杂志信息网-创作、查重、发刊有保障。

氨基树脂胶粘剂的研究与应用论文

发布时间:2024-07-07 12:06:26

氨基树脂胶粘剂的研究与应用论文

以合成树脂为主体,加入固化剂和其他助剂配制而成的胶粘剂。合成树脂是由小分子物质在一定条件下,经聚合或缩合而成。合成树脂胶粘剂在耐水、耐热、耐腐蚀等性能及操作工艺方面都比天然树脂胶好。合成树脂胶粘剂是制造木质人造板和集成材不可缺少的原料,其用量占首位。其次是建筑和机械制造业,用于室内装修、密封和机械修补;轻工业中的快速包装,无线装订,皮革及文体用具的粘合。此外,现代医学、电子器件和文物修复保护中,合成树脂胶粘剂也起着重要作用。

简史

合成树脂胶粘剂是20世纪初的产物。美国贝克兰()于1907年发明了酚醛树脂,并用于模压制品,自此合成树脂开始进入胶粘剂领域。第一次世界大战后,随着航空工业和化学工业的发展,于30年代又研制成醇酸树脂、脲醛树脂、聚醋酸乙烯酯胶粘剂。胶粘剂的发展深刻地为时代的需要和科学技术的发展所影响。为了解决胶粘剂的耐水性和耐久性,40~50年代三聚氰胺甲醛树脂胶、间苯二酚树脂胶、环氧树脂胶相继问世;60年代中期出现了杂环高分子耐高温胶粘剂;70年代出现了具有十分优良性能的改性丙烯酸胶粘剂。由于高分子材料及胶接技术的革新和突破,促使合成树脂胶粘剂的迅速发展,到80年代末,品种已达数千种,产量占胶粘剂总产量的80%以上。

中国合成树脂胶粘剂起步较晚。50年代中期开始研制酚醛树脂和脲醛树脂胶粘剂,主要用于木材加工工业,60年代初开始大规模生产。与此同时浸渍用三聚氰胺甲醛树脂胶、聚醋酸乙烯乳胶也相继问世。随着木材加工工艺的革新和复合材料粘接技术的发展,70~80年代又出现了热熔胶、异氰酸酯胶及丙烯酸树脂胶粘剂等,品种已达300余种。

分类

合成树脂胶粘剂种类很多。按其用途可分为结构胶和非结构胶。①结构胶:用于胶接受力部位,一般要求接头所承受的应力和被粘物体本身相当。例如环氧及改性环氧树脂胶、酚醛及改性酚醛树脂胶、间苯二酚甲醛树脂胶及杂环高分子胶等均属之。②非结构胶:用在非主要受力部位上。非结构胶对力学方面的要求较结构胶低。例如脲醛树脂胶、聚醋酸乙烯酯胶等均是。

合成树脂胶粘剂按其树脂的化学结构和性能,又可分为热固性合成树脂胶和热塑性合成树脂胶。①热固性合成树脂胶:由于在热和催化剂或热和压力的作用下,发生化学反应而变成不熔不溶状态的树脂胶,如酚醛树脂胶、间苯二酚树脂胶、脲醛树脂胶、三聚氰胺甲醛树脂胶、环氧树脂胶、不饱和聚脂树脂胶、聚氨酯胶、有机硅树脂胶等均属之。②热塑性合成树脂胶:可反复受热软化(或熔化)和受冷后凝固的树脂胶。一般是线型高分子化合物。在软化状态下能受压进行模塑加工,在冷却至软化点以下能保持模具形状。例如聚氯乙烯树脂、聚醋酸乙烯酯及其共聚树脂、聚乙烯及其共聚树脂、聚乙烯醇缩醛、聚丙烯酸酯、过氯乙烯树脂等胶均是。

常用合成树脂胶

木材工业常用的合成树脂胶粘剂有以下几种:

酚醛树脂胶

酚类(苯酚、甲酚)与醛类(主要是甲醛),在催化剂作用下缩聚而成的产品。随酚和醛的种类、摩尔比及所用催化剂不同,其反应生成物也不同。有热塑性和热固性两类树脂。在酸性催化剂条件下(pH<4),苯酚过量时,生成线型的热塑性酚醛树脂;在碱性催化剂条件下,醛过量或等量时,生成热固性酚醛树脂。木材工业用的主要是热固性酚醛树脂。其制法是取苯酚与甲醛的摩尔比在1∶~,用不同的催化剂,所制成的树脂性能亦不相同。用氢氧化钠作催化剂,则生成水溶性树脂,主要用于人造板胶粘剂;用氨水为催化剂,制得醇溶性树脂,主要用于浸渍木单板、纸张等制造层积材。酚醛树脂胶耐沸水、耐老化性能好,胶合强度高,其制品属于高耐水室外型产品,主要用于制造一类胶合板、航空胶合板、船舶板、车厢板、木材层积塑料和装饰板等。(见酚醛树脂胶粘剂)

间苯二酚甲醛树脂胶

间苯二酚与甲醛在催化剂作用下缩聚而成的产品。其制法是取间苯二酚与甲醛的摩尔比为1∶~,在微酸或碱性催化剂作用下,经过短时间的回流,用乙醇稀释,即可制得红棕色液体树脂。使用前需往树脂中补加甲醛或多聚甲醛和木粉填加剂。在室温下约需15~50分钟即可固化。间苯二酚树脂胶耐沸水、耐老化性能为木材胶粘剂之首。因而常用于胶合各种木质构件,如大型屋架、桥梁及枕木等。该胶主要缺点是成本高。为了降低成本,一般用它与苯酚甲醛共缩聚,制成间苯二酚—苯酚甲醛树脂胶。常用丁腈橡胶、聚乙烯醇缩醛等改善其胶层的脆性。(见间苯二酚树脂胶粘剂)

氨基树脂胶

尿素及三聚氰胺与甲醛反应制得的树脂胶均属氨基树脂胶。一般为水溶性或醇溶性;多为液状树脂,特殊需要也可制成粉状树脂。脲醛树脂又称尿素甲醛树脂。其制法是将尿素和甲醛缩聚成低分子量的初期产物,根据需要再进行真空脱水,制成不同浓度的液体树脂。使用时需加入固化剂及其他助剂配制成脲醛胶。脲醛胶具有原料成本低、固化速度快、胶层色泽浅、能防腐防霉菌等特点,故广泛用于制造胶合板、刨花板、细木工板和中密度纤维板。其产品属于室内型二类产品。用量约占木材胶粘剂的70~80%。(见脲醛树脂胶粘剂)

