罐时刻都在发作着改动。这就致使了国外混水阀在国内商场失掉应战性。在国内太阳能混水阀出产厂家所出产的混水阀在运用请求上都提出了一些请求,比方:抱负的冷水压力为:,抱负的热水压力为:,抱负的冷水温度为:5-29℃,抱负的热水温度为:50-80℃,这些“抱负”的请求在实践工况中却难以实现,这也就给太阳能混水阀的功用提出严苛的请求:不因冷热水源的压力改动而改动恒温温度,不因冷热水源的温度改动而改动恒温温度。

4、共同的阀芯防污规划,进一步降低了水源中颗粒杂质因累积性淤积而构成的阀腔阻塞,仅依托冷热源水压的冲刷便使其随混水排出,提高了维护的简便性;

5、首创恒温阀阀腔稳压动摇规划,有用处理国内因体系冷热水源压力不稳而构成的出水温度及流量动摇显着的问题,并可承受高达15:1的冷热水压力比;

6、防垢规划硅胶阀芯,有用利用硅胶高分子链阻挠钙离子、镁离子因浸透阀腔材质而构成的水垢,保证了产品通过长期运用后的灵敏性,大大延长了混水阀的运用寿命;

7、混水阀装置简略、便利,用支架固定装置在墙面上,再与冷、热供水管相接,输出接口与淋浴器相接即可;

上文为大家推荐的是关于恒温混水阀门的特点和优势以及安装注意事项和购置说明,由此入手可以得知一个方面的话,合格的混水恒温阀门顾名思义可以在较短的时间为我们提供依据范围内的温度,除此之外的话,产品耐磨耐水耐腐蚀,采用的也是不锈钢和铝合金的材料,后期不容易受到影响和损坏,大家可以以此入手进行合适合理的分析,或者综合上文进行了解和学习。

