杂志信息网-创作、查重、发刊有保障。

理想气体混合物研究论文

发布时间:2024-07-05 17:21:27

理想气体混合物研究论文

1. 气体性质 理想气体状态程 理想气体混合物 真实气体状态程(范德华程) 气体液化及临界参数 比参数、应状态原理及普遍化压缩图 2. 热力基础 热力基本概念 热力第定律 恒容热、恒压热、焓 热容、恒容变温程、恒压变温程 热力第定律单纯状态变化(等温、等压、等容、绝热、节流膨胀)程应用 热力第定律相变化变化(逆相变、逆相变)程应用 化计量数、反应进度 标准摩尔焓、标准摩尔燃烧含及由标准摩尔焓标准摩尔燃烧焓计算标准摩尔反应焓变 盖斯定律及其应用 卡诺循环 熵、热力第二定律及自发性判断 单纯pVT变化熵变计算 相变程熵变计算 热力第三定律化变化程熵变计算 亥姆霍兹函数吉布斯函数及其函数変计算 热力函数关系式 3.化平衡 偏摩尔量化势 气体组化势 化平衡条件与理想气体化反应标准平衡数 化反应等温程 项反应化平衡 温度标准平衡数影响 温度、压力、浓度、惰性组等素理想气体化平衡影响 逸度与逸度 真实气体反应化平衡及压力真实气体化平衡影响 平衡数及平衡组计算 4.相平衡 相律 单组两相平衡温度与压力关系 水相图 拉乌尔定律亨利定律 理想液态混合物、理想稀溶液及稀溶液依数性 度及度 液态组系统各组化势 杠杆规则 二组理想液态混合物气-液平衡相图 二组真实液态混合物气-液平衡相图 二组液态部互溶系统液 - 液平衡相图 简单二组凝聚系统相图 稳定化合物与稳定化合物二组凝聚系统相图 二组固态部互溶系统液-固平街相图 二组固态互溶系统液-固平衡相图 三组系统液-液平衡相图 5.统计热力基础 独立系统、相依系统、离域系统 粒各种运形式能级及能级简并度 能级布布与状态布 微态数及系统总微态数 等几率原理、概布与平衡布 玻耳兹曼布 粒配函数析性质及粒配函数计算 系统热力能与配函数关系 系统摩尔定容热容与配函数关系 系统熵与配函数关系 其热力函数与配函数关系 理想气体反应标准平衡数

自引力坍缩理想气体的熵齐柏华 张镇九 【摘要】:讨论了理想气体自引力坍缩时的熵,得出与黑洞的熵相近的结论,从而说明了黑洞熵的起源。【作者单位】: 武汉工业大学数学物理系!430070 华中师范大学 【关键词】: 黑洞 热力学 熵 【分类号】:【DOI】:CNKI:SUN:【正文快照】: 1问题的提出1915年,Einstein提出广义相对论的引力方程,次年Schwarzschild求解球对称静态真空解〔‘1:ds’—一c’(1—ZGM/rcZ)dt’+(1—ZGM/rc2)-‘d一十r’d62+r’sin’6d4(1)其中,M为总质量,r—0及r一凡一ZGM/c’是解的二个奇点,解(1)描述一黑洞,称为