三聚氰胺树脂胶

又称三聚氰胺甲醛树脂胶。反应原理与脲醛树脂相似。该胶的耐热水及耐老化性能均比脲醛树脂好,但成本高。为了降低成本,在制造时,常加入适量的尿素制成三聚氰胺尿素甲醛共缩树脂胶。三聚氰胺树脂耐磨、耐热及耐腐蚀性能均优,主要用于制造装饰板。(见三聚氰胺树脂胶粘剂)

聚醋酸乙烯酯胶

醋酸乙烯单体在引发剂的作用下经聚合反应而制成的产品,是热塑性胶粘剂。聚合方法不同,又分为溶液聚合胶和乳液聚合胶。其中产量最大的是乳液聚合胶。常用于木制品胶合的“白胶”,即聚醋乙烯酯乳胶。该胶为自干型胶粘剂,固化后胶层为无色透明,对制品无污染,无臭无毒,对人体无刺激作用,使用方便,不需加固化剂,室温即可固化,初期胶合强度高,且胶膜有韧性。但胶层耐水性差,蠕变性大,故常与热固性树脂(脲醛树脂、三聚氰胺树脂、酚醛树脂)混合使用,或加入交联剂以改进其耐水性和耐热性。聚醋酸乙烯乳胶,对纤维素材料及多孔材料有优良的胶合强度,广泛用于木制品、纸张及织物的胶合,也是家庭常用的胶粘剂。(见聚醋酸乙烯酯胶粘剂)

展望

随着人造板应用领域的扩大,必将从室内家具及装修发展到室外建筑及结构用材。因此对胶粘剂的耐候、耐久及耐腐蚀性能提出新的要求,如改进脲醛树脂胶的耐候和耐久性,进一步降低脲醛胶的甲醛释放量。由于人造板表面加工技术日益发展,所用的配套新胶种如压敏胶、热熔胶将得到进一步发展。同时溶剂型胶粘剂因易造成空气污染和存在易爆、易燃的危险,使其发展受到限制,因而促进了乳液型胶粘剂的发展和应用。

三聚氰胺甲醛树脂是用三聚氰胺与甲醛经甲基化反应再缩聚制得的一种用途广泛的热固性氨基树脂。它可以作为胶粘剂、层压材料、涂料、模塑料用树脂,又可以作为织物、纸张、皮革等的处理剂。因亚甲基两端连有位阻很大的三嗪环,并且多个亚甲基同三嗪环间相互交错,所以固化后树脂硬度大,不易弯曲、伸展,几乎没有韧性。交联密度越大,树脂固化后冲击强度、弯曲强度越低。为了提高强度,降低脆性。

聚氨酯胶粘剂研究现状论文

聚氨酯胶粘剂是目前正在迅猛发展的聚氨酯树脂中的一个重要组成部分,具有优异的性能,在许多方面都得到了广泛的应用,是八大合成胶粘剂中的重要品种之一。聚氨酯胶粘剂具备优异的抗剪切强度和抗冲击特性,适用于各种结构性粘合领域,并具备优异的柔韧特性。聚氨酯胶粘粘剂具备优异的橡胶特性,能适应不同热膨胀系数基材的粘合,它在基材之间形成具有软-硬过渡层,不仅粘接力强,同时还具有优异的缓冲、减震功能。 聚氨酯胶粘粘剂的低温和超低温性能超过所有其他类型的胶粘剂。水性聚氨酯胶粘剂具有低VOC含量、低或无环境污染、不燃等特点,是聚氨酯胶粘剂的重点发展方向。