安全阀毕业论文

去期刊网吧,那里可以下载到论文。你要是自己找不到的话,推荐你去淘宝的{翰林书店},我去那里让店主帮下载过论文

我虽然年纪大了,但我还是会用百度的,楼上那小子抄论文就被我从网上搜出来了,嘿嘿,看他还年轻,还是给了条活路放他过了,不知道你会不会碰到我这样好的老板

简介: 分析了锅炉安全阀阀门漏泄、阀体结合面渗漏、冲量安全阀动作后主安全阀不动作、冲量安全阀回座后主安全阀延迟回座时间过长以及安全阀的回座压力低、频跳和颤振等常见的故障原因,并针对故障原因提出了解决方法。关键字:安全阀 冲量 安全阀 主安全阀1、前言��安全阀是一种非常重要的保护用阀门,广泛地用在各种压力容器和管道系统上,当受压系统中的压力超过规定值时,它能自动打开,把过剩的介质排放到大气中去,以保证压力容器和管道系统安全运行,防止事故的发生,而当系统内压力回降到工作压力或略低于工作压力时又能自动关闭。安全阀工作的可靠与否直接关系到设备及人身的安全,所以必须给予重视。�2、安全阀常见故障原因分析及解决方法��、阀门漏泄�在设备正常工作压力下,阀瓣与阀座密封面处发生超过允许程度的渗漏,安全阀的泄漏不但会引起介质损失。另外,介质的不断泄漏还会使硬的密封材料遭到破坏,但是,常用的安全阀的密封面都是金属材料对金属材料,虽然力求做得光洁平整,但是要在介质带压情况下做到绝对不漏也是非常困难的。因此,对于工作介质是蒸汽的安全阀,在规定压力值下,如果在出口端肉眼看不见,也听不出有漏泄,就认为密封性能是合格的。一般造成阀门漏泄的原因主要有以下三种情况:一种情况是,脏物杂质落到密封面上,将密封面垫住,造成阀芯与阀座间有间隙,从而阀门渗漏。消除这种故障的方法就是清除掉落到密封面上的脏物及杂质,一般在锅炉准备停炉大小修时,首先做安全门跑砣试验,如果发现漏泄停炉后都进行解体检修,如果是点炉后进行跑砣试验时发现安全门漏泄,估计是这种情况造成的,可在跑砣后冷却20分钟后再跑舵一次,对密封面进行冲刷。另一种情况是密封面损伤。造成密封面损伤的主要原因有以下几点:一是密封面材质不良。例如,在3~9号炉主安全门由于多年的检修,主安全门阀芯与阀座密封面普遍已经研得很低,使密封面的硬度也大大降低了,从而造成密封性能下降,消除这种现象最好的方法就是将原有密封面车削下去,然后按图纸要求重新堆焊加工,提高密封面的表面硬度。注意在加工过程中一定保证加工质量,如密封面出现裂纹、沙眼等缺陷一定要将其车削下去后重新加工。新加工的阀芯阀座一定要符合图纸要求。目前使用YST103通用钢焊条堆焊加工的阀芯密封面效果就比较好。二是检修质量差,阀芯阀座研磨的达不到质量标准要求,消除这种故障的方法是根据损伤程度采用研磨或车削后研磨的方法修复密封面。�造成安全阀漏泄的另一个原因是由于装配不当或有关零件尺寸不合适。在装配过程中阀芯阀座未完全对正或结合面有透光现象,或者是阀芯阀座密封面过宽不利于密封。消除方法是检查阀芯周围配合间隙的大小及均匀性,保证阀芯顶尖孔与密封面同正度,检查各部间隙不允许抬起阀芯;根据图纸要求适当减小密封面的宽度实现有效密封。、阀体结合面渗漏�指上下阀体间结合面处的渗漏现象,造成这种漏泄的主要原因有以下几个方面:一是结合面的螺栓紧力不够或紧偏,造成结合面密封不好。消除方法是调整螺栓紧力,在紧螺栓时一定要按对角把紧的方式进行,最好是边紧边测量各处间隙,将螺栓紧到紧不动为止,并使结合面各处间隙一致。二是阀体结合面的齿形密封垫不符合标准。例如,齿形密封垫径向有轻微沟痕,平行度差,齿形过尖或过坡等缺陷都会造成密封失效。从而使阀体结合面渗漏。在检修时把好备件质量关,采用合乎标准的齿形密封垫就可以避免这种现象的发生。三是阀体结合面的平面度太差或被硬的杂质垫住造成密封失效。对由于阀体结合面的平面度太差而引起阀体结合面渗漏的,消除的方法是将阀门解体重新研磨结合面直至符合质量标准。由于杂质垫住而造成密封失效的,在阀门组装时认真清理结合面避免杂质落入。、冲量安全阀动作后主安全阀不动作这种现象通常被称为主安全门的拒动。主安全门拒动对运行中的锅炉来说危害是非常大的,是重大的设备隐患,严重影响设备的安全运行,一旦运行中的压力容器及管路中的介质压力超过额定值时,主安全门不动作,使设备超压运行极易造成设备损坏及重大事故。在分析主安全门拒动的原因之前,首先分析一下主安全门的动作原理。如图1,当承压容器内的压力升至冲量安全阀的整压力时,冲量安全阀动作,介质从容器内通过管路冲向主安全阀活塞室内,在活塞室内将有一个微小的扩容降压,假如此时活塞室内的压强为P1,活塞节流面积为Shs,此时作用在活塞上的f1为:f1=P1×Shs……………………(1)�假如此时承压容器内的介质的压强为P2,阀芯的面积为Sfx,则此时介质对阀芯一个向上的作用力f2为:f2=P2×Shx�..............(2)通常安全阀的活塞直径较阀芯直径大,所以式(1)与式(2)中Shs>Sfx�P1≈P2假如将弹簧通过阀杆对阀芯向上的拉力设为f3及将运动部件与固定部件间摩擦力(主要是活塞与活塞室间的摩擦力)设为fm,则主安全门的动作的先决条件:只有作用在活塞上的作用力f1略大于作用在阀芯上使其向上的作用力f2及弹簧通过阀杆对阀芯向上的拉力f3及运动部件与固定部件间摩擦力(主要是活塞与活塞室间的摩擦力)fm之和时,即:f1>f2+f3+fm时主安全门才能启动。�通过实践,主安全门拒动主要与以下三方面因素有关:一是阀门运动部件有卡阻现象。这可能是由于装配不当,脏物及杂质混入或零件腐蚀;活塞室表面光洁度差,表面损伤,有沟痕硬点等缺陷造成的。这样就使运动部件与固定部件间摩擦力fm增大,在其他条件不变的情况下f1<f2+f3+fm所以主安全门拒动。例如,在2001年3号炉大修前过热主安全门跑砣试验时,发生了主安全门拒动。检修时解体检查发现,活塞室内有大量的锈垢及杂质,活塞在活塞室内无法运动,从而造成了主安全门拒动。检修时对活塞,胀圈及活塞室进行了除锈处理,对活塞室沟痕等缺陷进行了研磨,装配前将活塞室内壁均匀地涂上铅粉,并严格按次序对阀门进行组装。在锅炉水压试验时,对脉冲管进行冲洗,然后将主安全门与冲量安全阀连接,大修后点炉时再次进行安全阀跑砣试验一切正常。二是主安全门活塞室漏气量大。当阀门活塞室漏气量大时,式(1)中的f1一项作用在活塞上的作用力偏小,在其他条件不变的情况下f1<f2+f3+fm所以主安全门拒动。