混合气体保护焊毕业论文

到万方这类论文数据库找,那里论文多,且质量高。自己懒得去找的话,可以去淘宝的《翰林书店》店铺看看,店主应该能帮你下载到这论文的

常州工程学院毕 业 设 计(论文)、题 目 板厚为6mm的0Cr18Ni9钢板采用焊条电弧焊 的焊接工艺评定(拉伸) 专 业 焊接技术及自动化 班级学号 姓 名 指导教师 2008 年 6 月 5 日摘要钢是我们现代社会中不可缺少的一种材料,它可以看作一个国家工业化水平的标志。钢的产量越高就代表这个国家的工业化水平越高。不锈钢是钢中非常重要的一种,由于不锈钢具有特殊的使用性能和力学性能,在现在的各行各业中已经被越来越多的使用。在不锈钢中奥氏体不锈钢又是其中非常重要的一种,在发达国家每年消耗的不锈钢中有70%的是不锈钢,在我过也达到了65%左右。因此开发和使用好奥氏体不锈钢对我过的工业话来说已经越来越重要了。0cr18ni9就是奥氏体不锈钢,我做的这个课题就是探讨0cr18ni9在低温贮罐制造中的性能。低温贮罐是用来储存液N液Ar液态的CO2等低温液体的容器,液态介质的特殊性能就决定了制造材料需要特殊性能,而奥氏体不锈钢0cr18ni9就具有这样的性能。低温贮罐在现在的生活、生产中使用已经越来越广泛,因此对0cr18ni9的探讨就显得越来越重要。在这篇论文中我会着重为大家阐述0cr18ni9在低温压力容器制造中的焊接性能,力学性能,使用性能和焊接工艺。在这篇论文中我会通过一个焊接性试验来探讨0gr18ni9在低温压力容器中的各项性能。我的这个试验就是规格为6×150×300mm的两块0cr18ni9扳水平对接焊接方法就是手工电弧焊。针对这个试验做出完整的焊接工艺评定,并且根据评定要求对式样做相应的无损检验和力学性能的检验,从而来判定0cr18ni9的各项性能。关键词: 焊接性能 力学性能 使用性能 焊接工艺AbstractSteel our modern society is indispensable to a material, it can be seen as a sign of the level of industrialized countries. The higher the output of steel on behalf of this country the higher the level of industrialization. Stainless steel is a very important one, because of the use of stainless steel with special performance and mechanical properties, in all walks of life in the present have been increasingly used. Austenitic stainless steel in the stainless steel is a very important one, in the developed world consumption of stainless steel annually in 70% of the stainless steel is, I have also reached about 65 percent. Thus the development and use of austenitic stainless steel good to me over the words of the industry has become increasingly is austenitic stainless steel, I do on this subject is 0 cr18ni9 in low-temperature storage tank manufacturer in the performance. Cryogenic storage tank is used to store liquid N Ar of liquid CO2 and other low-temperature liquid containers, liquid medium decision on the special properties of the material needs of a special performance, and austenitic stainless steel 0 cr18ni9 on with this performance. Cryogenic storage tank in the present life, has been used in the production of more extensive, therefore 0 cr18ni9 of it is beco Steel our modern society is indispensable to a material, it can be seen as a sign of the level of industrialized countries. The higher the output of steel on behalf of this country the higher the level of industrialization. Stainless steel is a very important one, because of the use of stainless steel with special performance and mechanical properties, in all walks of life in the present have been increasingly used. Austenitic stainless steel in the stainless steel is a very important one, in the developed world consumption of stainless steel annually in 70% of the stainless steel is, I have also reached about 65 percent. Thus the development and use of austenitic stainless steel good to me over the words of the industry has become increasingly is austenitic stainless steel, I do on this subject is 0 cr18ni9 in low-temperature storage tank manufacturer in the performance. Cryogenic storage tank is used to store liquid N Ar of liquid CO2 and other low-temperature liquid containers, liquid medium decision on the special properties of the material needs of a special performance, and austenitic stainless steel 0 cr18ni9 on with this performance. Cryogenic storage tank in the present life, has been used in the production of more extensive, therefore 0 cr18ni9 of it is becoming increasingly important. In this paper I will focus on as we set out in the cold 0 cr18ni9 pressure vessel manufacture of welding performance, mechanical properties, the use of performance and welding this paper I will pass a welding test to explore 0 gr18ni9 in low-temperature pressure vessel in the performance. This is my test specifications for the 6 × 150 × 300mm 2 0 cr18ni9 pull the butt welding method is the level of manual arc welding. For the pilot to complete the welding technology assessment and assessed in accordance with the requirements of the design accordingly mechanical properties of non-destructive testing and inspection, to determine 0 cr18ni9 the increasingly important. In this paper I will focus on as we set out in the cold 0 cr18ni9 pressure vessel manufacture of welding performance, mechanical properties, the use of performance and welding this paper I will pass a welding test to explore 0 gr18ni9 in low-temperature pressure vessel in the performance. This is my test specifications for the 6 × 150 × 300mm 2 0 cr18ni9 pull the butt welding method is the level of manual arc welding. For the pilot to complete the welding technology assessment and assessed in accordance with the requirements of the design accordingly mechanical properties of non-destructive testing and inspection, to determine 0 cr18ni9 the word:Welding performance Mechanics performance Welding craft Operational performance目 录1 绪论 ………………………………………………………………………2 课题的背景 ………………………………………………………………3 材料介绍 …………………………………………………………………4 0Cr18Ni9的焊接 ……………………………………………………………… 0Cr18Ni9焊接性分析 …………………………………………………… 0Cr18Ni9的焊接工艺 ……………………………………………………… 0Cr18Ni9的焊接工艺思路分析 ………………………………………… 0Cr18Ni9的焊接工艺应用 ……………………………………………5 结论 ……………………………………………………………………6 参考文献 ………………………………………………………………7 致谢 ……………………………………………………………………绪论机械工业是为所有的工业,农业,国防以及交通运输业提供机器和装备的工业。在实现我国四个现代化的过程中,必须贯彻党的总路线精神,不断解决自行设和制造效能高、寿命长、重量轻、体积小、容量大、成本低的机器和设备的问题。为了完成这一光荣而艰巨的任务,使机械设计与制造能力在短时间内超世界水平,除了必须解决设计与制造和使用的科学。而机械制造中的材料问题,一部分是属于金属材料本身的成分与质量问题,另一部分是属于材料的选用是否适当,在加工处理的工艺上是否发挥了材料的最大潜力的问题。因此,在提高金属材料的产量和质量的同时,还要提高和发挥材料的各种性能,充分挖掘潜力,做到既合实用又节省,只有这样才能达到多,快,好,省建设社会主义的目的。我国解放前合金钢的科学和生产几乎完全是空白点。解放后,我国机械工业的发展速度是世界上前所罕见的。在近20~30年间,不锈钢的出现和大量的使用,推动了不锈钢工业的进程。不锈钢由于具有优良的耐蚀性、耐磨性、强韧性和良好的可加工性,外观的精美性,以及无毒无害性,广泛地应用与宇航、海洋、军工、化工、能源等方面,以及日用家具、建筑装潢、交通车辆的装饰上。合金元素多、组织结构复杂且多变给不锈钢及耐蚀耐热合金焊接带来很大的困难。焊接接头的性能好坏,直接关系着设备使用的安全性。国内外对不锈钢及耐蚀耐热合金的焊接做了大量的研究工作,其焊接性、焊接材料及焊接工艺的研究几乎与母材的研究同步,促进了不锈钢及耐蚀耐热合金的发展。有关这方面的研究成果和文献资料虽然很多,但较为系统的还是寥寥无几,在实际工作中,一部分有关的焊接技术人员和焊工,对不锈钢及耐蚀耐热合金的焊接知识了解不多,有的甚至直接照搬低合金钢的工艺和方法。虽然我国在这几年在不锈钢上的努力有目共睹,但与世界先进国家相比,差距还是很大的。为了尽快弥补这一差距,需要我们现代化的科技人才而我们也需要付出更多。随着社会主义革命和现代化建设事业的迅猛发展以及人们对高品质的生活的要求,不锈钢极其相关的技术科学将得到不断地发展和完善。在世界上45 %的钢的连接是用焊接方法来完成的,手工电弧焊又是我们生活生而中不可缺少的一部分,目前我用的越来越多的钢就奥氏体不锈钢,所以对于奥氏体不锈钢的焊接的研究已经越来越迫在眉睫。我做这篇论文就是从手工电弧焊方面来研究奥氏体不锈钢的焊接。主要从材料的力学性能化学成分,和通过焊接性的分析来讨论奥氏体不锈钢的焊接性能。最能直观表现奥氏体不锈钢焊接性能的就是焊接工艺知道书,我们通过焊接工艺指导书的编制来反应奥氏体不锈钢的焊接性能。课题背景由于奥氏体不锈钢的特殊的焊接性能,在现代社会中越来越多的地方使用到这种钢,现在奥氏体不锈钢也是我们发展研究的一个方向。未来的时间里对奥氏体不锈钢的开发研究也越来越引起专家们的注意,我们对奥氏体不锈钢焊接的了解也应该越来越重视。焊接奥氏体不锈钢的方法有很多,国内在中厚板奥氏体不锈钢的焊接中,主要采用埋弧焊(SAW)。手工电弧焊由于其操作灵活、方便,设备投资少,因而被广泛用于奥氏体不锈钢结构的生产中这也是一种典型的、传统焊接方法。在手工电弧焊中起关键作用的不锈钢焊条经过我国焊接工作者多年努力,已取得了如下进展:⑴ 品种 基本上覆盖了各种常规不锈钢钢种,如308、316、309、347、317等等,通常包括酸性、碱性两个渣系。对于超低C不锈钢焊条,如308L、316L、309L国内也能生产,所以从品种上基本可满足工业部门的使用。⑵ 质量 对于常规不锈钢焊条而言,从不锈钢焊条的发红、电弧稳定性、飞溅大小、焊缝成型、颜色、波纹细腻程度、全位置焊接适应性、焊工施焊的舒适性、焊接力学性能、抗腐蚀性等方面,国产不锈钢焊条质量参差不齐。但基本可以满足国内用户的要求。对于一些特殊品种如310MoL、347L、309L仍有许多工厂愿意使用进口焊材。这也表明我国整体不锈钢焊条的工艺质量与国外还有差距,在一些特殊品种上差距较大。不锈钢埋弧焊大多使用在不锈钢筒体的环缝和纵缝。通常是开X型坡口,先焊内焊缝,然后反面砂轮打磨(甚至气刨)。随后焊正面,现行工艺是标准中要求和认可的。存在问题有:① 对母材损伤较大,对腐蚀性能不利、影响美观。② 埋弧不锈钢焊丝品种少,质量较差,配用的260和431、350焊剂,往往使焊后缝残留有横向熔渣。焊工需要用砂轮打磨。③ 因而不锈钢埋弧焊接效率低、成本高、质量粗糙。(3)、CO2不锈钢药芯焊丝电弧焊采用CO2气保护不锈钢药芯焊丝焊接不锈钢是近二三十年的事。该方法使用常规CO2焊机或MIG焊机,采用100%CO2或80%Ar+20%O2作为保护气体,和普通结构钢实心焊丝焊接相似,即可得到美观的焊缝。在3种方法中,CO2保护不锈钢药芯焊丝有取代前两种焊接方法的趋势。这三种焊接方法的对比,见表1。不锈钢手工电弧焊、MIG实心焊丝和CO2气保护不锈钢药芯焊丝电弧焊的对比对比项目 不锈钢手工电弧焊 MIG实心焊丝 CO2不锈钢药芯焊丝效率 低 高 高成本 高 较高 低操作工艺性 好 较高 好焊缝美观 好 较高 好焊缝性能 好 好 好全位置适应性 好 一般 好焊丝品种 多 少 多对焊工技术要求 较多 高 一般从上面的数据分析手工电弧焊接将会渐渐被CO2气体保护焊接所替代,但是目前这个阶段手工电弧焊接应用还是很普遍的!奥氏体不锈钢已具备建筑、化工设备材料所要求的许多理想性能,它在金属中可以说是独一无二的,而其发展仍在继续。为使不锈钢在传统的应用中性能更好,一直在改进现有的类型,而且,为了满足高级建筑应用的严格要求,正在开发新的不锈钢。由于生产效率不断提高,质量不断改进,不锈钢已成为建筑师们选择的最具有成本效益的材料之一。上面的分析可以看出目前不锈钢的焊接性是很好的,使用也是越来越广泛的。对于这种不锈钢的焊接技术也越来越成熟起来,但在目前这个阶段我们应用最广泛的还是手工电弧焊。在这样的背景下我选择做这样的课题,既有利于了解目前0Cr18Ni9焊接,又有利于了解0Cr18Ni9焊接的发展方向。OCr18Ni的焊接性分析 对于什么是焊接性,GB/T3375-94《焊接术语》中注明:“材料在限定的施工条件下,焊接成按规定设计要求的构件,并满足预定服役要求的能力”。它包括两方面的内容:其一是焊成的构件符合设计要求;其二是满足预定的使用条件,能够安全运行。 根据讨论问题的着眼点不同,焊接性可分为:(1) 工艺焊接性(2) 使用焊接性影响焊接性的因素主要有以下几点:(1) 材料因素(2) 焊接方法(3) 构件类型(4) 使用要求 金属的焊接性与材料成分、焊接方法、构件类型、使用要求都有密切的关系,所以不应脱离这些因素而单纯的从材料本身的性能来评价焊接性。从上述分析可以看出,很难找出一项技术指标可以概括焊接性,只有通过综合多方面的因素才能分析焊接性问题。 分析金属的焊接性我们在不要求做非常准确的情况下我们可以根据碳当量、材料的化学性能、材料的物理性能来判断,如果要求需要很准确的话我们可以通过焊接性试验来判定。0cr18ni9的焊接性能我们就从这方面来判定:1、0Cr18Ni9的焊接要求 1)0Cr18Ni9属于奥氏体不锈钢,其组织为奥氏体(A)加3-5 %铁素体(F )。它具有良好的塑性和高温、低温性能。它在焊接热循环的作用下,主要显示出以下基本要求: ① 焊接过程中采用小的线能量输入,减小热影响区范围,加快焊缝及热影响区的冷却速度对不锈钢的焊接是有益的。 ② 用0Cr18Ni9焊接时导热系数小,存在过热区,也容易造成热影响区的晶粒长大。焊缝高温停留时间过长,在高温状态下Cr和C形成化合物,在高温区就形成了贫铬层,也会导致焊缝的枝晶倾向加剧。因此要求尽量选择线能觉输入较小的焊接方法。 ③ 由于导热系数小而线膨胀系数大,自由焊态下焊接易产生较大的变形,选用能量集中,热影响区窄的焊接方法能在一定程度上减少焊接变形。 2)0cr18ni9的含碳量很小,在加上它属于高合金钢碳当量法对它焊接性能的估算是不怎么准确的。因此我们不用碳当量对它的焊接性进行分析。 3) 0cr18ni9属于奥氏体不锈钢,这类钢有具有交高的变形能力并不可淬硬,而且它的含碳量又很底,所以总的来说焊接性还是不错的。但是由于热导率低,热膨胀系数大,局部加热时温度分布不均匀,收缩量大等都将使接头在焊接过程中产生交大的内应力。在焊接的时候应该注意这方面的问题,焊接时尽量避免或减少这种受热不均显现的发生,焊接的速度也应该适当的快点。 上面我们已经从它的化学成分和物理性能对0cr18ni9的焊接性能进行了分析,但是根据这些判断出的焊接性是不够准确的,我们需要准确的判断它的焊接性我们就必须通过焊接性试验来完成。焊接性的试验是很多的,我在这里就用斜Y型坡口焊接裂纹试验方法。板材的规格是6×150×200mm焊接方法是手工电弧焊焊材型号A132,规格¢坡口形式是斜Y型焊接参数是电流:90-120A,电压20-24V,速度15-20cm/min斜Y型坡口裂纹试验图如下:焊完的试件需要经过48H时效后再作裂纹的检测和解剖。裂纹可以分为表面裂纹、跟部裂纹、断面裂纹三种形式。首先用放大镜目测或莹光粉检查焊缝表面裂纹,然后用机械方法切开六个等长度横向试片,检查五个片面上的裂纹情况。一般用裂纹率作为评定标准。根部裂纹率=∑LR/L×100%表面裂纹率=∑Lf/L×100%端面裂纹率=∑h/5H×100%试验焊缝的总长度是80mm而我们焊接裂纹的总长度通过试验测得为试件的裂纹率小于20%因此在实际生产中如果按要求来做的话是不会产生裂纹的,此种钢的焊接性能还是可以的。综上所述0cr18ni9钢是具有良好的焊接性能的,在生产中按标准来做的话是应该可以生产出合格的产品,它的使用性能还是可以的。0Cr18Ni9的焊接工艺表Ⅰ-1焊接工艺评定指导书(任务书)编 制 指导书编号 HJ0511-29审 核 评定理由 批 准 完成日期 评 定 标 准 JB4708-2000 验收机关 母 材 厚度 , mm 尺寸,mm 接头形式简图0Cr18Ni9 6mm 6*150*300 0Cr18Ni9 6mm 6*150*300 焊 接 位 置 1G 焊接方向 右焊法 保 护 气 体 / 层间温度 / 预 热 / 机械化程度 手工焊 焊后热处理 / 后 热 处 理 / 衬垫材料/规格 / 清 根 方 法 / 层道 焊接方法 焊材型号/牌号 焊材规格 电流种类及极性 电流(A) 电压(V) 焊接速度(cm/min) 热输入(kJ/cm) 钨极直径 喷嘴直径1 SMAW A102 反接 90-110 15~18 / /2 SMAW A102 反接 100-120 20~22 18~20 / /检验项目、评定指标及试样数量检 验 项 目 检验标准 评定指标 检验项目 检验标准 评定指标 试样数量外观检查 GB150 JB4708 拉伸试验 GB/T228 JB4708 2无损检测 射线(RT) JB4730 JB4708 弯曲试验 面弯 GB/T232 JB4708 2 超声(UT) / / 背弯 JB4708 2 渗透(PT) / / 侧弯 / / 磁粉(MT) / / 冲击试验 焊缝 GB/T229 JB4708 /焊缝化学成分 / / 热影响区 JB4708 /金相 宏观 / / 腐蚀试验 / / / 微观 / / 硬度检验 / / /焊接工艺评定指导书编号:HJ0511-29名称:板厚为6mm的0Cr18Ni9钢板手工电弧焊的焊接工艺评定(拉伸) 编制: 审核: 批准: 表Ⅰ-2焊 接 工 艺 评 定 指 导 书单位名称 常州博朗低温有限公司 焊接工艺指导书编号 HJ0511-29 日期 焊接工艺评定报告编号 HJ0511-29-1 焊接方法 焊条电弧焊 机械化程度(手工、半自动、自动) 手动 焊接接头:坡口形式 带钝边的V型 衬垫(材料及规格) / 其它 / 简图:(接头形式、坡口形式与尺寸焊条、焊道布置及顺序)母材:类别号 VII 组别号 VII-1 与类别号 VII 组别号VII-1 相焊及标准号 / 钢 号 / 与标准号 / 钢 号 / 相焊厚度范围: 母材:对接焊缝 角焊缝 不限 管子直径、壁厚范围:对接焊缝 角焊缝 不限 焊缝金属厚度范围: 对接焊缝 《12 角焊缝 不限 其它: 焊接材料:焊材类别 焊条 焊材标准 GB/T983 填充金属尺寸 焊材型号 E307-16 焊材牌号 A132 其 他 / 耐蚀堆焊金属化学成分(%)C Si Mn P S Cr Ni Mo V Ti Nb