接触型胶粘剂研发进展及应用具体内容是什么,下面中达咨询为大家解答。接触胶粘剂是一种特殊的压敏胶,其最大特点是“接触”后产生粘结作用,即将同一种胶粘剂涂覆在两个被粘物的表面上,通过两个涂覆面的相互接触发生粘结。被粘面在涂覆接触胶粘剂后,首先需要干燥形成透明的、不粘连的聚合物膜,这也是接触胶粘剂与普通压敏胶的主要区别所在。1.水性聚氨酯转移接触胶粘剂水性聚氨酯主要用于转移型接触胶粘剂的制备。转移型胶粘剂与普通胶粘剂略有不同,两个被粘表面所涂覆的胶粘剂可以是同一种聚合物,也可以是同一类聚合物,但分别与基材的粘结强度不同。当两个被粘表面接触时,两种胶粘剂会粘合在一起;一旦两个粘结件被剥离开,通常会使一种胶粘剂涂膜与基材分离而转移到另一种胶粘剂涂层的表面,因此这类胶粘剂通常是一次性的。Krampe等人首先将15%的水性聚酰胺分散液涂覆于纸质上并立即在120℃下干燥,使分散液在基材上形成隔离层,然后在隔离层表面涂覆35%的水性聚氨酯分散液,形成可转移的聚氨酯涂层;另外在电晕处理过的高密度聚乙烯膜上涂覆一层水性聚氨酯涂层(固含量为35%),80℃干燥5min.以上两种涂层材料的聚氨酯在室温下便可以进行粘结。水性聚氨酯转移接触胶粘剂可以用于多种封口带的制作,且封口为一次性。通过选择不同的隔离剂和涂覆工艺,还可以将转移涂层和结合层分别涂覆于其他多种聚合物膜基材上,形成转移型接触胶粘剂制品。2.天然胶乳型接触胶粘剂天然胶乳本身即可作接触胶粘剂,如NationalStarch生产的KL系列“冷密封胶”实际就是接触胶粘剂。将此种胶粘剂涂覆在基材或基膜上,干燥后可以将其卷起堆放也不会发生粘连,但在一定的压力下,胶粘剂涂膜会发生牢固的粘结作用。天然胶乳最大的特点是粘结快,适合作“快攻”型胶粘剂。这主要因为在压力与快速剪切作用下,乳胶粒表面的保护胶体容易被破坏,使天然胶乳的橡胶分子链暴露出来,形成致密良好的聚异戊二烯膜,因此表现出良好的粘结性能。在将天然胶乳作为接触胶粘剂时,一般需要对其进行改性,主要分为化学改性与共混改性。泰国是最早对天然胶乳进行化学改性并工业化的国家,目前,其产品添加胶乳占化学改性产品的绝大部分市场份额。我国对天然胶乳用作接触胶粘剂的化学改性研究工作也有了很大进展,但截至目前还没有工业化产品面世。与其他水性产品共混是天然胶乳作为接触胶粘剂最常用的方式,例如与丙烯酸系乳液聚合物共混。目前市场上有许多可用于天然胶乳共混改性的商用乳液产品,如BFGoodrich的Hycar系列乳液,该乳液采用丙烯酸丁酯、苯乙烯、丙烯酰胺、丁二烯、衣康酸等共聚制得;还有用丁二烯与苯乙烯进行聚合,然后对天然胶乳进行改性所得的接触胶粘剂产品。3.氯丁胶乳与氯偏乳液接触胶粘剂在胶粘剂领域,氯丁胶乳与天然胶乳的作用及性能相近,接触胶粘剂除了大量使用天然胶乳外,氯丁胶乳在该领域也得到广泛的应用。Brath于1975年就采用氯丁胶乳为基料,以碱催化剂制备的对叔丁基苯酚甲醛树脂作增粘树脂,再加入少量氧化锌,可制得高剥离强度的接触胶粘剂。另外,也可以采用天然增粘树脂对氯丁胶乳进行改性,并用金属氧化物进行交联。日本专利将氯丁胶乳用羧基和赋予其乳化能力的一种树脂乳液进行改性,得到水分散型的接触胶粘剂,其接触粘性在低压、低温、高湿以及干燥后的共聚力、耐热性均得到较好改善。由偏二氯乙烯和丙烯酸酯进行共聚制备的不同玻璃化温度(Tg)的氯偏乳液共混,可以得到接触粘性好、粘结强度高,高温抗蠕变性能好的接触胶粘剂。Padget采用偏二氯乙烯与丙烯酸酯为单体,制备了低Tg为-50~0℃、高Tg为0~30℃的两种乳液,凭借低Tg聚合物的接触粘性与高Tg提供的抗蠕变性能(即持粘性),通过不同Tg聚合物的共混同时提高胶粘剂的接触粘性与持粘性。4.乙烯基酯聚合物接触胶粘剂聚醋酸乙烯酯的Tg为27℃,对各种基材的粘结性能良好,一般可采用内增塑型单体(如乙烯)与其共聚,其粘结性能可得到很大提高。适当乙烯含量的乙烯-醋酸乙烯共聚乳液(EVA)也可以作为接触胶粘剂使用,与聚丙烯酸酯和橡胶类接触胶粘剂相比,EVA接触胶粘剂常常表现出接触粘性(初粘性)和粘结强度差的缺点,可以通过增加增塑剂用量进行改善。Tam等人采用乙烯含量为23%~27%、固含量为40%~70%的EVA乳液,其中除乙烯与醋酸乙烯酯单体外,还加入3%其他共聚单体,最终制得接触粘性好、粘结强度高,尤其与非极性表面之间的粘结牢度高的接触胶粘剂。采用N-羟甲基丙烯酰胺(NMA)参与共聚的EVA乳液是一种特殊的聚合物乳液(EVA/NMA乳液),该乳液的Tg可以控制在-30~30℃之间,通常作为接触胶粘剂的聚合物乳液的Tg为-16~5℃。加入NMA后,体系的粘结强度得到显著提高,同时还可以改善乳液对基材的润湿作用。采用乙烯基酯与丙烯酸酯共聚,通过选择其他适当的共聚单体以及调节单体的配比,所得到的水乳型胶粘剂不需要添加其他助剂,便可直接应用于地板、装饰性层压等材料的接触粘结。另外,还可以将醋酸乙烯酯与氯丁胶乳在增粘树脂中直接共混,可以得到初粘力好、耐热和耐水性优异的水分散型接触胶粘剂。5.丙烯酸酯聚合物接触粘合剂和普通的压敏胶一样,接触型胶粘剂也可以用丙烯酸酯聚合物来配制。丙烯酸系单体种类繁多,不同的丙烯酸系聚合物Tg差异较大,而且丙烯酸系单体与各种乙烯基不饱和单体的共聚特性也有所不同,使该系列产品的物理性质可设计性很强。普通压敏胶与接触型胶粘剂的差别主要表现在聚合物的Tg设计上,接触胶粘剂的Tg需更高一些,以满足其在常温下涂膜不发粘的要求。因此,通过选择软硬单体的最佳配比,控制聚合物的Tg,便可采用丙烯酸系单体制备出性能优异的水乳型接触胶粘剂。信封封口胶、食品袋的密封胶等冷密封胶也是典型的接触胶粘剂,这类胶粘剂以前常采用天然胶乳作为主要粘料,而目前采用苯丙乳液制得的产品性能更佳。Duct通过对该类型的接触胶粘剂与天然胶乳类密封胶进行对比发现,所合成密封胶的密封强度、粘结力、机械强度、稳定性、氧化稳定性、适用时间等性能参数更优异。Sanderson等人通过一定的聚合工艺制备出分子量分布较宽的丙烯酸酯聚合物乳液型接触胶粘剂。他们采用多种丙烯酸酯单体制备出高分子量(5×102~1×105)的乳液聚合物,然后在聚合反应后期加入链转移剂制备低分子量(1×105~2×106)的聚合物,使二者有机的混合在一起。接触胶粘剂由5%~70%的低分子量聚合物与30%~95%的高分子量聚合物组成,聚合单体主要包括丙烯酸丁酯、丙烯酸-2-乙基己酯等软单体,甲基丙烯酸甲酯、苯乙烯、甲基丙烯酸和衣康酸等不饱和羧基单体以及丁二醇双丙烯酸酯、N-羟甲基丙烯酰胺等交联单体与功能单体。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

天然胶粘剂研究论文

粘结剂除了胶料外,还包括溶剂、固化剂、增韧剂、防腐剂、着色剂、消泡剂等辅助成分。粘结剂除了最常用的动物胶外,还包括合成树脂、橡胶和油漆。

①天然粘合剂。它取自于自然界中的物质。包括淀粉、蛋白质、糊精、动物胶、虫胶、皮胶、松香等生物粘合剂;也包括沥青等矿物粘合剂。

②人工粘合剂。这是用人工制造的物质,包括水玻璃等无机粘合剂,以及合成树脂、合成橡胶等有机粘合剂。

使用特性分

①水溶型粘合剂。用水作溶剂的粘合剂,主要有淀粉、糊精、聚乙烯醇、羧甲基纤维素等。

②热熔型粘合剂。通过加热使粘合剂熔化后使用,是一种固体粘合剂。一般热塑性树脂均可使用,如聚氨酯、聚苯乙烯、聚丙烯酸酯、乙烯—醋酸乙烯共聚物等。

③溶剂型粘合剂。不溶于水而溶于某种溶剂的粘合剂。如虫胶、丁基橡胶等。

④乳液型粘合剂。多在水中呈悬浮状,如醋酸乙烯树脂、丙烯酸树脂、氯化橡胶等。

⑤无溶剂液体粘合剂。在常温下呈粘稠液体状,如环氧树脂等。

粘合剂是标签材料和粘结基材之间的媒介,起连结作用。按其特性可以分为永久性和可移除性两种。它有多种配方,适合不同的面材和不同的场合。粘合剂是不干胶材料技术中的最重要的成分,是标签应用技术的关键。