造成活塞室漏气量大的主要原因与阀门本身的气密性和活塞环不符合尺寸要求或活塞环磨损过大达不到密封要求有关系。例如,3~9号炉主安全阀对活塞环的质量要求是活塞环的棱角应圆滑,自由状态开口间隙不大于14,组装后开口间隙△=1~,活塞与活塞室间隙B=~,活塞环与活塞室间隙为S=~,活塞环与活塞室接触良好,透光应不大于周长的1/6。对活塞室内要求是,活塞室内的沟槽深度不得超过~,其椭圆度不超过0.1mm,圆锥度不超过,应光洁无擦伤,但解体检修时检查发现每台炉主安全门的活塞环、活塞及活塞室都不符合检修规程要求,目前一般活塞环与活塞室的间隙都在S≥,且活塞室表面的缺陷更为严重,严重地影响了活塞室的汽密性,造成活塞室漏汽量偏大。消除这种缺陷的方法是:对活塞室内表面进行处理,更换合格的活塞及活塞环,在有节流阀的冲量安全装置系统中关小节流阀开度,增大进入主安全门活塞室的进汽量,在条件允许的情况下也可以通过增加冲量安全阀的行程来增加进入主安全门活塞室内的进汽量方法推动主安全阀动作。三是主安全阀与冲量安全阀的匹配不当,冲量安全阀的蒸汽流量太小。冲量安全阀的公称通径太小,致使流入主安全阀活塞室的蒸汽量不足,推动活塞向下运动的作用力f1不够,即f1<f2+f3+fm致使主安全阀阀芯不动。这种现象多发生于主安全阀式冲量安全阀有一个更换时,由于考虑不周而造成的。例如2002年5号炉大修时,将两台重锤式冲量安全阀换成两台哈尔滨阀门厂生产A49H-P54100VDg20脉冲式安全阀,此安全阀一般与A42H-P54100VDg125型弹簧式主安全匹配使用,将它与苏产Dg150×90×250型老式主安全阀配套使用,此种主安全阀与A29H-P54100VDg125型弹簧式主安全阀本比不仅公称通径要大而且气密性较差,在5号炉饱和安全阀定砣完毕,进行跑砣试验时造成主安全阀拒动。后来我们将冲量安全阀解体,将其导向套与阀芯配合部分的间隙扩大,以增加其通流面积,再次跑砣试验一次成功。所以说冲量安全阀与主安全阀匹配不当,公称通径较小也会引起主安全阀拒动。、冲量安全阀回座后主安全阀延迟回座时间过长�发生这种故障的主要原因有以下两个方面:一方面是,主安全阀活塞室的漏汽量大小,虽然冲量安全阀回座了,但存在管路中与活塞室中的蒸汽的压力仍很高,推动活塞向下的力仍很大,所以造成主安全阀回座迟缓,这种故障多发生于型安全阀上,因为这种型式的安全阀活塞室汽封性良好。消除这种故障的方法主要通过开大节流阀的开度和加大节流孔径加以解决,节流阀的开度开大与节流孔径的增加都使留在脉冲管内的蒸汽迅速排放掉,从而降低了活塞内的压力,使其作用在活塞上向下运动的推力迅速减小,阀芯在集汽联箱内蒸汽介质向上的推力和主安全阀自身弹簧向上的拉力作用下迅速回座。另一方面原因就是主安全阀的运动部件与固定部件之间的磨擦力过大也会造成主安全阀回座迟缓,解决这种问题的方法就是将主安全阀运动部件与固定部件的配合间隙控制台标准范围内。、安全阀的回座压力低�安全阀回座压力低对锅炉的经济运行有很大危害,回座压力过低将造成大量的介质超时排放,造成不必要的能量损失。这种故障多发生在200MW机组所使用的A49H型弹簧脉冲安全阀上,分析其原因主要是由以下几个因素造成的:一是弹簧脉冲安全阀上蒸汽的排泄量大,这种形式的冲量安全阀在开启后,介质不断排出,推动主安全阀动作。一方面是冲量安全阀前压力因主安全阀的介质排出量不够而继续升高,所以脉冲管内的蒸汽沿汽包或集气联箱继续流向冲量安全阀维持冲量安全阀动作。另一方面由于此种型式的冲量安全阀介质流通是经由阀芯与导向套之间的间隙流向主安全阀活塞室的,介质冲出冲量安全阀的密封面,在其周围形成动能压力区,将阀芯抬高,于是达到冲量安全阀继续排放,蒸汽排放量越大,阀芯部位动能压力区的压强越大,作用在阀芯上的向上的推力就越大,冲量安全阀就越不容易回座,此时消除这种故障的方法就是将节流阀关小,使流出冲量安全阀的介质流量减少,降低动能压力区内的压力,从而使冲量安全阀回座。造成回座压力低的第二因素是:阀芯与导向套的配合间隙不适当,配合间隙偏小,在冲量安全阀启座后,在此部位瞬间节流形成较高的动能压力区,将阀芯抬高,延迟回座时间,当容器内降到较低时,动能压力区的压力减小,冲量阀回座。消除这种故障的方法是认真检查阀芯及导向套各部分尺寸,配合间隙过小时,减小阀瓣密封面直往式阀瓣阻汽帽直径或增加阀瓣与导向套之间径向间隙,来增加该部位的通流面积,使蒸汽流经时不至于过分节流,而使局部压力升高形成很高的动能压力区。造成回座压力低的另一个原因就是各运动零件磨擦力大,有些部位有卡涩,解决方法就是认真检查各运动部件,严格按检修标准对各部件进行检修,将各部件的配合间隙调整至标准范围内,消除卡涩的可能性。、安全阀的频跳�频跳指的是安全阀回座后,待压力稍一升高,安全阀又将开启,反复几次出现,这种现象称为安全阀的“频跳”。安全阀机械特性要求安全阀在整动作过程中达到规定的开启高度时,不允许出现卡阻、震颤和频跳现象。发生频跳现象对安全阀的密封极为不利,极易造成密封面的泄漏。分析原因主要与安全阀回座压力达高有关,回座压力较高时,容器内过剩的介质排放量较少,安全阀已经回座了,当运行人员调整不当,容器内压力又会很快升起来,所以又造成安全阀动作,像这种情况可通过开大节流阀的开度的方法予以消除。节流阀开大后,通往主安全阀活塞室内的汽源减少,推动活塞向下运动的力较小,主安全阀动作的机率较小,从而避免了主安全阀连续启动。、安全阀的颤振安全阀在排放过程中出现的抖动现象,称其为安全阀的颤振,颤振现象的发生极易造成金属的疲劳,使安全阀的机械性能下降,造成严重的设备隐患,发生颤振的原因主要有以下几个方面:一方面是阀门的使用不当,选用阀门的排放能力太大(相对于必须排放量而言),消除的方法是应当使选用阀门的额定排量尽可能接近设备的必需排放量。另一方面是由于进口管道的口径太小,小于阀门的进口通径,或进口管阻力太大,消除的方法是在阀门安装时,使进口管内径不小于阀门进口通径或者减少进口管道的阻力。排放管道阻力过大,造成排放时过大的北压也是造成阀门颤振的一个因素,可以通过降低排放管道的阻力加以解决。�3、结束语对锅炉安全阀的常见故障原因进行了分析并提出了具体的解决方法,虽然目前电站锅炉安全阀都是由主、辅阀配套组成的,并采用机械和热工控制双重保护,有些故障不易发生,但只有充分掌握安全阀的常见故障原因和消除方法,在故障发生时处理起来才能得心应手,对保证设备的安全运行有着重要的意义。