双相不锈钢焊接工艺 双相不锈钢焊接工艺,采用%氩气惰性气体保护,进行手工钨极氩弧焊打底焊接;采用80%氩气加20%二氧化碳气体保护进行半自动填充盖面焊接。本发明在焊接双相不锈钢时,可获得铁素体和奥氏体比例相对均衡的金相组织,经测定铁素体含量约在45-65%之间;焊接接头的机械性能和耐腐蚀性可充分得到保证,经测定其抗拉强度在640牛顿/平方毫米左右,硬度值在220-280HV10之间。使用二氧化碳+氮气混合气体做保护气体,可减少焊接飞溅,焊缝成型美观。 双相不锈钢焊接工艺,包括打底和填充盖面的焊接。 (1)采用%氩气惰性气体保护,进行手工钨极氩弧焊打底焊接包括如下工艺步骤:a、选用的电源为松下TSP-300型手工/氩弧焊机,电源极性为直流正接,熔池保护气体为%氩气,流量为10-18升/分钟,背保护气体为%氩气,氩弧焊丝为林肯LNT4462Φ,:ER2209,钨极为钍钨极Φ,ANSI/,焊接位置为水平固定,壁厚为8-10毫米,接头形式为对接V型接口,坡口角度为60°±5°,钝边为毫米,间隙为3-5毫米;b、将组对好的工件水平固定于焊架上,密封管口只留进出气口,管内通氩气作背保护气体3-5分钟,气体流量为5-10升/分钟;c、持证焊工进行打底焊接,电流为70-90安培,电压为11-13伏特,焊接速度为30-50毫米/分钟,继续通背保护气体;d、整圈焊完后进行第二层热焊,电流为105-150安培,电压为13-18伏特,焊接速度为75-130毫米/分钟,熔池保护气体流量为10-15升/分钟,控制层间温度≤150℃;e、第二层焊完后,继续通背保护气体。 (2)采用80%氩气加20%二氧化碳气体保护进行半自动填充盖面焊接包括如下工艺步骤:a、选用的电源为松下KRII-350型二氧化碳焊机,电源极性为直流反接,熔池保护气体为80%氩气+20%二氧化碳,背保护气体为%氩气,药芯焊丝为林肯Cor-A-RostaP4462Φ,:E2209T1-4;b、测量已打底热焊完毕的焊缝温度,保持层间温度≤150℃;c、持证焊工进行填充焊接,电流为140-180安培,电压为23-29伏特,焊接速度为140-210毫米/分钟,熔池保护气体流量为15-20升/分钟,管内通氩气作背保护气体直至结束焊接或填充至10毫米厚,控制层间温度≤150℃;d、填充焊接完毕后进行盖面焊接,电流为130-160安培,电压为23-27伏特,焊接速度为170-230毫米/分钟,熔池保护气体流量为15-20升/分钟,控制层间温度≤150℃。

固体物料混合机毕业论文

搜狐你就出来了

中国知网上面太多了你这个类型的,有条件的话从你们学校的电子阅览室下载,是免费的

随着全球经济的发展和现代工业的日新月异,人们对工业生产设备的自动化水平、对自动化产品的综合功能及可靠性、对新产品的上市速度、对根据客户和市场要求修改配方的灵活性均提出了更高的要求。在这样的大环境下,批量(Batch)控制管理软件作为一个十分重要的产品,在越来越多的工业控制过程(尤其是精细化工、制药和食品行业)中得到了广泛的应用。本文以Invensys集团旗下的美国Foxboro公司的I/ABatch软件在国内某一精细化工厂的生产装置上的应用为例,介绍了该控制管理软件的全貌及其应用要点。纵观Foxboro的I/ABatch发展历史,可以追溯到1969年首个冗余批量控制器的发布。早在上世纪90年代前,伴随着不同的DCS系统发展阶段,Foxboro的批量控制软件也分别经历了LargeScaleBatch、EasyBatch、BatchPlantManager、R-Batch4个不同时期。一直到1992年,基于Unix平台并和I/A系统集成在一起的Foxbatch才诞生,被称为核心。1996年开始,著名的工业软件公司Wonderware开始为Foxbatch编写具有更友好客户界面的批量软件。该软件基于WindowsNT平台,可以和工厂管理软件集成在一起使用,亦可以同时被Foxboro公司I/A系统外的其他控制系统使用。1998年,Foxbatch正式更名为I/ABatch,之后分别经历了、等,直到现在被广泛运用于WindowsXP平台上的I/。I/ABatch是一套具有很大灵活性的批量生产管理软件,是针对生产过程中的建模和实现批量生产的自动化控制而设计的,完全符合标准,具有模块化的特点。用I/ABatch软件,用户可以很方便地1引言2I/ABatch的发展回顾及主要特点创建配方,用批量离线组态环境模拟新配方的运行过程,查询到有关产品的历史数据,并得到一些产品物料汇总信息。可以说它是一个“成品化”的批量控制引擎,如果和I/ADCS系统联合使用,还有参数自动连接生成、便于组态集成等特点。3精细化工装置的工艺流程及控制要求I/ABatch具有十分广阔的应用范围,小到一个最简单的加料混合过程,大到十几条批量生产线几十个反应釜的生产过程,均可以用这套软件来组态实现。以某精细化工装置为例,共有两条生产线并行生产两种相关联的化工产品A和B。由于该化工产品具有很强的季节性,在连续生产两三个月后要清洗设备,重新更换原料(包括调整原料比),生产另两种相关产品C和D。其中前两者的基本工艺过程是一致的。整套装置有两个进料贮槽、两个反应釜、两个成品槽,有模拟量输入100点、模拟量输出50点、数字量输入200点、数字量输出250点。从同时投入生产的两条生产线来看,在A线进入到该线反应釜初始阶段前,必须检查B线是否已经正常完成KOH的进料,并且反应釜内的压力、温度达到了工艺工程师预定的值。每条生产线的每一生产步骤中都有很严格的反应条件检测,一旦有连锁发生,工艺会要求控制程序根据不同的连锁原因转入到不同的子步骤中去,直到连锁条件完全解除,继续该条生

机械专业毕业论文开题报告范文(精选6篇)

在生活中,报告与我们愈发关系密切,要注意报告在写作时具有一定的格式。那么什么样的报告才是有效的呢?下面是我整理的机械专业毕业论文开题报告范文,欢迎阅读,希望大家能够喜欢。

论文题目:

MC无机械手换刀刀库毕业设计开题报告

本课题的研究内容

本论文是开发设计出一种体积小、结构紧凑、价格较低、生产周期短的小型立式加工中心无机械手换刀刀库。主要完成以下工作:

1、调研一个加工中心,了解其无机械手换刀刀装置和结构。

2、参照调研的加工中心,进行刀库布局总体设计。画出机床总体布置图和刀库总装配图,要有方案分析,不能照抄现有机床。

3、设计该刀库的一个重要部分,如刀库的转位机构(包括定位装置,刀具的夹紧装置等),画出该部件的装配图和主要零件(如壳体、蜗轮、蜗杆等3张以上工作图。

4、撰写设计说明书。

本课题研究的实施方案、进度安排

本课题采取的研究方法为:

(1)理论分析,参照调研的加工中心,进行刀库布局总体设计。

进度安排:

收集相关的毕业课题资料。

完成开题报告。

完成毕业设计方案的制定、设计及计算。

完成刀库的设计

完成毕业设计说明书。

毕业设计答辩。

主要参考文献

[1] 廉元国,张永洪. 加工中心设计与应用 [M]. 北京:机械工业出版社,

[2] 惠延波,沙杰.加工中心的数控编程与操作技术 [M]. 北京:机械工业出版社

[3] 励德瑛.加工中心的发展趋势 [J]. 机车车辆工艺,1994,6

[4] 徐正平.CIMT2001 加工中心评述[J]. 制造技术与机床,2001,6

[5] 刘利. FPC-20VT 型立式加工中心[J]. 机械制造,1994,7

[6] 李洪. 实用机床设计手册 [M]. 沈阳:辽宁科学技术出版社,

[7] 刘跃南.机械系统设计[M].北京:机械工业出版社,

[8] Panasonic 交流伺服电机驱动器 MINASA 系列使用说明书

[9] 成大先.机械设计手册第四版第 2 卷[M]. 北京:化学工业出版社,

[10] 成大先.机械设计手册第四版第 3 卷[M]. 北京:化学工业出版社,

1 课题提出的背景与研究意义

课题研究背景

在数控机床移动式加工中移动部件和静止导轨之间存在着摩擦,这种摩擦的存在增加了驱动部件的功率损耗,降低了运动精度和使用寿命,增加了运动噪声和发热,甚至可能使精密部件变形,限制了机床控制精度的提高。由于摩擦与运动速度间存在非线性关系,特别是在低速微进给情况下,这种非线性关系难以把握,可能产生所谓的尺蠖运动方式或混沌不清的极限环现象,严重破坏了对微进给、高精度、高响应能力的进给性能要求。为此,把消除或减少摩擦的不良影响,作为提高机床技术水平的努力方向之一。该课题提出的将磁悬浮技术应用到数控机床加工中,即可以做到消除移动部件与静止导轨之间存在的摩擦及其不良影响。对提高我国机床工业水平及赶上或超过国际先进水平具有重大意义,且社会应用前景广阔。

课题研究的意义

机床正向高速度、高精度及高度自动化方向发展。但在高速切削和高速磨削加工场合,受摩擦磨损的影响,传统的滚动轴承的寿命一般比较短,而磁悬浮轴承可以克服这方面的不足,磁悬浮轴承具有的高速、高精度、长寿命等突出优点,将逐渐带领机电行业走向一个没有摩擦、没有损耗、没有限速的崭新境界。超高速切削是一种用比普通切削速度高得多的速度对零件进行加工的先进制造技术,它以高加工速度、高加工精度为主要特征,有非常高的生产效率,磁悬浮轴承由于具有转速高、无磨损、无润滑、可靠性好和动态特性可调等突出优点,而被应用于超高速主轴系统中。要实现高速切削,必须要解决许多关键技术,其中最主要的就是高速切削主轴系统,而选择合理的轴承型式对实现其高转速至关重要。其中,磁悬浮轴承是高速切削主轴最理想的支承型式之一。磁悬浮轴承可以满足超高速切削技术对超高速主轴提出的性能要求。但它与普通滑动或滚动轴承的本质区别在于,系统开环不稳定,需要实施主动控制,而这恰恰使得磁悬浮轴承具有动特性可控的优点磁悬浮轴承是一个复杂的机电磁一体化产品,对其精确的分析研究是一项相当困难的工作,如果用实验验证则会碰到诸如经费大、周期长等困难,在目前国内情况下不能采取国外以试验为主的研究方法,主要从理论上进行研究,利用计算机软件对磁悬浮控制系统进行仿真是一种获得磁悬浮系统有关特征简便而有效的方法。这就是本课题的研究目的和意义。

2 本课题国内外的研究现状

磁悬浮轴承的应用与发展可以说是传统支承技术的革命。由于具有无机械接触和可实现主动控制两个显著的优点,主动磁悬浮轴承技术从一开始就引起了人们的重视。磁悬浮轴承的研究最早可追溯到1937年,Holmes和Beams利用交流谐振电路实现了对钢球的悬浮。自1988年起,国际上每两年举行一届磁悬浮轴承国际会议,交流和研讨该领域的最新研究成果;1990年瑞士联邦理工学院提出了柔性转子的研究问题,同年教授提出了数字控制问题;1998年瑞士联邦理工学院的和等人提出了无传感器磁悬浮轴承。近十年,瑞士、美国、日本等国家研制的电磁悬浮轴承性能指标已经很高,并且已成功应用于透平机械、离心机、真空泵、机床主轴等旋转机械中,电磁悬浮轴承技术在航空航天、计算机制造、医疗卫生及电子束平版印刷等领域中也得到了广泛的应用。纵观2006年在洛桑和托里诺召开的第10界国际磁轴承研讨会,磁轴承主要应用研究为磁轴承在高速发动机、核高温反应堆(HTR-10GT)、人造心脏和回转仪等方面。国内在磁悬浮轴承技术方面的研究起步较晚,对磁悬浮轴承的研究起步于80年代初。