美国一些纸箱厂使用的淀粉大多是玉米淀粉。有的是未经处理的纯玉米粉,有的则经过了化学处理,特别是经过处理的专用淀粉具有良好的稳定粘性和极好的含水性能。有些淀粉呈粉状,有些为粒状。颗粒只是粉末围成的松块,用于下糊糟中调配整批糊。

1、MS改性硅烷:改性硅烷聚合物末端为甲氧基硅烷,1978 年发明由中渊集团发明,该公司是全球唯一的改性硅烷原材料供应商,在此基础之上,比利时诺万科技经过不断的研发创新,生产了一系列应用于建筑、工业、汽车交通、民用等的高品质密封胶和粘黏剂。

2、聚氨酯:聚氨酯全称为聚氨基甲酸酯,是主链上含有重复氨基甲酸酯基团的大分子化合物的统称。它是由有机二异氰酸酯或多异氰酸酯与二羟基或多羟基化合物加聚而成。

3、硅酮:硅酮(Silicones)俗称硅油或二甲基硅油,分子式:(CH3)3SiO(CH3)2SiOnSi(CH3)3 ,系有机硅氧化物的聚合物,是一系列不同分子量的聚二甲基硅氧烷,黏度随分子量增大而增加。

胶黏剂的发展进入了一个漫长的历史进程,人类使用胶黏剂,可以追溯到很久以前。从考古发掘中发现,远在600年前,人类就用水和黏土调和起来,作为胶黏剂,制陶和制砖,把石头等固体粘结成生活用具。我国是发现和使用天然胶黏剂最早的国家之一。远古时代就有黄帝煮胶的故事,一些古代书籍就有关于胶黏剂制造和使用的踪迹,足以证明我国使用胶黏剂的历史之悠久。伴随着生产和生活水平的提高,普通分子结构的胶黏剂已经远不能满足人们在生产生活中的应用,这时高分子材料和纳米材料成为改善各种材料性能的有效途径,高分子类聚合物和纳米聚合物成为胶粘剂重要的研究方向。在工业企业现代化的发展中,传统的以金属修复方法为主的设备维护工艺技术已经不能满足针对更多高新设备的维护需求,为此诞生了包括高分子复合材料在内的更多新的胶黏剂,以便解决更多问题,满足新的应用需求。二十世纪后期,世界发达国家以美国福世蓝(1st line)公司为代表的研发机构,研发了以高分子材料和复合材料技术为基础的高分子复合型胶黏剂,它是以高分子复合聚合物与金属粉末或陶瓷粒组成的双组分或多组分的复合材料,它可以极大解决和弥补金属材料的应用弱项,可广泛用于设备部件的磨损、冲刷、腐蚀、渗漏、裂纹、划伤等修复保护。高分子复合材料技术已发展成为重要的现代化胶黏剂应用技术之一。胶黏剂的危害胶黏剂可能对环境的污染和人体健康的危害,是由于胶黏剂中的有害物质。如挥发性有机化合物、苯、甲苯、二甲苯、甲醛、游离甲苯二异氰酸酯以及挥发性有机化合物等所造成的。挥发性有机化合物(VOC)在胶黏剂中存在较多,如溶剂型胶黏剂中的有机溶剂,三醛胶(酚醛、脲醛、三聚氰胺甲醛)中的游离甲醛,不饱和聚酯胶黏剂中的苯乙烯,丙烯酸酯乳液胶黏剂中的未反应单体,改性丙烯酸酯快固结构胶黏剂中的甲基丙烯酸甲酯,聚氨酯胶黏剂中的多异氰酸酯,α-氰基丙烯酸酯胶黏剂中的SO2,4115建筑胶中的甲醇、丙烯酸酯乳液中的增稠剂氨水等。这些易挥发性的物质排放到大气中,危害很大,而且有些发生光化作用,产生臭氧,低层空间的臭氧污染大气,影响生物的生长和人类的健康,有些卤代烃溶剂则是破坏大气臭氧层的物质。有些芳香烃溶剂毒性很大,甚至有致癌性。 苯的蒸气具有芳香味,却对人又强烈的毒性,吸入和经皮肤吸收都可中毒,使人眩晕、头痛、乏力、严重时因呼吸中枢痉挛而死亡。苯已被列为致癌物质,长期接触有可能引发膀胱癌。空气中最高容许浓度为40mg/m³。甲苯具有较大毒性,对皮肤和黏膜刺激性大,对神经系统作用比苯强,长期接触有引起膀胱癌的可能。但甲苯能被氧化成苯甲酸,与甘氨酸生成马尿酸排出,故对血液并无毒害。短期内吸入较高浓度甲苯可出现眼及上呼吸道明显的刺激症状、眼结膜及眼部充血、头晕、头痛、四肢无力等症状。空气中最高容许浓度100mg/m³。 二甲苯对眼及上呼吸道黏膜有刺激作用,高浓度时对中枢神经系统有麻醉作用。短期内吸入较高浓度二甲苯可出现眼及上呼吸道明显的刺激症状、眼结膜及咽部充血,头晕、头痛、恶心、呕吐、胸闷、四肢无力、意识模糊、步态蹒跚。工业用二甲苯中常含有苯等杂质。甲醛具有强烈的致癌和促癌作用。大量文献记载,甲醛对人体健康的影响主要表现在嗅觉异常、刺激、致敏、肺功能异常、肝功能异常和免疫功能异常等方面。游离甲苯二异氰酸酯在装修中主要存在于油漆之中,超出标准的游离TDI会对人体造成伤害,主要是致敏和刺激作用,出现眼睛疼痛、流泪、结膜充血、咳嗽、胸闷、气急、哮喘、红色丘疹、斑丘疹、接触性致敏性等症状,国际上对游离TDI的限制标准是以下。