换合适的机油

旋耕机毕业论文

机械毕业论文格式范例 第一、构成项目 毕业论文包括以下内容: 封面、内容提要与关键词、目录、正文、注释、附录、参考文献。其中“附录”视具体情况安排,其余为必备项目。如果需要,可以在正文前加“引言”,在参考文献后加“后记”。 第二、各项目含义 (1)封面 封面由文头、论文标题、作者、学校名称、专业、年级、指导教师、日期等项内容组成。 (2)内容提要与关键词 内容提要是论文内容的概括性描述,应忠实于原文,字数控制在300字以内。关键词是从论文标题、内容提要或正文中提取的、能表现论文主题的、具有实质意义的词语,通常不超过7个。 (3)目录 列出论文正文的一二级标题名称及对应页码,附录、参考文献、后记等对应的页码。 (4)正文 正文是论文的主体部分,通常由绪论(引论)、本论、结论三个部分组成。这三部分在行文上可以不明确标示。 (5).注释 对所创造的名词术语的解释或对引文出处的说明,注释采用脚注形式。 (6)附录 附属于正文,对正文起补充说明作用的信息材料,可以是文字、表格、图形等形式。 (7)参考文献 作者在写作过程中使用过的文章、著作名录。 4、毕业论文格式编排 第一、纸型、页边距及装订线 毕业论文一律用国家标准A4型纸(297mmX210mm)打印。页边距为:天头(上)30mm,地脚(下)25mm,订口(左)30mm,翻口(右)25mm。装订线在左边,距页边10mm。 第二、版式与用字 文字、图形一律从左至右横写横排,倍行距。文字一律通栏编辑,使用规范的简化汉字。忌用繁体字、异体字等其他不规范字。 第三、论文各部分的编排式样及字体字号 (1)文头 封面顶部居中,小二号行楷,顶行,居中。固定内容为“成都中医药大学本科毕业论文”。 (2)论文标题 小一号黑体。文头居中,按小一号字体上空一行。(如果加论文副标题,则要求:小二号黑体,紧挨正标题下居中,文字前加破折号) 论文标题以下的行距为:固定值,40磅。 (3)作者、学院名称、专业、年级、指导教师、日期 项目名称用小三号黑体,后填写的内容处加下划线标明,8个汉字的长度,所填写的内容统一用三号楷体,各占一行,居中对齐。下空两行。 (4)内容提要及关键词 详细请参考: 我是中国机械加工网( )站长,很高兴为您解答问题。