1983年上海微电机研究所采用径向被动、轴向主动的混合型磁悬浮研制了我国第一台全悬浮磁力轴承样机;1988年哈尔滨工业大学的陈易新等提出了磁力轴承结构优化设计的理论和方法,建立了主动磁力轴承机床主轴控制系统数学模型,这是首次对主动磁力轴承全悬浮机床主轴从结构到控制进行的系统研究;1998年,上海大学开发了磁力轴承控制器(600W)用于150m制氧透平膨胀机的控制;2000年清华大学与无锡开源机床集团有限公司合作,实现了内圆磨床磁力轴承电主轴的'工厂应用实验。目前,国内清华大学、西安交通大学、国防科技大学、哈尔滨工业大学、南京航空航天大学等等都在开展磁悬浮轴承方面的研究。2002年清华大学朱润生等对主动磁悬浮轴承主轴进行磨削试验,当转速60000r/min、法向磨削力100N左右时,精度达到小于8m的水平,精磨磨削效率基本达到工业应用水平。2003年6月,南京航空航天大学磁悬浮应用技术研究所研制的磁悬浮干燥机的性能指标已通过江苏省技术鉴定,向工业应用迈出了可喜的一步。2005年“济南磁悬浮工程技术研究中心”研制的磁悬浮轴承主轴设备,在济南第四机床厂做磨削试验,成功磨制出一个内圆孔工件,这是我国第一个用磁悬浮轴承主轴加工的工件。此项技术填补了国内空白。近几年来,由于微电子技术、信号处理技术和现代控制理论的发展,磁悬浮轴承的研究也取得了巨大进展。

从总体上看,磁悬浮轴承技术正向以下几个方向发展:

(1)理论分析更注重系统的转子动力学分析,更多地运用非线性理论对主动

磁悬浮转子系统的平衡点和稳定性进行分析;更注重建立系统的非线性耦合模型以求得更好的性能。

(2)注重系统的整体优化设计,不断提高其可靠性和经济性,以期获得磁悬浮轴承更加广泛的应用前景。

(3)控制器的实现越来越多的采用数字控制。为达到更高的性能要求,控制器的数字化、智能化、集成化成为必然的发展趋势。由于数字控制器的灵活性,各种现代控制理论的控制算法均在磁悬浮轴承上得到尝试。

(4)发展了多种新型磁悬浮轴承如:无传感器磁悬浮轴承、无轴承电机超导磁悬浮轴承、高温磁悬浮轴承。此外,磁悬浮机床主轴在各方面也有较大的发展空间如:高洁净钢材Z钢和EP钢的引入;陶瓷滚动体,重量比钢球轻40%;润滑技术的开发,对于高速切削液的主轴,油液和油雾润滑能有效防止切削液进入主轴;保持架的开发,聚合物保持架具有重量,自润滑及低摩擦系数的特点从应用的角度看,磁悬浮轴承的潜力尚未得到的发掘,而它本身也未达到替代其它轴承的水平,设计理论,控制方法等都有待研究和解决。

3 课题的研究目标与研究内容

研究目标

控制器是主动控制磁悬浮轴承研究的核心,因此正确选择控制方案和控制器参数,是磁悬浮轴承能够正常工作和发挥其优良性能的前提。该课题主要研究单自由度磁悬浮系统,其结构简单,性能评判相对容易、研究周期短,并且可以扩展到多自由度磁悬浮系统的研究。针对磁悬浮主轴系统的非线性以及在控制方面的特点,该课题探索出提高系统总体性能和动态稳定性的有效控制策略。

主要研究内容

(1)阐述课题的研究背景与意义,对国内外相关领域的研究状况进行综述。

(2)对磁悬浮机床主轴的动力学模型进行分析,并将其数值化、离散、解耦和降阶等,为后续研究

1、 目的及意义(含国内外的研究现状分析)

本人毕业设计的课题是”钢坯喷号机行走部件及总体设计”,并和我的一个同学(他课题是“钢坯喷号机喷号部件设计”)一起努力共同完成钢坯喷号机的设计。我们的目的是设计一种价格相对便宜,工作性能可靠的钢坯喷号机来取代用人工方法在钢坯上写编号。

对钢坯喷号是钢铁制造业必然需要存在的一个环节,这是为了实现质量管理和质量追踪。我们把生产钢坯对应的连铸机号、炉座号、炉号、流序号以及表示钢坯生产时间的时间编号共同组成每块钢坯的唯一编号,适当的写在钢坯的表面。这样就在钢铁厂的后续检验或在客户使用过程中,如果发现钢坯的质量有问题,就可以根据这个编号来追踪到生产这个钢坯的连铸机、炉座、炉号、流序及时间等重要信息,及早的发现并解决生产设备中存在的问题。

目前,在国外像日本、美国等一些发达国家已经实现了对钢坯的自动编号,虽然其辅助设备较多,价格较贵,但大大提高生产的自动化进程和效率。并且钢坯喷号机具有设备利用率高、位置精度高、可控制性能好等优点。而在国内,除了少数的几家大型钢铁企业(宝钢、鞍钢等)引进了自动钢坯喷号机,大部分的钢铁企业仍然处在人工编号的阶段。

实现钢坯喷号的机械化和自动化是提高生产效率和降低生产成本的重要途径之一,钢坯喷号机无论在国内还是国外都会有很大的市场。一方面因为人工的工艺流程不但浪费了大量的能量,而且打断了生产的自动化进程,从而致使生产效率降低,生产成本增加。另一方面由于生产钢坯的车间温度很高,有强烈的热辐射,同时还有大量的水蒸气和粉尘,因此对其中进行人工编号的工人的劳动强度非常大,并且对身体是一种摧残,容易得职业病。所以无论从那个方面看都急需一种价格相对便宜,工作性能可靠的钢坯喷号机来代替人工编号。

作为一个大学生,毕业设计对我来说是展示我大学四年学习成果的一个机会,也是对我的综合能力的一个考验。我本人对“钢坯喷号机行走部件及总体设计”的课题也非常感兴趣,我一定会努力完成这次毕业设计的。总的来说,钢坯喷号机对于钢铁厂和这次毕业设计对于我都是具有现实意义的。

2、基本内容和技术方案

本课题是基于机械设计与电子控制结合的技术来设计钢坯喷号机。经连连轧的钢坯规格为160mmx200mm的方形钢坯,用切割机割成定长,由300mm宽的输出通道送出。

1.基本内容

先拟定钢坯喷号机的总体方案,然后确定钢坯喷号机行走部件的传动方案及结构参数,最后画出钢坯喷号机行走部件的装配图以及零件图。

2.系统技术方案

(1)工作过程:启动机器PLC控制步进电机带动钢坯喷号机到相应的位置,按下启动键发送控制信号传到控制部件(PLC),控制部件发出控制命令给执行部件(主要是行走部件及喷号部件,行走部件带动喷头靠近钢坯表面,然后喷头进行喷号),喷号完成后喷头上升并清洗号码牌。再次移动喷号到下一个钢坯处。

(2)要求实现的功能:行走部件功能(喷号机整体左右的移动,喷号部件的上下前后移动,喷头的左右移动)、喷号部件功能(喷头喷号,清洗号码牌,号码牌的更换)。其中号码为(0—9)十个数字,号码可以变化更换。每个号码大小为35mmx15mm,号码间距为5mm。

(3)实现方案:

行走功能的实现:由于在钢坯上喷号并不需要很精确的定位,所以采用人工控制步进电机的方式移动整体喷号机来粗调。采用液压缸提供动力来推动喷号部件,并采用行程开关控制电机来实现喷号部件上下移动,下行程开关可以控制喷号部件与钢坯表面之间的间距和发出信号使喷头开始喷涂料并向右移动。采用液压缸推动,滚轮在导架上滚动的方式实现喷好机构的前后移动,并采用行程开关控制电机来实现喷头的左右移动,右行程开关可以控制喷头停止喷涂料并回到初始位置和喷号部件向上移动。

喷号功能的具体实现方案由和我一组的同学确定。

3、进度安排

3-4周 认真阅读和学习有关资料和知识,并翻译英文文献

5-7周 钢坯喷号机行走部件的传动方案及总体设计

8-9周 确定钢坯喷号机行走部件结果参数

10-13周 完成钢坯喷号机行走部件装配图及零件工作图

14-15周 准备并进行毕业答辩

1. 设计(或研究)的依据与意义

十字轴是汽车万向节上的重要零件,规格品种多,需求量大。目前,国内大多采用开式模锻和胎模锻工艺生产,其工艺过程为:制坯→模锻→切边。生产的锻件飞边大,锻件加工余量和尺寸公差大,因而材料利用率低;而且工艺环节多,锻件质量差,生产效率低。

相比之下,十字轴冷挤压成形的具有以下优点:

1、提高劳动生产率。用冷挤压成形工艺代替切削加工制造机械零件,能使生产率大大提高。

2、制件可获得理想的表面粗糙度和尺寸精度。冷挤压十字轴类零件的精度可达ITg---IT8级,表面粗糙度可达Ra O.2~1.6。因此,用冷挤压成形的十字轴类零件一般很少再切削加工,只需在要求特别高之处进行精磨。

3、提高零件的力学性能。冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度高于原材料的强度。

4、降低零件成本。冷挤压成形是利用金属的塑性变形制成所需形状的零件,因而能大量减少切削加工,提高材料的利用率,从而使零件成本大大降低。

2. 国内外同类设计(或同类研究)的概况综述

利用切削加工方法加工十字轴类零件,生产工序多,效率低,材料浪费严重,并且切削加工会破坏零件的金属流线结构。目前国内大多采用热模锻方式成形十字轴类零件,加热时产生氧化、脱碳等缺陷,必然会造成能源的浪费,并且后续的机加工不但浪费大量材料,产品的内在和外观质量并不理想。

采用闭式无飞边挤压工艺生产十字轴,锻件无飞边,可显着降低生产成本,提高产品质量和生产效率:

(1)不仅能节省飞边的金属消耗,还能大大减小或消除敷料,可以节约材料30﹪;由于锻件精化减少了切削加工量,电力消耗可降低30﹪;

(2)锻件质量显着提高,十字轴正交性好、组织致密、流线分布合理、纤维不被切断,扭转疲劳寿命指标平均提高2~3倍;

(3)由于一次性挤压成型,生产率提高25%.

数值模拟技术是CAE的关键技术。通过建立相应的数学模型,可以在昂贵费时的模具或附具制造之前,在计算机中对工艺的全过程进行分析,不仅可以通过图形、数据等方法直观地得到诸如温度、应力、载荷等各种信息,而且可预测存在的缺陷;通过工艺参数对不同方案的对比中总结出规律,进而实现工艺的优化。数值模拟技术在保证工件质量、减少材料消耗、提高生产效率、缩短试制周期等方面显示出无可比拟的优越性。

目前,用于体积成形工艺模拟的商业软件已有“Deform”、“Autoforge”等软件打入中国市场。其中,DEFORM软件是一套基于有限元的工艺仿真系统,用于分析金属成形及其相关工业的各种成形工艺和热处理工艺。DEFORM无需试模就能预测工业实际生产中的金属流动情况,是降低制造成本,缩短研发周期高效而实用的工具。二十多年来的工业实践清楚地证明了基于有限元法DEFORM有着卓越的准确性和稳定性,模拟引擎在大金属流动,行程载荷和产品缺陷预测等方面同实际生产相符保持着令人叹为观止的精度。

3. 课题设计(或研究)的内容

1)完成十字轴径向挤压工艺分析,完成模具总装图及零件图设计。

2)建立十字轴径向挤压成形模具的三维模型。

3)十字轴径向挤压成形过程数值模拟。

4)相关英文资料翻译。

4. 设计(或研究)方法

1)完成十字轴径向挤压成形工艺分析,绘制模具总装图及零件图。

2)写毕业论文建立十字轴径向挤压成形模具的三维模型。

3)完成十字轴径向挤压成形过程数值模拟。

4)查阅20篇以上与课题相关的文献。

5)完成12000字的论文。

6)翻译10000个以上英文印刷符号。

5. 实施计划

04-06周:文献检索,开题报告。

07-10周:进行工艺分析、绘制模具二维图及模具三维模型设计。

11-13周:进行数值模拟。

14-16周:撰写毕业论文。

17周:进行答辩。

一、毕业设计题目的背景

三级圆锥—圆柱齿轮减速器,第一级为锥齿轮减速,第二、三级为圆柱齿轮减速。这种减速器具有结构紧凑、多输出、传动效率高、运行平稳、传动比大、体积小、加工方便、寿命长等优点。因此,随着我国社会主义建设的飞速发展,国内已有许多单位自行设计和制造了这种减速器,并且已日益广泛地应用在国防、矿山、冶金、化工、纺织、起重运输、建筑工程、食品工业和仪表制造等工业部门的机械设备中,今后将会得到更加广泛的应用。

二、主要研究内容及意义

本文首先介绍了带式输送机传动装置的研究背景,通过对参考文献进行详细的分析,阐述了齿轮、减速器等的相关内容;在技术路线中,论述齿轮和轴的选择及其基本参数的选择和几何尺寸的计算,两个主要强度的验算等在这次设计中所需要考虑的一些技术问题做了介绍;为毕业设计写作建立了进度表,为以后的设计工作提供了一个指导。最后,给出了一些参考文献,可以用来查阅相关的资料,给自己的设计带来方便。

本次课题研究设计是大学生涯最后的学习机会,也是最专业的一次锻炼,它将使我们更加了解实际工作中的问题困难,也使我对专业知识又一次的全面总结,而且对实际的机械工程设计流程有一个大概的了解,我相信这将对我以后的工作有实质性的帮助。

三、实施计划

收集相关资料:20XX年4月10日——4月16日

开题准备: 4月17日——4月20日

确定设计方案:4月21日——4月28日

进行相关设计计算:4月28日——5月8日

绘制图纸:5月9日——5月15日

整理材料:5月15日——5月16日

编写设计说明书:5月17日——5月20日

准备答辩:

四、参考文献

[1] 王昆等 机械设计课程设计 高等教育出版社,1995.