胶粘剂研究论文怎么写

1.崔建国,樊平等,“马来松香胶粘剂的制备”,广西化工,1991,第2期,472.Cui Jianguo, Yu Lingchong,“Research on Asymmetric Michael Addition, Part I: Addition of Menthone Imines of Glycinates to Alkyl Acrylates under the Solid Base Conditions”, Synth. Commun., 1990, 20(18), 2887-2893 (SCI收录)3. Cui Jianguo, Yu Lingchong, “ Research on Asymmetric Michael Addition, Part II: Addition of the Menthone Imine of Ethyl Glycinate to Ethyl Acrylate under PTC Condition ”, Synth. Commun., 1990, 20(18), 2895-2900 (SCI收录)4.崔建国,“一种甘氨酸乙酯亚胺合成新方法”,广西师院学报(自然科学版),1991,第1期,5.崔建国,“8-氯-P-1-孟稀的合成研究”,广西师院学报(自然科学版),1992,第2期,186.崔建国,卢军,黄初升,“含硫香料—硫代芳樟醇及其衍生物合成研究”,天然产物研究与开发,1996,8(1),107.卢军,崔建国,樊平,“新型香料—一些单萜硫醇的合成与应用”,广西化工,1996,25(2),128.陈希慧,刘红星,崔建国,卢军,“固体催化剂催化合成假紫罗兰酮的研究”,广西大学学报(自然科学版),1996,21(2),1289.崔建国,新井则义,“CAN作用下脂肪族含氮化合物的游离基反应研究”,有机化学,1996,16(6),54410. 崔建国,黄燕敏,雷平,“潜手性酮类的不对称L-L相转移催化还原反应研究”,广西师院学报(自然科学版),1997,14(1),6411.崔建国,卢军,樊平等,“桂叶油水解制备天然苯甲醛的研究”,广西化工,1997,26(3),112.崔建国,曾陇梅,“一种奎宁季氨盐的简易合成法”,化学试剂,1998,20(3),18713.童叶翔,崔建国,曾陇梅等,“(3S,4S)-1-苄基-3,4-二羟基吡咯的合成表征和电化学行为”, 中山大学学报, 1998, 37(2), 4514.崔建国,朱汝葵,万锋锋等,“一种蘑菇香气香料-1-辛烯-3-醇的合成与应用研究”,广西师院学报(自然科学版),1998,15(1),8015.晏日安,苏镜娱,曾陇梅,崔建国,“一种制备正三十二烷的新方法”,中山大学学报(自然科学版),1998,37(5),12916. 崔建国,晏日安,曾陇梅等,“ 2-(2-异丙基-1,3-二口恶戊烷-2-基)乙基三苯基碘化膦的合成” ,中山大学学报(自然科学版), 1998, 37 (6),109-11117. Cui Jianguo, Zeng Longmei, Su Jingyu, “ The Ozonization of Stigmast-4,22-dien-3,6-dione ”, Chemical Research in Chinese University, 1998, (4 ),423 (SCI 收录)18. 崔建国,晏日安,曾陇梅等,“苯乙酮在静态磁场促进下的相转移催化不对称还原” ,化学研究与应用,1998, 10(6), 63919.晏日安,苏镜娱,崔建国,“(s)-(+)-γ-苄氧基甲基-γ-丁内酯的合成研究” ,精细化工,1998,15(6),52-5320. 晏日安,崔建国,苏镜娱,“光学活性α,β-不饱和-γ-内酯的合成” ,合成化学,1999, 7(1),2421.晏日安,苏镜娱,曾陇梅,崔建国,“(±)-二氢猕猴桃内酯的合成研究”,中国医药工业杂志,1999, 30(8), 338-34022.晏日安,苏镜娱,曾陇梅,崔建国,“(±)-二氢猕猴桃内酯的合成研究(Ⅱ)”,中山大学学报(自然科学版),1999,38(4),126-12823. 崔建国,何小玉,林翠梧,“固—液相转移条件下潜手性酮的不对称还原”,广西科学,2000,7(1),3824.崔建国,曾陇梅,苏镜娱,“多羟基甾醇的合成及抗肿瘤细胞活性构效关系研究”,高等学校化学学报,2000,21(9),1399-1404 (SCI 收录)25. Zeng Longmei, Cui Jianguo, Su Jingyu, “Synthesis of Hydroxylated Sterols(II): Synthesis of 24-methylenecholest-4-en-3β,6α-diol”, Chemical Research in Chinese University, 2000, 16(3 ),271-272 (SCI 收录)26.崔建国,曾陇梅,陆伟刚等,“固-液相转移Wittig反应在甾醇支链合成中的应用”,中山大学学报(自然科学版), 2000, 39 (2),46-5027. Zeng Longmei, Cui Jianguo, Su Jingyu, “Synthesis of 2 Cytotoxic Sterols from Soft Corals”,ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY 1999, Vol 218, Iss AUG, Part 2, pp 160-ORGN(SCI 收录)28.“吡虫啉相关化合物的合成及其杀虫效能”,精细化工,2000,17(8),44729.崔建国,黄燕敏,曾陇梅“Novel Oxidation of Homoallylic sterols with Pyridinium Dichromate ”, 广西科学,2001,8(4),28130.陈芬,林翠梧,崔建国,“沐浴海绵 Spongia zimocca aubspecles irregularia(Lendenfeld) 化学成分的研究”,广西大学学报(自然科学版),2001,26(1),5231.Cui Jianguo, Zeng Longmei, Su Jingyu, “Synthesis of Polyhydroxysterols (Ⅰ) : Synthesis of 24-methylenecholest-4-en-3β,6β-diol, a cytotoxic natural hydroxylated sterol ”,Steroids, 2001,66(1),33-38 ( SCI 收录 )32.崔建国、王春水、廖小华、马建强、黄燕敏,“相转移催化条件下从桂叶油制备天然苯甲醛的研究”,化学世界,2002,43(6),31533.崔建国、曾陇梅、苏镜娱、何小玉,“24-亚甲基胆甾-4-烯-3β,6α-二醇的结构表征”,有机化学,2002,22(7),515 ( SCI 收录 )34. 崔建国、林翠悟、曾陇梅、苏镜娱,“Synthesis of polyhydroxysterols (III): synthesis and structural elucidation of 24-methylenecholest-4-en-3β,6α-diol ”,Steroids, 2002,67(13-14),1015-1019 (SCI 收录)35. Cui Jianguo, Zeng Longmei, Su Jingyu, Lin Cuiwu, “ Regio- and Stereo-selective Reductions of Steroidal 4-en-3,6-dione ”, Chem. Res. Chinese Uni., 2002, 18(4), 400 ( SCI收录 )36.于法锋,黄初升,崔建国,“KF-Al2O3试剂在Michael加成反应中的新应用”,广西师院学报(自然科学版),2002,19(4),37.韩莉妲、崔建国、黄初升,“海洋生物中具有生物活性的多羟基甾醇及甾体皂甙”,有机化学,2003,23(3),305-31138.崔建国、何小玉、黄燕敏、曾陇梅,“3-乙酰氧基胆甾-5-烯-19-羟基-24-酮的制备与表征”,广西科学,2003,10(1),36-3839.崔建国,曾陇梅,苏镜娱,“多羰基甾酮的选择性还原反应研究”,高等学校化学学报,2003,24(4),63940.何小玉,崔建国,黄初升,钟振国,“蒲葵根中脂肪油的GC-MS联用分析”,化工技术与开发,2003,32(2),31-3241.于法锋,刘红星,黄初升,崔建国,“三种异戊烯氧基苯丙素天然产物的全合成”,有机化学(增刊),2003,42.钟益宁,覃红云,崔建国,黄初升,“左旋多巴息夫碱的合成研究”,广西师院学报(自然科学版),2003,20(2),843.崔建国,黄燕敏,何小玉,曾陇梅,“多羟基甾醇的合成(Ⅳ):20-亚甲基-4-孕烯-3β,6β-二醇的制备及其抗肿瘤活性研究”,广西科学,2004,11(1),4344. 刘红星,崔建国,黄初升,海洋生物中具有生物活性的多羟基甾醇及甾体皂苷,有机化学23(3),305-311,2003。45. 何小玉,崔建国,蒲葵根中脂肪油的GC-MS联用分析,化工技术与开发,32(2),2003。46. 黄初升,崔建国,三种异戊烯氧基苯丙素天然产物的全合成,有机化学 (增刊)8,2003。47. 崔建国(2),黄初升,左旋多巴息夫碱的合成研究,广西师范学院学报(自然科学版),20(2),2003。48. 崔建国,何小玉,黄燕敏,3-乙炔氧基胆甾-5-烯-19-羟基-24-酮的制备与表征,广西科学, 10(1)36,2003。49. 崔建国(2),陈文纳,手性相转移催化不对称烃基化反应,广西师范学院学报(自然科学版),20(1),2003。50. 崔建国等,多羰基甾酮的选择性还原反应研究,高等学校化学学报,24(4)639,2003。51. 韩莉妲,崔建国,有机铝化合物在有机合成中的应用,化工技术与开发,32(4),2003。52. 黄燕敏,崔建国,钛化合物在有机合成中的应用,化工技术与开发,32(5),2003。53. 黄燕敏,崔建国,苯甲酰丙酮的选择性还原研究,全国第二届现代有机合成研讨会论文集,。54. 崔建国(1),多羟基甾醇的合成(Ⅳ):20-亚甲基-4-孕烯-3β,6β-二醇的制备及其抗肿瘤活性研究,广西科学,2004,11(1),4355. 崔建国(1),左旋多巴Schiff碱的合成及其不对称相转移催化烷基化”,有机化学,2004,24(增刊),78,核心期刊。56. 崔建国(2),醛的不对称加成进展,化工技术与开发,2005,34(3):22。57. 崔建国(2),海洋多羟基甾醇硫酸酯钠盐及其生理活性研究进展,天然产物研究与开发(18):681-685。58. 崔建国(2)海洋生物中的不同结构多羟基甾醇,《化学通报》2005,68(8),W088。