1.机械设计制造及自动化专业毕业论文选题2.双侧驱动式旋耕灭茬机设计3.温室用小型电动旋耕机设计4.玉米对心种子播种机设计5.多功能机械手设计6.越障行走机的结构设计7.秸杆原料育苗钵成型机的设计8.耐磨材料应用现状与发展趋势研究9.代写论文抠抠巴贰衫七贰杉贰零巴10.揉性清洗技术在汽车发动机清洗中的应用11.液体菌种自动接种装置的设计12.果蔬高压电场保鲜技术及装置研究13.新型变质白口铸铁犁铧及旋耕刀材料成份配比的试验研究14.气缸盖试漏机设计15.南瓜种子分选机振动筛片及工作参数的优化设计学术堂提供更多论文知识

模具-注塑-方便饭盒上盖设计 稳压器盖板冲裁模设计 102机体齿飞面孔双卧多轴组合机床及CAD设计 10t桥式起重机小车运行机构设计 118面板注射模设计 11YQP36预加水盘式成球机设计 200米液压钻机变速箱的设计 20米T梁毕业设计 26手机外壳造型及设计步骤文档 27m3矿用挖掘机斗杆结构有限元分析 300×400数控激光切割机XY工作台部 3L-108空气压缩机曲轴零件 4岩心钻机升降机的设计 6136车床数控改造 6层框架住宅毕业设计结构计算书 8英寸钢管热浸镀锌自动生产线设计 A6140车床尾座体工艺工装设计 AWC机架现场扩孔机设计 BW-100型泥浆泵曲轴箱与液力端特性分析、设计 C618数控车床的主传动系统设计 C616型普通车床改造为经济型数控车床 CA-20地下自卸汽车工作、转向液压系统 CA6140车床后托架的加工工艺与钻床夹具设计 CA6140车床主轴箱的设计 CA6140杠杆加工工艺 CA6140机床后托架加工工艺及夹具设计 CA6140型铝活塞的机械加工工艺设计及夹具设计 CG2-150型仿型切割机 DTⅡ型固定式带式输送机的设计 DTⅡ型皮带机设计 FXS80双出风口笼形转子选粉机 GBW92外圆滚压装置设计 JLY3809机立窑(窑体及卸料部件) JLY3809机立窑(加料及窑罩部件)设计 JLY3809机立窑(总体及传动部件)设计 jx249乘客电梯的PLC控制 jx261组合机床主轴箱及夹具设计 MG132320-W型采煤机左牵引部机壳的加工工艺规程及数控编程 MG250591-WD型采煤机右摇臂壳体的加工工艺规程及数控编程 mj002数控技术和装备发展趋势及对策 mj016注射器盖毕业设计全部 mj020冲压模系统设计(金属) mj027我国数控机床的现状和发展趋势 mj030现在的工艺设计 MQ100门式起重机总体 MR141剥绒机锯筒部工作箱部和总体设计 NK型凝汽式汽轮机调节系统的设计 PF455S插秧机及其侧离合器手柄的探讨和改善设计 PLC控制机械手设计 PLC在高楼供水系统中的应用 Q3110滚筒式抛丸清理机的设计(总装、弹丸循环及分离装置、集尘器设计) Q3110滚筒式抛丸清理机的设计(总装、滚筒及传动机构设计) R175型柴油机机体加工自动线上多功能气压机械手 SF500100打散分级机回转部分及传动设计 SF500100打散分级机内外筒体及原设计改进探讨 SF500100打散分级机总体及机架设计 SPT120推料装置 SSCK20A数控车床主轴和箱体加工编程 T611镗床主轴箱传动设计及尾柱设计 WH212减速机壳体加工工艺及夹具设计 WHX112减速机壳加工工艺及夹具设计 X5020B立式升降台铣床拨叉壳体 X62W铣床主轴机械加工工艺规程与钻床夹具设计 X700涡旋式选粉机 XK5040数控立式铣床及控制系统设计 XKA5032A数控立式升降台铣床自动换刀装置的设计 XQB小型泥浆泵的结构设计 XX包装机总体设计及计量装置设计 Y32-1000四柱压机液压系统设计 YZJ压装机整机液压系统设计 Z30130X31型钻床控制系统的PLC改造 Z3050摇臂钻床预选阀体机械加工工 Z90型电动阀门装置及数控加工工艺的设计 ZL05微型轮式装载机总体设计 ZL15型轮式装载机 ZUO半自动液压专用铣床液压系统设计 “包装机对切部件”设计 “填料箱盖”零件的工艺规程及钻孔夹具设计 Φ1200熟料圆锥式破碎机 Φ3×11M水泥磨总体设计及传动部件设计 板材送进夹钳装置 半精镗及精镗气缸盖导管孔组合机床设计(夹具设计) 