[2] 邱宣怀 机械设计第四版 高等教育出版社,1997.

[3] 濮良贵 机械设计第七版 高等教育出版社,2000.

[4] 任金泉 机械设计课程设计 西安交通大学出版社,2002.

[5] 许镇宁 机械零件 人民教育出版社,1959.

[6] 机械工业出版社编委会 机械设计实用手册 机械工业出版社,2008

1. 设计(或研究)的依据与意义

十字轴是汽车万向节上的重要零件,规格品种多,需求量大。目前,国内大多采用开式模锻和胎模锻工艺生产,其工艺过程为:制坯→模锻→切边。生产的锻件飞边大,锻件加工余量和尺寸公差大,因而材料利用率低;而且工艺环节多,锻件质量差,生产效率低。

相比之下,十字轴冷挤压成形的具有以下优点:

1、增强劳动生产率。用冷挤压成形工艺代替切削加工制造机械零件,能使生产率大大增强。

2、制件可获得理想的表面粗糙度和尺寸精度。冷挤压十字轴类零件的精度可达ITg---IT8级,表面粗糙度可达Ra O.2~1.6。因此,用冷挤压成形的十字轴类零件一般很少再切削加工,只需在要求特别高之处进行精磨。

3、增强零件的力学性能。冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度高于原材料的强度。

4、降低零件成本。冷挤压成形是利用金属的塑性变形制成所需形状的零件,因而能大量减少切削加工,增强材料的利用率,从而使零件成本大大降低。

2. 国内外同类设计(或同类研究)的概况综述

利用切削加工方法加工十字轴类零件,生产工序多,效率低,材料浪费严重,并且切削加工会破坏零件的金属流线结构。目前国内大多采用热模锻方式成形十字轴类零件,加热时产生氧化、脱碳等缺陷,必然会造成能源的浪费,并且后续的机加工不但浪费大量材料,产品的内在和外观质量并不理想。

采用闭式无飞边挤压工艺生产十字轴,锻件无飞边,可显着降低生产成本,增强产品质量和生产效率:

(1)不仅能节省飞边的金属消耗,还能大大减小或消除敷料,可以节约材料30%;由于锻件精化减少了切削加工量,电力消耗可降低30%;

(2)锻件质量显着增强,十字轴正交性好、组织致密、流线分布合理、纤维不被切断,扭转疲劳寿命指标平均增强2~3倍;

(3)由于一次性挤压成型,生产率增强25%.

数值模拟技术是CAE的关键技术。通过建立相应的数学模型,可以在昂贵费时的模具或附具制造之前,在计算机中对工艺的全过程进行分析,不仅可以通过图形、数据等方法直观地得到诸如温度、应力、载荷等各种信息,而且可预测存在的缺陷;通过工艺参数对不同方案的对比中总结出规律,进而实现工艺的优化。数值模拟技术在保证工件质量、减少材料消耗、增强生产效率、缩短试制周期等方面显示出无可比拟的优越性。

目前,用于体积成形工艺模拟的商业软件已有“Deform”、“Autoforge”等软件打入中国市场。其中,DEFORM软件是一套基于有限元的工艺仿真系统,用于分析金属成形及其相关工业的各种成形工艺和热处理工艺。DEFORM无需试模就能预测工业实际生产中的金属流动情况,是降低制造成本,缩短研发周期高效而实用的工具。二十多年来的工业实践清楚地证明了基于有限元法DEFORM有着卓越的准确性和稳定性,模拟引擎在大金属流动,行程载荷和产品缺陷预测等方面同实际生产相符保持着令人叹为观止的精度。

3. 课题设计(或研究)的内容

1)完成十字轴径向挤压工艺分析,完成模具总装图及零件图设计。

2)建立十字轴径向挤压成形模具的三维模型。

3)十字轴径向挤压成形过程数值模拟。

4)相关英文资料翻译。

4. 设计(或研究)方法

1)完成十字轴径向挤压成形工艺分析,绘制模具总装图及零件图。

2)毕业论文建立十字轴径向挤压成形模具的三维模型。

3)完成十字轴径向挤压成形过程数值模拟。

4)查阅20篇以上与课题相关的文献。

5)完成12000字的论文。

6)翻译10000个以上英文印刷符号。

5. 实施计划

04-06周:文献检索,开题报告。

07-10周:进行工艺分析、绘制模具二维图及模具三维模型设计。

11-13周:进行数值模拟。

14-16周:撰写毕业论文。

17周:进行答辩。

共混物增韧机理研究论文

UHMWPE辐照交联,添加助剂改性

1.微孔HA的制备及PLA/HA复合材料的性能研究. 《材料科学与工程学报》.2007,25(1)2.聚丙烯/蒙脱土纳米复合材料的流变性能研究《塑料科技》,2007,25(3)3.宽峰聚乙烯/蒙脱土纳米复合材料的制备与性能研究。《中国塑料》,2007(4)结构及流变性能研究。《弹性体》,2007,17(2)5.聚乙烯醇/蒙脱土纳米复合材料的制备及性能研究。《中国塑料》,2007(6)复合水凝胶的制备及性能。《长春工业大学学报》,2007,28(3)薄膜的光氧化及热力学降解,《合成树脂及塑料》,2006,23(5)8.共混聚合物界面张力的测定方法.《高分子材料科学与工程》,2006,22(5) on insulating thermal conductive BN/HDPE composites .thermochimica (2007).聚丙烯/蒙脱土纳米复合材料的制备与性能。《塑料科技》2006,34(5)纳米复合材料的制备。《2006年中国工程塑料年会论文集》 of Compatibilized Nylon6/ABS Polymer Blends, Journal of Macromolecular Science,Part B:Physics,45:的制备及其对纳米CaCO3/PA66的增韧. 《塑料科技》2006,34(4)14.聚乙烯/蒙脱土纳米复合材料结构与力学性能的研究.《塑料科技》,2006,34(1)15.原位聚合法制备宽峰聚乙烯/蒙脱土纳米复合材料。《2006年全国高分子材料科学与工程年会论文集》纳米SiO2的力学性能和光学性能研究 《河北化工》2006(1)17.医用聚乙烯醇水凝胶的制备及性能研究. 《长春工业大学学报》,2006,27(3)纳米复合材料的制备和表征。《中国塑料》,2006,20(6) Morphologies of Poly(L-lactide) Thin Films,《2006年国际高分子物理年会》20.聚乙烯醇缩丁醛/纳米TiO2复合材料的制备及性能研究。《化工新型材料》,2006,34(1)21.吡唑林荧光化合物的合成与红外光谱研究。《光谱学与光谱分析》,2005,25(3)22.一种水容器壳体湿法缠绕环氧树脂体系。《复合材料学报》,2005,22(3)熔融接枝SBS及其对PA6增容研究。《工程塑料应用》,2005,33(2)复合材料的性能和形态结构研究。《塑料科技》,2005(5)增韧聚丙烯及其脆韧转变机理的研究。《弹性体》,2005,15(5)26.熔融法制备POE-g-GMA及影响因素的研究。《弹性体》,2005,15(6)熔融接枝SBS的研究。《弹性体》,2005,15(6)的制备及其对PA66/纳米CaCO3的增韧研究 《05年中国工程塑料年会论文集》29.聚丙烯的官能化及其与尼龙6相容性。《长春工业大学学报》,2005,26(3)30.分子量对PP/PA6体系界面张力的影响。《2005年全国高分子学术年会论文集》 GMA共混物的形态结构和力学性能。《长春工业大学学报》,2005,26(1)32.熔融法制备EPDM-g-GMA及其对PEN脆韧转变的研究。《工程塑料应用》,2004,32(12)33.水处理容器湿法缠绕用环氧树脂体系。《纤维复合材料》,2004,21(1)34.熔融法制备EPDM-g-MAH及其对PEN的脆韧转变研究。《塑料科技》,2004(6)35.水玻璃在练漂液中稳定双氧水的探讨。《纺织学报》2004,25(4)36.熔融法制备EPDM-g-MAH及其对PEN的脆韧转变研究。《塑料科技》,2004(6)37.马来酸酐接枝SBS及其对PA6的增容作用。《长春工业大学学报》,2004,25(2) transition in PP/EPDM blends,effect of notch radius.《POLYMER》.polymer44 (2003)3125—313139.结合科研进行教学 提高专业人才素质。《长春工业大学学报》(高教研究版),2004(25)40.聚丙烯的官能化及其与尼龙66相容性研究。《工程塑料应用》:2003,31(3)41.纳米SiOx改性不饱和聚酯树脂。《纤维复合材料》,2003,20(4)42.增容剂在PC/ABS合金中的应用。《2003年全国高分子学术年会论文集》43.聚丙烯的官能化及其与尼龙1010相容性的研究。《2003年全国高分子学术年会论文集》增韧PVC/ABS共混物共混工艺的探讨。《长春工业大学学报》,2003,24(1) properties of compatibilized Nylon/ABS polymer blends 《2002年国际高分子物理年会》46.聚丙烯与尼龙共混物相容特性。《长春工业大学学报》:2002,23(2)