一、论文研究结论写作的内容 论文研究结论既然不能简单重复研究结果,就必须对研究结果有进一步的认识。结论的内容应着重反映研究结果的理论价值、实用价值及其适用范围,井可提出建议或展望。也可指出有待进一步解决的关键性问题和今后研究的设想。因此,在结论中一般应阐述; 1、研究结果说明了什么问题及所揭示的原理和规律(理论价值); 2、在实际应用上的意义和作用(实用价值); 3、与前人的研究成果进行比较.有哪些异同,作了哪些修正、补充和发展; 4、本研究的遗留问题及建议和展望。当然并不是所有的结论写作都要具备上述内容。作者可根据研究结果的具体情况而定,但第一点应是必不可少的。 二、论文研究结论写作内容和类型 1、分析综合:对正文内容重点进行分析、概括,突出作者的观点。 2、预示展望:在正文论证的理论、观点基础上对其价值、意义、作用推至未来,预见其生命力。 3、事实对比:对正文阐述的理论、观点以事实做比较形成结论。 4、解释说明:对正文阐述的理论、观点做进一步说明,使理论、观点更加明朗。 5、提出问题:在对正文论证的理论、观点进行分析的基础上,提出与本研究结果有关的有待进一步解决的关键性问题。 三、论文研究结论的常用句型 1、以“阐明了……机制”、“研究了……”,或者“为了……的目的”讲述研究目的。注意写出最适合表达目的的动词。 2、“开展了……”写研究内容和方法。 3、“结果表明……”讲述研究得出的主要结果。 4、“本研究的结果意味着……”讲述得出的结论。 论文研究结论是每篇论文的重要组成,将它们完整的表述清楚却不那么容易。在了解了研究论文怎么写后,我们才能更好地完成我们的毕业论文。