半精镗及精镗气缸盖导管孔组合机床设计(镗削头设计) 棒料切割机 杯子的三维设计 笔盖的模具设计 标牌雕刻数控加工工艺设计 拨叉零件工艺分析及加工 插秧机系统设计 叉杆零件 柴油机连杆的加工工艺 柴油机气缸体顶底面粗铣组合机床总体及夹具设计 铲平机的设计 车床变速箱中拔叉及专用夹具设计 车床的大修理 车床数控改造 车床主轴箱箱体右侧10-M8螺纹底孔组合钻床设计 车载装置升降系统的开发 齿轮架零件的机械加工工艺规程及专用夹具设计 冲大小垫圈复合模 冲击回转钻进技术 出租车计价器系统的设计 传动齿轮工艺设计 垂直多关节机器人臂部和手部设计 粗镗连杆大头孔专用镗床总体及镗削头设计 大模数蜗杆铣刀专用机床设计 大型制药厂热电冷三联供 大型轴齿轮专用机床设计 大直径桩基础工程成孔钻具 带式输送机自动张紧装置设计 带式运输机用的二级圆柱齿轮减速器设计 带位移电反馈的二级电液比例节流阀设计 袋泡茶包装机 设计 单拐曲轴机械加工工艺 单线画线机 低速级斜齿轮零件的机械加工工艺规程 地下升降式自动化立体车库 电动阀门装置及数控加工工艺的设计 电动自行车调速系统的设计 电机机座钻孔组合机床设计 电机炭刷架冷冲压模具设计 电流线圈架塑料模设计 电脑主板回焊炉及控制系统设计 电瓶车充电器外壳的模具设计 电液比例阀设计 钉磨机床设计 端面齿盘的设计与加工 多功能跑步机 多功能文具盒上盖注塑模设计 多功能自动跑步机(机械部分设计) 多用途气动机器人结构设计 惰轮轴工艺设计和工装设计 二级直齿轮减速器设 法兰零件夹具设计1 仿人型机器人总体及臂手部结构设计 放音机机壳注射模设计 分离爪工艺规程和工艺装备设计 盖冒垫片设计说明书.doc 杠杆工艺和工装设计 杠杆设计 高层建筑外墙清洗机---升降机部分的设计 高速数字多功能土槽试验台车的设计 隔水管横焊缝自动对中装置 隔振系统实验台总体方案设计 工程钻机的设计 工艺-曲轴箱零件加工工艺及夹具设计 工艺-支承套零件加工工艺编程及夹具 关节型机器人腕部结构设计 管套压装专机 滚针轴承自动装针机设计 过桥齿轮轴机械加工工艺规程 含油污热解炉机电系统设计 盒形件落料拉深模设计 后钢板弹簧吊耳的工艺和工装设计 湖南Y12型拖拉机轮圈落料与首次 环面蜗轮蜗杆减速器 回转盘工艺规程设计及镗孔工序夹具设计 活塞的机械加工工艺,典型夹具及其CAD设计 货车底盘布置设计 基于118面板注射模设计 基于1BF-160型拔杆粉碎还田机设计 基于1G-100型水旱两用旋耕机设计 基于2BGF— l2o型旋耕播种机的研制与探讨 基于ANSYS的挤出跑步机塑料边条模具的设计及机头的加工仿真 基于AT89C2051单片机的温度控制系统的设计 基于BSG2213宽带砂光机 基于ProE的装载机工作装置的实体建模及运动仿真 基于PROE平台的柴油机机体工艺及三面精镗夹具设计 基于TY395柴油机机体缸孔粗镗组合机床总体及夹具设计 基于UG的摆线针轮行星减速器的设计 基于普通机床的后托架及夹具的设计开发 基于三维的柴油机气缸体三面钻削组合机床总体及后主轴箱设计 基于三维的柴油机气缸体三面钻削组合机床总体及夹具设计 基于三维的柴油机气缸体三面钻削组合机床总体及右主轴箱设计 基于三维的柴油机气缸体三面钻削组合机床总体及左主轴箱设计 机床系统设计 机电产品国际招标投标实施办法 机电一体化-PLC控制电梯 机电一体化-T6113电气控制系统的设计 机电一体化-连杆平行度测量仪 机械手的设计 机械手控制设计 机座工艺设计与工装设计 集成电路塑封自动上料机机架部件设计及性能试验 加工涡轮盘榫槽的卧式拉床夹具 加热缸体注塑模设计 减速器的工艺设计 减速器的整体设计 减速箱体工艺设计与工装设计 渐开线涡轮数控工艺及加工 绞肉机的设计 接机平台、苗木输送系统的设计及总装图 金属切削加工车间设备布局与管理 精密播种机 经济型的数控改造 酒瓶内盖塑料模具设计 卷板机设计 康复机器人的系统设计 颗粒状糖果包装机设计 壳体的工艺与工装的设计 可调速钢筋弯曲机的设计 空气滤清器壳正反拉伸复合模设计 空气压缩机V带校核和噪声处理 空心铆钉机总体及送料系统设计 冷连轧机液压压下控制系统中的几个关键问题的理论研究 冷轧带钢制造中分布式计算机控制系统的研究-3-3 冷轧机 