关键词:超高分子 量聚乙烯 工程塑料1 引言UHMWPE是一种线型结构的具有优异综合性能的热塑性工程塑料。世界上最早由美国Allied Chemical公司于1957年实现工业化,此后德国Hoechst公司、美国Hercules公司、日本三井石油化学公司等也投入工业化生产。我国上海高桥化工厂于1964年最早研制成功并投入工业生产,70年代后期又有广州塑料厂和北京助剂二厂投入生产。限于当时条件,产物分子量约150万左右,随着工艺技术的进步,目前北京助剂二厂的产品分子量可达100万~300万以上。UHMWPE的发展十分迅速,80年代以前,世界平均年增长率为,进入80年代以后,增长率高达15%~20%。而我国的平均年增长率在30%以上。1978年世界消耗量为12,000~12,500吨,而到1990年世界需求量约5万吨,其中美国占70%。UHMWPE平均分子量约35万~800万,因分子量高而具有其它塑料无可比拟的优异的耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能。而且,UHMWPE耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。UHMWPE优异的物理机械性能使它广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。另外,由于UHMWPE优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节等在临床医学上使用。2 UHMWPE的成型加工由于UHMWPE熔融状态的粘度高达108Pa*s,流动性极差,其熔体指数几乎为零,所以很难用一般的机械加工方法进行加工。近年来,UHMWPE的加工技术得到了迅速发展,通过对普通加工设备的改造,已使UHMWPE由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其它特殊方法的成型。 一般加工技术(1)压制烧结压制烧结是UHMWPE最原始的加工方法。此法生产效率颇低,易发生氧化和降解。为了提高生产效率,可采用直接电加热法〔1〕;另外,Werner和Pfleiderer公司开发了一种超高速熔结加工法〔2〕,采用叶片式混合机,叶片旋转的最大速度可达150m/s,使物料仅在几秒内就可升至加工温度。(2)挤出成型挤出成型设备主要有柱塞挤出机、单螺杆挤出机和双螺杆挤出机。双螺杆挤出多采用同向旋转双螺杆挤出机。60年代大都采用柱塞式挤出机,70年代中期,日、美、西德等先后开发了单螺杆挤出工艺。日本三井石油化学公司最早于1974年取得了圆棒挤出技术的成功。北京化工大学于1994年底研制出Φ45型UHMWPE专用单螺杆挤出机,并于1997年取得了Φ65型单螺杆挤出管材工业化生产线的成功。(3)注塑成型日本三井石油化工公司于1974年开发了注塑成型工艺,并于1976年实现了商业化,之后又开发了往复式螺杆注塑成型技术。1985年美国Hoechst公司也实现了UHMWPE的螺杆注塑成型工艺。北京塑料研究所1983年对国产XS-ZY-125A型注射机进行了改造,成功地注射出啤酒罐装生产线用UHMWPE托轮、水泵用轴套,1985年又成功地注射出医用人工关节等。(4)吹塑成型UHMWPE加工时,当物料从口模挤出后,因弹性恢复而产生一定的回缩,并且几乎不发生下垂现象,故为中空容器,特别是大型容器,如油箱、大桶的吹塑创造了有利的条件。UHMWPE吹塑成型还可导致纵横方向强度均衡的高性能薄膜,从而解决了HDPE薄膜长期以来存在的纵横方向强度不一致,容易造成纵向破坏的问题。 特殊加工技术 冻胶纺丝以冻胶纺丝—超拉伸技术制备高强度、高模量聚乙烯纤维是70年代末出现的一种新颖纺丝方法。荷兰DSM公司最早于1979年申请专利,随后美国Allied公司、日本与荷兰联合建立的Toyobo-DSM公司、日本Mitsui公司都实现了工业化生产。中国纺织大学化纤所从1985年开始该项目的研究,逐步形成了自己的技术,制得了高性能的UHMWPE纤维〔3〕。UHMWPE冻胶纺丝过程简述如下:溶解UHMWPE于适当的溶剂中,制成半稀溶液,经喷丝孔挤出,然后以空气或水骤冷纺丝溶液,将其凝固成冻胶原丝。在冻胶原丝中,几乎所有的溶剂被包含其中,因此UHMWPE大分子链的解缠状态被很好地保持下来,而且溶液温度的下降,导致冻胶体中UHMWPE折叠链片晶的形成。这样,通过超倍热拉伸冻胶原丝可使大分子链充分取向和高度结晶,进而使呈折叠链的大分子转变为伸直链,从而制得高强度、高模量纤维。UHMWPE纤维是当今世界上第三代特种纤维,强度高达,比强度是化纤中最高的,又具有较好的耐磨、耐冲击、耐腐蚀、耐光等优良性能。它可直接制成绳索、缆绳、渔网和各种织物:防弹背心和衣服、防切割手套等,其中防弹衣的防弹效果优于芳纶。国际上已将UHMWPE纤维织成不同纤度的绳索,取代了传统的钢缆绳和合成纤维绳等。UHMWPE纤维的复合材料在军事上已用作装甲兵器的壳体、雷达的防护外壳罩、头盔等;体育用品上已制成弓弦、雪橇和滑水板等。 润滑挤出(注射)润滑挤出(注射)成型技术是在挤出(注射)物料与模壁之间形成一层润滑层,从而降低物料各点间的剪切速率差异,减小产品的变形,同时能够实现在低温、低能耗条件下提高高粘度聚合物的挤出(注射)速度。产生润滑层的方法主要有两种:自润滑和共润滑。(1)自润滑挤出(注射)UHMWPE的自润滑挤出(注射)是在其中添加适量的外部润滑剂,以降低聚合物分子与金属模壁间的摩擦与剪切,提高物料流动的均匀性及脱模效果和挤出质量。外部润滑剂主要有高级脂肪酸、复合脂、有机硅树脂、石腊及其它低分子量树脂等。挤出(注射)加工前,首先将润滑剂同其它加工助剂一起混入物料中,生产时,物料中的润滑剂渗出,形成润滑层,实现自润滑挤出(注射)。有专利报道〔4〕:将70份石蜡油、30份UHMWPE和1份氧相二氧化硅(高度分散的硅胶)混合造粒,在190℃的温度下就可实现顺利挤出(注射)。(2)共润滑挤出(注射)UHMWPE的共润滑挤出(注射)有两种情况,一是采用缝隙法〔5、6〕将润滑剂压入到模具中,使其在模腔内表面和熔融物料间形成润滑层;二是与低粘度树脂共混,使其作为产物的一部分(详见)。如:生产UHMWPE薄板时,由定量泵向模腔内输送SH200有机硅油作润滑剂,所得产品外观质量有明显提高,特别是由于挤出变形小,增加了拉伸强度。 辊压成型〔1〕辊压成型是一种固态加工方法,即在UHMWPE的熔点以下对其施加一很大的压力,通过粒子形变,有效地将粒子与粒子融合。主要设备是一带有螺槽的旋转轮和一带有舌槽的弓形滑块,舌槽与螺槽垂直。在加工过程中有效地利用了物料与器壁之间的摩擦力,产生的压力足够使UHMWPE粒子发生形变。在机座末端装有加热支台,经过模口挤出物料。如将此项辊压装置与挤压机联用,可使加工过程连续化。 热处理后压制成型〔8〕把UHMWPE树脂粉末在140℃~275℃之间进行1min~30min的短期加热,发现UHMWPE的某些物理性能出人意料地大大改善。用热处理过的UHMWPE粉料压制出的制品和未热处理过的UHMPWE制品相比较,前者具有更好的物理性能和透明性,制品表面的光滑程度和低温机械性能大大提高了。 射频加工〔9〕采用射频加工UHMWPE是一种崭新的加工方法,它是将UHMWPE粉末和介电损耗高的炭黑粉末均匀混合在一起,用射频辐照,产生的热可使UHMWPE粉末表面发生软化,从而使其能在一定压力下固结。用这种方法可在数分钟内模压出很厚的大型部件,其加工效率比目前UHMWPE常规模压加工高许多倍。 凝胶挤出法制备多孔膜〔10〕将UHMWPE溶解在挥发溶剂中,连续挤出,然后经一个热可逆凝胶/结晶过程,使其成为一种湿润的凝胶膜,蒸除溶剂使膜干燥。由于已形成的骨架结构限制了凝胶的收缩,在干燥过程中产生微孔,经双轴拉伸达到最大空隙率而不破坏完整的多孔结构。这种材料可用作防水、通氧织物和耐化学品服装,也可用作超滤/微量过滤膜、复合薄膜和蓄电池隔板等。与其它方法相比,由此法制备的多孔UHMWPE膜具有最佳的孔径、强度和厚度等综合性能。3 UHMWPE的改性 物理机械性能的改进与其它工程塑料相比,UHMWPE具有表面硬度和热变形温度低、弯曲强度以及蠕变性能较差等缺点。这是由于UHMWPE的分子结构和分子聚集形态造成的,可通过填充和交联的方法加以改善。 填充改性采用玻璃微珠、玻璃纤维、云母、滑石粉、二氧化硅、三氧化二铝、二硫化钼、炭黑等对UHMWPE进行填充改性,可使表面硬度、刚度、蠕变性、弯曲强度、热变形温度得以较好地改善。用偶联剂处理后,效果更加明显。如填充处理后的玻璃微珠,可使热变形温度提高30℃。玻璃微珠、玻璃纤维、云母、滑石粉等可提高硬度、刚度和耐温性;二硫化钼、硅油和专用蜡可降低摩擦因数,从而进一步提高自润滑性;炭黑或金属粉可提高抗静电性和导电性以及传热性等。但是,填料改性后冲击强度略有下降,若将含量控制在40%以内,UHMWPE仍有相当高的冲击强度。 交联交联是为了改善形态稳定性、耐蠕变性及环境应力开裂性。通过交联,UHMWPE的结晶度下降,被掩盖的韧性复又表现出来。交联可分为化学交联和辐射交联。化学交联是在UHMWPE中加入适当的交联剂后,在熔融过程中发生交联。辐射交联是采用电子射线或γ射线直接对UHMWPE制品进行照射使分子发生交联。UHMWPE的化学交联又分为过氧化物交联和偶联剂交联。(1)过氧化物交联过氧化物交联工艺分为混炼、成型和交联三步。混炼时将UHMWPE与过氧化物熔融共混,UHMWPE在过氧化物作用下产生自由基,自由基偶合而产生交联。这一步要保证温度不要太高,以免树脂完全交联。经过混炼后得到交联度很低的可继续交联型UHMWPE,在比混炼更高的温度下成型为制件,再进行交联处理。UHMWPE经过氧化物交联后在结构上与热塑性塑料、热固性塑料和硫化橡胶都不同,它有体型结构却不是完全交联,因此在性能上兼有三者的特点,即同时具有热可塑性和优良的硬度、韧性以及耐应力开裂等性能。国外曾报道用2,5-二甲基-2,5双过氧化叔丁基己炔-3作交联剂〔11〕,但国内很难找到。清华大学用廉价易得的过氧化二异丙苯(DCP)作为交联剂进行了研究〔12〕,结果发现:DCP用量小于1%时,可使冲击强度比纯UHMWPE提高15%~20%,特别是DCP用量为时,冲击强度可提高48%。随DCP用量的增加,热变形温度提高,可用于水暖系统的耐热管道。(2)偶联剂交联UHMWPE主要使用两种硅烷偶联剂:乙烯基硅氧烷和烯丙基硅氧烷,常用的有乙烯基三甲氧基硅烷和乙烯基三乙氧基硅烷。偶联剂一般要靠过氧化物引发,常用的是DCP,催化剂一般采用有机锡衍生物。硅烷交联UHMWPE的成型过程首先是使过氧化物受热分解为化学活性很高的游离基,这些游离基夺取聚合物分子中的氢原子使聚合物主链变为活性游离基,然后与硅烷产生接枝反应,接枝后的UHMWPE在水及硅醇缩合催化剂的作用下发生水解缩合,形成交联键即得硅烷交联UHMWPE。