环氧树脂固化剂的研究论文

环氧树脂是一类具有良好的粘接性、电绝缘性、化学稳定性的热固性高分子材料,作为胶粘剂、涂料和复合材料等的树脂基体,广泛应用于建筑、机械、电子电气、航空航天等领域。环氧树脂使用时必须加入固化剂,并在一定条件下进行固化反应,生成立体网状结构的产物,才会显现出各种优良的性能,成为具有真正使用价值的环氧材料。因此固化剂在环氧树脂的应用中具有不可缺少的,甚至在某种程度上起着决定性的作用。环氧树脂潜伏性固化剂是近年来国内外环氧树脂固化剂研究的热点。所谓潜伏性固化剂,是指加入到环氧树脂中与其组成的单组分体系在室温下具有一定的贮存稳定性,而在加热、光照、湿气、加压等条件下能迅速进行固化反应的固化剂,与目前普遍采用的双组分环氧树脂体系相比,由潜伏性固化剂与环氧树脂混合配制而成的单组分环氧树脂体系具有简化生产操作工艺,防止环境污染,提高产品质量,适应现代大规模工业化生产等优点。 环氧树脂潜伏性固化剂的研究一般通过物理和化学的手段,对普通使用低温和高温固化剂的固化活性加以改进,主要采取以下两种改进方法:一是将一些反应活性高而贮存稳定性差的固化剂的反应活性进行封闭、钝化;二是将一些贮存稳定性好而反应活性低的固化剂的反应活性提高、激发。最终达到使固化剂在室温下加入到环氧树脂中时具有一定的贮存稳定性,而在使用时通过光、热等外界条件将固化剂的反应活性释放出来,从而达到使环氧树脂迅速固化的目的。本文就国内外环氧树脂潜伏性固化剂的研究进展作一基本概述。1 环氧树脂潜伏性固化剂 改性脂肪族胺类 脂肪族胺类固化剂如乙二胺、己二胺、二乙烯三胺、三乙烯四胺等是常用的双组分环氧树脂室温固化剂,通过化学改性的方法,将其与有机酮类化合物进行亲核加成反应,脱水生成亚胺是一种封闭、降低其固化活性,提高其贮存稳定性的有效途径。这种酮亚胺型固化剂与环氧树脂组成的单组分体系通过湿气和水分的作用而使酮亚胺分解成胺因此在常温下即可使环氧树脂固化。但一般固化速度不快,使用期也较短,原因是亚胺氮原子上的孤对电子仍具有一定的开环活性。为解决这一问题,武田敏之用羰基两端具有立体阻碍基团的酮3-甲基-2 -丁酮与高活性的二胺1,3 二氨甲基环己烷反应得到的酮亚胺不仅具有较高的固化反应活性,而且贮存稳定性明显改善。另外日本专利报道采用聚醚改性的脂肪族胺类化合物与甲基异丁基酮反应得到的酮亚胺也是一种性能良好的环氧树脂潜伏性固化剂。脂肪族胺类固化剂通过与丙烯腈、有机膦化合物,过渡金属络合物的反应,也可使其固化反应活性降低,从而具有一定的潜伏性。 芳香族二胺类芳香胺由于具有较高的Tg而受到重视,但由于其的剧毒性而限制了应用。经改性制得的芳香族二胺类固化剂则具有Tg高、毒性低、吸水率低、综合性能好的优点。近年来研究较多的芳香族二胺类固化剂有二胺基二苯砜(DDS)、二胺基二苯甲烷(DDM)、间苯二胺(m PDA)等,其中以DDS研究得最多最成熟,成为高性能环氧树脂中常用的固化剂。DDS用作环氧树脂潜伏性固化剂时,与MP DA、DDM等芳香二胺相比,由于其分子中有强吸电子的砜基,反应活性大大降低,其适用期也增长。在无促进剂时,100克环氧树脂配合物的适用期可达1年,固化温度一般要达到200℃。为了降低其固化温度,常加入促进剂以实现中温固化。近年来为了改善体系的湿热性能和韧性,对DDS进行了改性,开发出多种聚醚二胺型固化剂,使得它们在干燥时耐热性有所降低,这些二胺因两端胺基间的距离较长,造成吸水点氨基减少,并且具有优良的耐冲击性。 双氰胺类 双氰胺又称二氰二胺,很早就被用作潜伏性固化剂应用于粉末涂料、胶粘剂等领域。双氰胺与环氧树脂混合后室温下贮存期可达半年之久。双氰胺的固化机理较复杂,除双氰胺上的4个氢可参加反应外,氰基也具有一定的反应活性。双氰胺单独用作环氧树脂固化剂时固化温度很高,一般在150~170℃之间,在此温度下许多器件及材料由于不能承受这样的温度而不能使用,或因为生产工艺的要求而必须降低单组分环氧树脂的固化温度。解决这个问题的方法有两种,一种是加入促进剂,在不过分损害双氰胺的贮存期和使用性能的前提下,降低其固化温度。这类促进剂很多,主要有咪唑类化合物及其衍生物和盐、脲类衍生物、有机胍类衍生物、含磷化合物,过渡金属配合物及复合促进剂等,这些促进剂都可以使双氰胺的固化温度明显降低,理想的固化温度可降至120℃左右,但同时会使贮存期缩短,而且耐水性能也会受到一定的影响。 另一种降低单组分环氧树脂固化温度的有效方法是通过分子设计的方法对双氰胺进行化学改性。在双氰胺分子中引入胺类,特别是芳香族胺类结构,以制备双氰胺衍生物,如瑞士Ciba Geigy公司开发的HT 2833,HT 2844是一种用3,5 二取代苯胺改性的双氰胺衍生物,其化学结构式如下:据报道,此类固化剂与环氧树脂相溶性较好,贮存期长,固化速度快,在100℃下固化1h,剪切强度可达25MPa,150℃固化30min,剪切强度可达27MPa。日本旭化成工业公司研制的粉末涂料专用固化剂AEHD-610,AEHD-210也是一种改性双氰胺衍生物。另外,日本有采用芳香族二胺如4,4’ 二氨基二苯甲烷(DDM),4,4’ 二氨基二苯醚(DDE),4,4’ 二氨基二苯砜(DDS),对二甲苯胺(DMB)分别与双氰胺反应制得其衍生物的报道。上述引入苯环后的双氰胺衍生物与双酚A型环氧树脂的相溶性与双氰胺相比明显增加,与E 44环氧树脂组成的单组分体系在室温贮存期长达半年之久,固化温度均低于双氰胺。 国内有关对双氰胺进行化学改性得到双氰胺衍生物的报道较少,温州清明化工采用环氧丙烷与双氰胺反应制得了双氰胺MD 02,其熔点154~162℃,比双氰胺的熔点(207~210℃)低了45℃左右,采用100份E 44环氧树脂,15份MD 02和0 5份2 甲基咪唑组成的配方,150℃下凝胶的时间为4min。用苯胺 甲醛改性双氰胺所得的衍生物与双酚A型环氧树脂混溶性增加,在丙酮和酒精的混合溶液中有良好的溶解性,且反应活性增加,贮存性也较长。 咪唑类 咪唑、2-甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑等咪唑类固化剂是一类高活性固化剂,在中温下短时间即可使环氧树脂固化,因此其与环氧树脂组成的单组分体系贮存期较短,必须对其进行化学改性,在其分子中引入较大的取代基形成具有空间位阻的咪唑类衍生物,或与过渡金属Cu、Ni、Co、Zn等的无机盐反应生成相应的咪唑盐络合物,才能成为在室温下具有一定贮存期的潜伏性固化剂。对咪唑类固化剂进行化学改性的方法很多,从反应机理上来看,主要有两种:一种是利用咪唑环上1位仲胺基氮原子上的活泼氢对其进行改性,这类改性剂有异氰酸酯、氰酸酯、内酯等,改性后所得的咪唑类衍生物具有较长的贮存期和良好的机械性能。另一种方法是利用咪唑环上3位N原子的碱性对其改性,使它与具有空轨道的化合物复合,这类物质包括有机酸、金属无机盐类、酸酐、TCNQ、硼酸等。其中金属无机盐类一般是含具有空轨道的过渡金属离子,如Cu2+、Ni2+、Zn2+、Cd2+、Co2+等,它们与咪唑形成配位络合物,具有很好的贮存性,而在150~170℃迅速固化,但无机盐类、有机酸及其盐类等的引入,将会破坏原咪唑固化产物的耐水解性和耐湿热性。 国内对咪唑类潜伏性固化剂的研究较少,国外市场则相对较多。日本第一工业制药株式会社将各种咪唑与甲苯二异氰酸酯(TDI)、异佛尔酮二异氰酸酯(IPDI)、六次甲基二异氰酸酯(HDI)反应制成封闭产物,减弱了咪唑环上胺基的活性,有较长使用期,当温度上升到100℃以上,封闭作用解除,咪唑恢复活性,环氧树脂固化。 有机酸酐类 有机酸酐类固化剂与双氰胺相似,具有较好的贮存稳定性,尽管固化温度较高,可是固化产物的力学性能、介电性能和耐热性能均较好。不过这类固化剂由于酸酐键容易水解的缘故而耐湿性较差,并且不容易进行化学改性,因此一般采用添加促进剂的方法降低有机酸酐类固化剂的固化温度。有机酸酐类固化剂常用的固化促进剂包括叔胺和叔胺盐,季膦盐,路易斯酸-胺络合物,乙酰丙酮过渡金属络合物等。 有机酰肼类与双氰胺一样,有机酰肼也是一种高熔点固体,但其固化温度比双氰胺低。有机酰肼与环氧树脂组成的单组分环氧树脂胶体系的贮存期可达4个月以上,常用的有机酰肼化合物有:琥珀酸酰肼、己二酸二酰肼、癸二酸酰肼、间苯二甲酸酰肼和对羟基安息香酸酰肼(POBH)等。不同种类的有机酰肼固化温度不尽相同,由于其固化温度较高,故常加入促进剂来降低固化温度,所用的促进剂与双氰胺基本相同。 路易斯酸 胺络合物类路易斯酸 胺络合物是一类有效的环氧树脂潜伏性固化剂,由BF3、AlCl3、ZnCl2、PF5等路易斯酸与伯胺或仲胺形成络合物而成。作为环氧树脂的固化剂,这类络合物常温下相当稳定,而在120℃时则快速固化环氧树脂,其中研究最多的是三氟化硼-胺络合物。据报道,一种合成的新型三氟化硼-胺络合物BPEA-2具有良好的潜伏性、粘接性能和韧性。路易斯酸 胺络合物也是酸酐类和芳香胺类潜伏性固化剂常用的促进剂。 微胶囊类 微胶囊类环氧树脂潜伏性固化剂实际上是利用物理方法,将室温双组分固化剂采用微细的油滴膜包裹,形成微胶囊,加入到环氧树脂中后将固化剂的固化反应活性暂时封闭起来,而通过加热、加压等条件使胶囊破裂,释放出固化剂,从而使环氧树脂固化。微胶囊类环氧树脂潜伏性固化剂的成膜剂包括纤维素、明胶、聚乙烯醇、聚酯、聚砜等,由于制备工艺要求严格,胶囊膜的厚度对贮存、运输和使用会带来不同程度影响。2 结语 虽然环氧树脂潜伏性固化剂的种类很多,但是每种类型的固化剂都有一定的优点和缺点,到目前为止,仍然没有发现一种性能特别优良,十分理想的潜伏性固化剂。目前环氧树脂潜伏性固化剂的研究主要集中在双氰胺类,咪唑类和芳香族二胺类固化剂。同时在达到潜伏性固化剂使用中降低固化温度、缩短固化时间、延长适用期的要求的基础上,进一步解决环氧树脂固化产物耐水、耐热,以及提高韧性等问题,也是今后环氧树脂潜伏性固化剂研究的重点。不仅如此,随着人们对环境保护意识的提高,低毒和无毒的环保型环氧树脂潜伏固化剂的研究也是必然的趋势。