立式组合机床液压系统 连杆零件加工工艺 铝壳体压铸模具设计 滤油器支架模具设计 螺旋管状面筋机总体及坯片导出装置设计 螺旋千斤顶设计 模具-冰箱调温按钮塑模设计 膜片式离合器的设计 磨粉机设计 某大型水压机的驱动系统和控制系统 内循环式烘干机总体及卸料装置设计 盘工艺规程设计及镗孔工序夹具设计 平面关节型机械手设计 瓶塞注塑模 普通钻床改造为多轴钻床 气缸体双工位专用钻床总体及左主轴箱设计 气门摇臂轴支座 汽车半轴 桥式起重机小车运行机构设计 青饲料切割机 全自动洗衣机控制系统的设计 乳化液泵的设计 三自由度圆柱坐标型工业机器人设计_1 三坐标数控磨床设计 设计-单级圆柱齿轮减速器 设计-搅拌器的设计 设计“CA6140法兰盘”零件的机械加工工艺规程及工艺装备 设计机床-S195柴油机机体三面精镗组合机床总体设计及夹具设计 生产线上运输升降机的自动化设计 十字接头零件分析 式升降台铣床拔叉壳体工艺规程制订 手机翻盖注射模的设计 输出轴工艺与工装设计 数控车削中心主轴箱及自驱动刀架的设计 数控机床自动夹持搬运装置 数字娱乐产品设计之硬盘MP4设计 双齿减速器设计 双铰接剪叉式液压升降台的设计 双柱式机械式举升机设计 水泥瓦模具设计与制造工艺分析 水平多关节机器人总体及腰臂部设计 水闸的设计 塑料齿轮模具设计及其型腔仿真加工 塑料模mj004 塑料模具设计 塑料碗注射模设计 台灯罩模具设计及其型腔仿真加工 套筒机械加工工艺规程制订 体齿飞面孔双卧多轴组合机床及CAD设计 同轴式二级圆柱齿轮减速器的设计 推动架”零件的机械加工工艺及 拖拉机变速箱体上四个定位平面专用夹具及组合机床设计 椭圆盖板的宏程序编程与自动编程 挖掘装载机工作装置结构设计 外圆磨床设计 弯管接头塑料模设计 万能材料试验机CAD 万能外圆磨床液压传动系统设计 微型电动机转子冲孔落料模的加工 微型轴承外表面缺陷自动检测线设计 涡轮盘液压立拉夹具 卧式钢筋切断机的设计 五层教学楼(计算书及CAD建筑图 五金-笔记本电脑壳上壳冲压模设计 五金-带槽三角形固定板冲圆孔、冲槽、落料连续模设计 五金-盖冒垫片 五金-护罩壳侧壁冲孔模设计 五金-护罩壳侧壁冲孔模设计2 锡林右轴承座组件工艺及夹具设计 巷道堆垛类自动化立体车库 巷道式自动化立体车库升降部分 消防环保 小电机外壳造型和注射模具设计 小型轧钢机设计 校直机设计 斜齿圆柱齿轮减速器装配图及其零件图 斜联结管数控加工和工艺 星轮加工工艺及夹具设计 型普通车床改造为经济型数控车床 型卧式车床的修理与实现 型星齿轮的注塑模设计 虚拟建模对于机械产品设计研究。 宣化某毛纺厂废水处理工程工艺设计 旋转门的设计 压燃式发动机油管残留测量装置设计 摇臂壳体的加工工艺规程及数控编程 液压绞车设计 液压式双头套皮辊机 一套毕业设计设计说明书(轴盖复合模的设计与制造) 引部机壳的加工工艺规程及数控编程 用于带式运输机上的传动及减速装置 玉米脱粒机设计 载机工作装置的实体建模及运动仿真 支撑掩护式液压支架的设计 支架零件图设计 知识竞赛抢答器PLC设计 织机导板零件数控加工工艺与工装设计 直动型弧面凸轮机械手的设计 制冷专业毕业设计(家用空调) 轴机械加工工艺规程与钻床夹具设计 轴加工工艺设计和加工程序编制 轴类零件机械加工工艺规程设计 轴向柱塞泵设计 注射机模具 注塑-PDA模具设计 注塑-wk外壳注塑模实体设计过程 注塑-底座注塑模 注塑-电流线圈架塑料模设 计 注塑-对讲机外壳注射模设计 注塑-阀销注射模设计 注塑-肥皂盒模具设计 注塑-闹钟后盖毕业设计 注塑-普通开关按钮模具设计 注塑-软管接头模具设计 注塑-手机充电器的模具设计 注塑-鼠标上盖注射模具设计 注塑-塑料挂钩座注射模具设计 注塑-塑料架注射模具设计 注塑-小电机外壳造型和注射模具设计 注塑-斜齿轮注射模 注塑-心型台灯塑料注塑模具毕业设计 注塑-旋纽模具的设计 注塑-牙签合盖注射模设计 注塑-游戏机按钮注塑模具设计 自动上料机机架部件设计及性能试验 自动洗衣机行星齿轮减速器的设计 总泵缸体夹具设计 总泵缸体加工 组合机床设计 组合机床主轴箱及夹具设计 组合件数控车工艺与编程 组合铣床的总体设计和主轴箱设计 钻法兰四孔夹具 以上目录来自:

立式钻削中心主轴系统结构设计 论文编号:JX472 有设计图,论文字数:19933,页数:64 有开题报告,任务书 摘要 随着数控技术的发展,传统的立式钻床、铣床等设备并不能满足高加工精度,高加工效率,高速加工的加工要求。为此,在传统的立式钻床、铣床与新型数控机床技术的基础上,开发了以钻削为主,并兼有攻丝、铣削等功能,且备有刀库并能够自动更换刀具来对工件进行多工序加工的数控机床—钻削中心。 本文主要针对钻削中心的主轴系统进行设计。在本设计中,主轴调速取消了齿轮变速机构,而是由交流电动机来调速;主轴与电机轴之间采用多楔带传动;主轴内部刀具的自动夹紧,则采用了碟形弹簧与气压传动技术;主轴的垂直进给采用了半闭环伺服进给系统;主轴的支承采用了适应高刚度要求的轴承配置。 总之,通过对主轴系统的设计,使系统满足了钻削中心高效、高加工精度的要求。 关键词 数控技术 钻削中心 主轴系统 Abstract With the development of NC technology, the traditional vertical drilling, milling machine and other equipment and can not meet the high precision machining, Processing high-efficiency, high-speed machining requirements. Therefore, in the traditional vertical drilling machine, CNC milling machine and new technology on the basis of developing a drilling mainly, and both tapping, milling, and other functions, With cutting tool can automatically replace the multi-process workpiece machining CNC machine tools – Drilling Center. This paper is concerned with the drilling spindle system design. In this design, the spindle speed of the complete elimination of the variable speed gear, and a fully by the AC motor is to be achieved. Wedge Belt Drive is used between spindle and motor shaft. Internal spindle automatic tool clamping, the use of a disc spring with pressure transmission technology;The vertical axis feed using a semi-closed-loop servo control system; The supporting of spindle uses high stiffness requirements of the bearing arrangement. In short, through the spindle system design, allowing the system to meet the drilling center efficient, high-precision processing of the request. Keywords NC technology Drilling Center spindle system 目录 摘要I Abstract II 第1章 绪论 1 数控技术发展状况及发展趋势 1 概述 1 数控技术国内外发展现状 2 数控系统的发展趋势 2 课题研究的目的与意义 5 设计方案的确定 6 第2章 钻削中心主轴部件结构设计 7 主轴的结构设计 7 主轴的基本尺寸参数的确定 7 主轴端部结构 8 主轴刀具自动夹紧机构 9 主轴的验算 11 主轴材料和热处理的选择 15 主轴传动的设计 16 传动方式的选择 16 多楔带带轮的设计计算 17 多楔带的选择及带轮尺寸参数的确定 19 传动件在主轴上的位置 20 主轴电动机的选择 21 主轴轴承 22 主轴轴承的选用 22 主轴轴承的配置 24 滚动轴承调整和预紧方法 24 主轴轴承的润滑 25 碟形弹簧的计算 27 钻削力分析 27 碟形弹簧设计计算 29 碟形弹簧的校核 31 气缸的设计计算 33 气缸的结构设计 33 气动回路的选择 37 第3章 主轴进给系统的设计 39 概述 39 伺服进给系统的组成 39 伺服进给系统的类型 39 进给系统设计计算 41 主要参数的设定 41 切削力的估算 41 滚珠丝杠副设计计算 42 丝杠的校核 45 选伺服系统和检测装置 47 伺服电机计算 47 结论49 致谢50 参考文献 51 附录1 52 附录2 57 以上回答来自:

相关百科