(3)辐射交联在一定剂量电子射线或γ射线作用下,UHMWPE分子结构中的一部分主链或侧链可能被射线切断,产生一定数量的游离基,这些游离基彼此结合形成交联链,使UHMWPE的线型分子结构转变为网状大分子结构。经一定剂量辐照后,UHMWPE的蠕变性、浸油性和硬度等物理性能得到一定程度的改善。用γ射线对人造UHMWPE关节进行辐射,在消毒的同时使其发生交联,可增强人造关节的硬度和亲水性,并且使耐蠕变性得以提高〔13〕,从而延长其使用寿命。有研究〔14〕表明,将辐照与PTFE接枝相结合,也可改善UHMWPE的磨损和蠕变行为。这种材料具有组织容忍性,适于体内移植。 加工性能的改进UHMWPE树脂的分子链较长,易受剪切力作用发生断裂,或受热发生降解。因此,较低的加工温度,较短的加工时间和降低对它的剪切是非常必要的。为了解决UHMWPE的加工问题,除对普通成型机械进行特殊设计外,还可对树脂配方进行改进:与其它树脂共混或加入流动改性剂,使之能在普通挤出机和注塑机上成型加工,这就是中介绍的润滑挤出(注射)。 共混改性共混法改善UHMWPE的熔体流动性是最有效、最简便和最实用的途径。目前,这方面的技术多见于专利文献。共混所用的第二组份主要是指低熔点、低粘度树脂,有LDPE、HDPE、PP、聚酯等,其中使用较多的是中分子量PE(分子量40万~60万)和低分子量PE(分子量<40万)。当共混体系被加热到熔点以上时,UHMWPE树脂就会悬浮在第二组份树脂的液相中,形成可挤出、可注射的悬浮体物料。(1)与低、中分子量PE共混UHMWPE与分子量低的LDPE(分子量1,000~20,000,以5,000~12,000为最佳)共混可使其成型加工性获得显著改善,但同时会使拉伸强度、挠曲弹性等力学性能有所下降。HDPE也能显著改善UHMWPE的加工流动性,但也会引起冲击强度、耐摩擦等性能的下降。为使UHMWPE共混体系的力学性能维持在一较高水平,一个有效的补偿办法是加入PE成核剂,如苯甲酸、苯甲酸盐、硬脂酸盐、己二酸盐等,可以借PE结晶度的提高,球晶尺寸的微细均化而起到强化作用,从而有效阻止机械性能的下降。有专利〔15〕指出,在UHMWPE/HDPE共混体系中加入很少量的细小的成核剂硅灰石(其粒径尺寸范围5nm~50nm,表面积100m2/g~400m2/g),可很好地补偿机械性能的降低。(2)共混形态UHMWPE的化学结构虽然与其它品种的PE相近,但在一般的熔混设备和条件下,它们的共混物都难以形成均匀的形态,这可能与组份之间粘度相差悬殊有关。采用普通单螺杆混炼得到的UHMWPE/LDPE共混物,两组份各自结晶,不能形成共晶,UHMWPE基本上以填料形式分散于LDPE基体中。熔体长时间处理和使用双辊炼塑机混炼,两组份之间作用有所加强,性能亦有进一步的改善,不过仍不能形成共晶的形态。Vadhar发现〔16〕,当采用两步共混法,即先在高温下将UHMWPE熔融,再降到较低温度下加入LLDPE进行共混,可获得形成共晶的共混物。Vadher用溶液共混法也得到了能形成共晶的UHMWPE/LLDPE共混物。(3)共混物的力学强度对于未加成核剂的UHMWPE/PE体系,其在冷却过程中会形成较大的球晶,球晶之间存在着明显的界面,而在这些界面上存在着由分子链排布不同引起的内应力,由此会导致裂纹的产生,所以与基体聚合物相比,共混物的拉伸强度常常有所下降。当受到外力冲击时裂纹会很快地沿球晶界面发展而导致最后的破碎,因此又引起冲击强度的下降。 流动改进剂改性流动改进剂促进了长链分子的解缠,并在大分子之间起润滑作用,改变了大分子链间的能量传递,从而使得链段位移变得容易,改善了聚合物的流动性。用于UHMWPE的流动改进剂主要是指脂肪族碳氢化合物及其衍生物。其中脂肪族碳氢化合物有:碳原子数在22以上的n-链烷烃及以其作主成分的低级烷烃混合物;石油分裂精制得到的石蜡等。其衍生物是指末端含有脂肪族烃基、内部含有1个或1个以上(最好为1个或2个)羧基、羟基、酯基、羰基、氮基甲酰基、巯基等官能团;碳原子数大于8(最好为12~50)并且分子量为130~2000(以200~800为最佳)的脂肪酸、脂肪醇、脂肪酸酯、脂肪醛、脂肪酮、脂肪族酰胺、脂肪硫醇等。举例来说,脂肪酸有:癸酸、月桂酸、肉豆蔻酸、棕榈酸、硬酯酸、油酸等。北京化工大学制备了一种有效的流动剂(MS2)〔17〕,添加少量(~)就能显著改善UHMWPE的流动性,使其熔点下降达10℃之多,能在普通注塑机上注塑成型,而且拉伸强度仅有少许降低。另外,用苯乙烯及其衍生物改性UHMWPE,除可改善加工性能使制品易于挤出外,还可保持UHMWPE优良的耐摩擦性和耐化学腐蚀性〔18〕;1,1-二苯基乙炔〔19〕、苯乙烯衍生物〔20〕、四氢化萘〔21〕皆可使UHMWPE获得优良的加工性能,同时使材料具有较高的冲击强度和耐磨损性。 液晶高分子原位复合材料液晶高分子原位复合材料是指热致液晶高分子(TLCP)与热塑性树脂的共混物,这种共混物在熔融加工过程中,由于TLCP分子结构的刚直性,在力场作用下可自发地沿流动方向取向,产生明显的剪切变稀行为,并在基体树脂中原位就地形成具有取向结构的增强相,即就地成纤,从而起到增强热塑性树脂和改善加工流动性的作用。清华大学赵安赤等采用原位复合技术,对UHMWPE加工性能的改进取得了明显的效果〔22〕。用TLCP对UHMWPE进行改性,不仅提高了加工时的流动性,采用通常的热塑加工工艺及通用设备就能方便地进行加工,而且可保持较高的拉伸强度和冲击强度,耐磨性也有较大提高。 聚合填充型复合材料高分子合成中的聚合填充工艺是一种新型的聚合方法,它是把填料进行处理,使其粒子表面形成活性中心,在聚合过程中让乙烯、丙烯等烯烃类单体在填料粒子表面聚合,形成紧密包裹粒子的树脂,最后得到具有独特性能的复合材料。它除具有掺混型复合材料性能外,还有自己本身的特性:首先是不必熔融聚乙烯树脂,可保持填料的形状,制备粉状或纤维状的复合材料;其次,该复合材料不受填料/树脂组成比的限制,一般可任意设定填料的含量;另外,所得复合材料是均匀的组合物,不受填料比重、形状的限制。与热熔融共混材料相比,由聚合填充工艺制备的UHMWPE复合材料中,填料粒子分散良好,且粒子与聚合物基体的界面结合也较好。这就使得复合材料的拉伸强度、冲击强度与UHMWPE相差不大,却远远好于共混型材料,尤其是在高填充情况下,对比更加明显,复合材料的硬度、弯曲强度,尤其是弯曲模量比纯UHMWPE提高许多,尤其适用作轴承、轴座等受力零部件。而且复合材料的热力学性能也有较好的改善:维卡软化点提高近30℃,热变形温度提高近20℃,线膨胀系数下降20%以上。因此,此材料可用于温度较高的场合,并适于制造轴承、轴套、齿轮等精密度要求高的机械零件。采用聚合填充技术还可通过向聚合体系中通入氢或其它链转移剂,控制UHMWPE分子量大小,使得树脂易加工〔23〕。美国专利〔24〕用具有酸中性表面的填料:水化氧化铝、二氧化硅、水不溶性硅酸盐、碳酸钙、碱式碳酸铝钠、羟基硅灰石和磷酸钙制成了高模量的均相聚合填充UHMWPE复合材料。另有专利〔25〕指出,在60℃,且有催化剂存在的条件下,使UHMWPE在庚烷中干燥的 氧化铝表面聚合,可得到高模量的均相复合材料。齐鲁石化公司研究院分别用硅藻土、高岭土作为填料合成了UHMWPE复合材料〔26〕。 UHMWPE的自增强〔27、28〕在UHMWPE基体中加入UHMWPE纤维,由于基体和纤维具有相同的化学特征,因此化学相容性好,两组份的界面结合力强,从而可获得机械性能优良的复合材料。UHMWPE纤维的加入可使UHMWPE的拉伸强度和模量、冲击强度、耐蠕变性大大提高。与纯 UHMWPE相比,在UHMWPE中加入体积含量为60%的UHMWPE纤维,可使最大应力和模量分别提高160%和60%。这种自增强的UHMWPE材料尤其适用于生物医学上承重的场合,而用于人造关节的整体替换是近年来才倍受关注的,UHMWPE自增强材料的低体积磨损率可提高人造关节的使用寿命。4 UHMWPE的合金化UHMWPE除可与塑料形成合金来改善其加工性能外(见和),还可获得其它性能。其中,以PP/UHMWPE合金最为突出。通常聚合物的增韧是在树脂中引入柔性链段形成复合物(如橡塑共混物),其增韧机理为“多重银纹化机理”。而在PP/UHMWPE体系,UHMWPE对PP有明显的增韧作用,这是“多重裂纹”理论所无法解释的。国内最早于1993年报道采用UHMWPE增韧PP取得成功,当UHMWPE的含量为15%时,共混物的缺口冲击强度比纯PP提高2倍以上〔29〕。最近又有报道,UHMWPE与含乙烯链段的共聚型PP共混,在UHMWPE的含量为25%时,其冲击强度比PP提高一倍多〔30〕。以上现象的解释是“网络增韧机理”〔31〕。PP/UHMWPE共混体系的亚微观相态为双连续相,UHMWPE分子与长链的PP分子共同构成一种共混网络,其余PP构成一个PP网络,二者交织成为一种“线性互穿网络”。其中共混网络在材料中起到骨架作用,为材料提供机械强度,受到外力冲击时,它会发生较大形变以吸收外界能量,起到增韧的作用;形成的网络越完整,密度越大,则增韧效果越好。为了保证“线性互穿网络”结构的形成,必须使UHMWPE以准分子水平分散在PP基体中,这就对共混方式提出了较高的要求。北京化工大学有研究发现:四螺杆挤出机能将UHMWPE均匀地分散在PP基体中,而双螺杆挤出机的共混效果却不佳。EPDM能对PP/UHMWPE合金起到增容的作用。由于EPDM具备的两种主要链节分别与PP和UHMWPE相同,因而与两种材料都有比较好的亲合力,共混时容易分散在两相界面上。EPDM对复合共晶起到插入、分割和细化的作用,这对提高材料的韧性是有益的,能大幅度地提高缺口冲击强度。另外,UHMWPE也可与橡胶形成合金,获得比纯橡胶优良的机械性能,如耐摩擦性、拉伸强度和断裂伸长率等。其中,橡胶是在混合过程中于UHMWPE的软化点以上进行硫化的。5 UHMWPE的复合化UHMWPE可与各种橡胶(或橡塑合金)硫化复合制成改性PE片材,这些片材可进一步与金属板材制成复合材料。除此之外,UHMWPE还可复合在塑料表面以提高耐冲击性能。在UHMWPE软化点以上的温度条件下,将含有硫化剂的未硫化橡胶片材与UHMWPE片材压制在一起,可制得剥离强度较高的层合制品,与不含硫化剂的情况相比,其剥离强度可提高数十倍。用这种方法同样可使未硫化橡胶与塑料的合金(如EPDM/PA6、EPDM/PP、SBR/PE)和UHMWPE片材牢固地粘接在一起。参考文献:〔1〕 钟玉荣,卢鑫华.塑料〔J〕,1991,20(1):30〔2〕 孙大文.塑料加工应用〔J〕,1983(5):1〔3〕 杨年慈.合成纤维工业〔J〕,1991,14(2):48〔4〕 JP 63,161,075〔P〕〔5〕 .〔J〕,1981,27(1):8