与环氧树脂胶在放一起的话起凝固的作用一般都起的是辅助作用

可以直接联系上海飘铃啊

环氧树脂胶粘剂专利技术 1、耐航空燃料的不含铬酸盐的、单组分型的、非固化性的防腐蚀密封剂2、一种半导体封装用的液体环氧组合物及其用途3、耐热性、耐寒性优越的热熔粘合剂组合物4、建筑结构用粘合剂5、粉状可交联织物粘合剂组合物6、聚合物分散体作为密封或涂料组合物的粘合剂的用途7、复合环氧树脂8、厚膜阴极电泳涂料用树脂乳液的制备9、彩釉玻璃胶粘剂10、一种芳香胺环氧固化剂及其制备方法11、一种液体芳香胺固化的环氧灌封材料及其制备方法12、瞬间堵漏胶及施用方法13、冷固化的环氧树脂配方14、用于制备改进树脂的改进方法15、光固化胶粘剂 16、紫外线固化性粘合剂组合物及其物品17、含有二硫代∴酰胺粘合促进剂的环氧粘合剂18、高取代度羟丙基淀粉的制备工艺方法19、用于粘结半导体晶片的无溶剂环氧基粘合剂和其制备方法20、一种高级耐热阻燃灌封浸渍树脂胶21、阻燃热塑性树脂组合物22、粘锚式包钢加固粘结材料及加固工法23、含单烃基化二烯聚合物及其环氧化衍生物的聚氨酯涂料和粘合剂24、一种抗流淌糊状环氧胶粘剂25、粘合剂组合物和粘合片26、改进粘合性的可固化有机聚硅氧烷组合物27、环氧树脂固化剂及其制备方法28、湿气活化的粘合剂组合物29、以脂化学反应产物为基的粘合剂 30、用于柔性印刷电路的耐高温胶粘剂及制备31、环氧粘合剂及使用它们的铜箔和层板32、辐射交联及随后热硬化的粘合剂33、高强石膏粘结粉34、高强度、高韧性和高耐磨性的聚氨酯-环氧树脂复合材料的制备方法35、具有耐高温性的结构粘合剂组合物36、氨基多官能环氧树脂类耐热建筑结构胶粘剂37、改善压敏粘合剂在低于0°F温度下的性能的方法38、工艺纸草上光保护剂39、双酚A环氧丙烯酸双酯的制备方法40、一种新型双组分绝缘粘胶剂41、缩醛法制备酚醛型环氧树脂的方法42、增强聚酰亚胺对活性金属的粘合力的方法43、环氧双组分透明软性封装胶的制备44、绒屑粘合剂组合物45、单组分、不流淌的韧性环氧胶粘剂46、一种无苯低毒环氧漆稀释剂47、耐高温瞬间堵漏胶及其配制方法48、低粘度环氧树脂组合物49、一种田菁胶的化学改性工艺及其制品50、具有优良粘合性能的光聚合组合物及其制品和制备方法51、室温固化耐高温高强韧性环氧结构胶粘剂及制备方法52、室温下可固化的结构型环氧糊状粘合剂及其制造方法53、环氧树酯混合料54、用作阴极电解涂层用的粘合剂55、具有高附着强度的可焊接传导合成物56、树脂组合物以及用其制造层压板的方法57、环氧树脂组成物58、环氧树脂配方59、环氧树脂组合物60、中温固化高强度环氧胶粘剂

相关百科