物理思想方法研究论文

物理学研究宇宙间物质存在的各种主要的基本形式,它们的性质、运动和转化以及内部结构;从而认识这些结构的组元及其相互作用、运动和转化的基本规律。地学和生命科学都是自然科学的重要方面,有重要的社会作用,但是像地球这样有生物的行星在宇宙中却是少见的,所以地学和生命科学不属于物理学范围。当然,物理学所发现的基本规律,即使在地球现象和生命现象中,也起着重要作用。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来源于实践,而实践的广度和深度有着历史的局限性。随着实践的扩展和深入,物理学的内容也不断扩展和深入。新的分支学科陆续形成;已有的分支学科日趋成熟,应用也日益广泛。早在古代就形成的天文学和起源于古代炼金术的化学,始终保持着独立的地位,没有被纳入物理学的范围。在天文学和物理学之间、化学和物理学之间存在着密切的联系,物理学所发现的基本规律在天文现象和化学现象中也起着日益深刻的作用。 客观世界是一个内部存在着普遍联系的统一体。随着物理学各分支科学的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学逐步发展成为各分支学科彼此密切联系的统一整体。物理学家力图寻找一切物理现象的基本规律,从而去统一地理解一切物理现象。这种努力虽然逐步有所进展,使得这一目标有时显得很接近;但与此同时,新的物理现象又不断出现,使这一目标又变得更遥远。看来人们对客观世界的探索、研究是无穷无尽的。以下大体按照物理学的历史发展过程来叙述物理学的发展及其内容。物理学是研究自然界基本规律的科学.它的英文词physics来源于希腊文,原义是自然,而中文的含义是“物”(物质的结构、性质)和“理”(物质的运动、变化规律).中文含义与现代观点颇为吻合.现代观点认为物理学主要研究:物质和运动,或物质世界及其各部分之间的相互作用,或物质的基本组成及它们的相互作用.物质可以小至微观粒子——分子、原子以至“基本”粒子(elementaryparticles).所谓基本粒子,顾名思义是物质的基本组成成分,本身没有结构.然而基本与否与人们的认识水平以及科学技术水平有关,因此对“基本”的理解有阶段性.有鉴于此,物理学家简单地称之为“粒子”.有时为了表达认识的层次,我们仍然可以说:“现阶段的基本粒子为……”.当前我们认为基本粒子有轻于(lepton)、夸克(quark)、光子(photon)和胶子(gluon)等等.科学家们正在努力寻找自由夸克.此外,分数电荷、磁单极也在寻找之列.我们周围的物体是物质的聚集状态.人们可以用自己的感官感知大多数聚集状态的物质,并称它们为宏观(macroscopic)物质以区别前面所说的微观(microscopic)粒子.居间的尺度是介观(mesoscopic),而更大的尺度是宇观(cosmological).场(field)传递相互作用,电磁场和引力场就是例子.在物理学的范围内,物质的运动是指机械运动、热运动、微观粒子的运动、原子核和粒子间的反应等等.运动总是发生在一定的时间和空间.时间和空间首先是作为物质运动的舞台,但最后也成了物理学研究的对象.现在知道物质之间的相互作用有四种,即万有引力、弱相互作用、电磁相互作用和强相互作用.爱因斯坦(,1879—1955)生前曾致力于统一场论的工作,试图用统一的理论来描述各种相互作用.在60年代,走向统一有了突破性的进展.格拉肖()、温伯格()和萨拉姆()等人发现弱相互作用和电磁相互作用可以统一,用弱电相互作用(electroweak)来描述.鲁比亚(1983[1],)等提供了实验支持.大统一理论(Grand Unification Theory,GUT)试图将强相互作用也统一进去,而超对称理论更企图将引力也纳入其中.还有人在寻求其他的相互作用.对此,在Physics Teacher期刊上曾有一篇文章题为“存在第五种基本力吗?”专门讨论这一命题[6].在高级的理论中,相互作用只不过是交换物质,如电磁作用交换光子、强作用交换胶子.物理学的一个永恒主题是寻找各种序(orders)、对称性(symmetry)和对称破缺(symmetry-breaking)[10]、守恒律(conservation laws)或不变性(invariance).物质的有序状态比我们想象的要广泛得多.除了排列整齐的位置序以外,还可以有指向序.超导态也是一种有序状态.对称性通常指静止的空间几何对称,如太极图、八卦、晶体中的平移和旋转对称.实际上,对称性还可以是动态的,可以是时间反演对称、物质—反物质对称以及更为抽象的规范对称等等.就物理学和其他科学的关系而言,我们可以说:·物理学是最基本的科学.·物理学是最古老、发展最快的科学.·物理学提供最多、最基本的科学研究手段.最基本的体现是在天文学、地学、化学、生命科学中都包含着物理过程或现象.在这些学科中用到不少物理学概念和术语是很自然的.最基本还意味着任何理论都不能和物理学的定律相抵触.例如,如果某种理论破坏能量守恒定律,那么这一理论就很成问题.当然,某些物理理论本身或一些阶段性的工作本身也是在不断地完善.19世纪中叶之前,物理学曾是完完全全的实验科学.力学中的理论问题被认为是数学家的事.19世纪末,在当时处于世界物理学中心的德国的大学里,开始设置理论物理学教授的席位.此后,随着人类的认识能力逐步深入,逐步深入到不能靠直觉把握的微观、高速、宇观现象,20世纪初建立了狭义和广义相对论,以及量子力学这些深刻的物理理论.到了20世纪中叶,物理学已经成为实验和理论紧密结合的科学.20世纪后半叶由于电子计算机的发展,既改变了理论物理的工作方式,也扩大了实验的涵义.目前物理学已经成为实验物理、理论物理、计算物理三足鼎立的科学.实验提供的条件比自然界出现的更富变化和更灵活可控,而物理理论则给出了对自然界的数学描述.计算物理学是重要的新分支,有自己独特的研究方法.计算机实验可以提供比通常的实验更为变化丰富和灵活控制的条件.不过通常需要用到超级计算机.物理学中最重大的基本理论有下面5个:·牛顿力学或经典力学(Mechanics)研究物体的机械运动;·热力学(Thermodynamics)研究温度、热、能量守恒以及熵原理等等;·电磁学(Electromagnetism)研究电、磁以及电磁辐射等等;·相对论(Relativity)研究高速运动、引力、时间和空间等等;·量子力学(Quantum mechanics)研究微观世界.后两个理论主要是在20世纪发展起来的,通常认为是现代物理学的核心.以上理论中没有一个被完全推翻过,也没有一个是永远正确的.例如,牛顿力学在高速情形下,应该用狭义相对论来代替;而对于强引力,它又偏离于广义相对论,但在它的适用范围内仍然是精确的.科学的理论总是要发展的,需要根据新发现的事实进行修正.在教科书中只介绍一种版本的做法很可能导致“理论是唯一的”这样的观念.事实上,理论决不是唯一的.科学理论往往在美学上令人赏心悦目,在数学上优雅而普适,但是仅仅有这些是决不可能流传下来的.理论和思想必须经受实验的检验和验证.物理学中的理论和实验在相互促进和丰富中得到发展.一个没有思想的实验工作者可以发现无穷无尽的事实,不过毫无用处.理论家如果不受实验检验这一约束也可能产生出极其丰富的思想,不过与大自然毫无关系而已.通常的科学研究方法是:·通过观测、实验、计算机模拟得到事实和数据;·用已知的可用的原理分析这些事实和数据;·形成假说和理论以解释事实;·预言新的事实和结果;·用新的事例修改和更新理论.上述的后3步都是关于理论的.以上所说的科学研究的步骤是常规的.有时候,有的人可能并不遵循这样的过程.常常直觉(intuition)或者预感(premonition)会起相当的作用.有时候,机遇(运气或偶然)对于成功也会起作用,使你获得一则重要的信息或发现一个特别简单的解.要学会在恰当的时机提出恰当的问题,并找到问题的答案.有时还必须忽略一些“事实”,原因是这些并不是真正的事实或者它们无关紧要、自相矛盾;或者是由于它们掩盖了更重要的事实或考虑它们使问题过于复杂化.据说,有一次有人问爱因斯坦:如果迈克耳孙-莫雷(Michelson-Morley)实验并不导致光速不变你怎么办?他说:他将忽略那些实验结果,他已经得到了结论,光速必须被认为是不变的.关于爱因斯坦1905年提出狭义相对论时是否知道迈克耳孙-莫雷实验,曾发生过长时间的争论.有人认为爱因斯坦在他的著作中没有留下他知道迈克耳孙-莫雷实验的丝毫痕迹,他可能纯粹通过理论推理和他们(迈克耳孙与莫雷)得出了相同的结论.爱因斯坦的首席传记作家培斯(Abraham Pais)筛选了许多历史记载,得出结论说,爱因斯坦确实知道这一实验.新近有一篇爱因斯坦在1922年的演说的英文翻译稿刊登在Physics Today上[8].此文是根据原来的德语演讲的日文记录整理、翻译的[见第九章参考文献(13)].译者让爱因斯坦“本人”表示,他知道这一实验.在大学物理的学习中,除了学习事实、定律、方程和解题技巧外,还必须努力从整体上掌握物理学.要了解各分支间的相互联系.现代观点认为,应该从整体上逻辑地、协调地来把握物理学.学习中,对于基本物理定律的优美、简洁、和谐以及辉煌应该有所体会,要学会鉴赏其普适程度,了解其适用范围.还要学会区别理论和应用,物理思想和数学工具,一般规律和特殊事实,主要和次要效应,传统的和现代的推理方式等等.

物理学概览 物理学是研究宇宙间物质存在的基本形式、性质、运动和转化、内部结构等方面,从而认识这些结构的组成元素及其相互作用、运动和转化的基本规律的科学。 物理学的各分支学科是按物质的不同存在形式和不同运动形式划分的。人对自然界的认识来自于实践,随着实践的扩展和深入,物理学的内容也在不断扩展和深入。 随着物理学各分支学科的发展,人们发现物质的不同存在形式和不同运动形式之间存在着联系,于是各分支学科之间开始互相渗透。物理学也逐步发展成为各分支学科彼此密切联系的统一整体。 物理学家力图寻找一切物理现象的基本规律,从而统一地理解一切物理现象。这种努力虽然逐步有所进展,但现在离实现这—目标还很遥远。看来人们对客观世界的探索、研究是无穷无尽的。经典力学 经典力学是研究宏观物体做低速机械运动的现象和规律的学科。宏观是相对于原子等微观粒子而言的;低速是相对于光速而言的。物体的空间位置随时间变化称为机械运动。人们日常生活直接接触到的并首先加以研究的都是宏观低速的机械运动。                                       自远古以来,由于农业生产需要确定季节,人们就进行天文观察。16世纪后期,人们对行星绕太阳的运动进行了详细、精密的观察。17世纪开普勒从这些观察结果中总结出了行星绕日运动的三条经验规律。差不多在同一时期,伽利略进行了落体和抛物体的实验研究,从而提出关于机械运动现象的初步理论。  牛顿深入研究了这些经验规律和初步的现象性理论,发现了宏观低速机械运动的基本规律,为经典力学奠定了基础。亚当斯根据对天王星的详细天文观察,并根据牛顿的理论,预言了海王星的存在,以后果然在天文观察中发现了海王星。于是牛顿所提出的力学定律和万有引力定律被普遍接受了。  经典力学中的基本物理量是质点的空间坐标和动量:一个力学系统在某一时刻的状态,由它的某一个质点在这一时刻的空间坐标和动量表示。对于一个不受外界影响,也不影响外界,不包含其他运动形式(如热运动、电磁运动等)的力学系统来说,它的总机械能就是每一个质点的空间坐标和动量的函数,其状态随时间的变化由总能量决定。  在经典力学中,力学系统的总能量和总动量有特别重要的意义。物理学的发展表明,任何一个孤立的物理系统,无论怎样变化,其总能量和总动量数值是不变的。这种守恒性质的适用范围已经远远超出了经典力学的范围,现在还没有发现它们的局限性。  早在19世纪,经典力学就已经成为物理学中十分成熟的分支学科,它包含了丰富的内容。例如:质点力学、刚体力学、分析力学、弹性力学、塑性力学、流体力学等。经典力学的应用范围,涉及到能源、航空、航天、机械、建筑、水利、矿山建设直到安全防护等各个领域。当然,工程技术问题常常是综合性的问题,还需要许多学科进行综合研究,才能完全解决。                                         机械运动中,很普遍的一种运动形式就是振动和波动。声学就是研究这种运动的产生、传播、转化和吸收的分支学科。人们通过声波传递信息,有许多物体不易为光波和电磁波透过,却能为声波透过;频率非常低的声波能在大气和海洋中传播到遥远的地方,因此能迅速传递地球上任何地方发生的地震、火山爆发或核爆炸的信息;频率很高的声波和声表面波已经用于固体的研究、微波技术、医疗诊断等领域;非常强的声波已经用于工业加工等。热学、热力学和经典统计力学  热学是研究热的产生和传导,研究物质处于热状态下的性质及其变化的学科。人们很早就有冷热的概念。对于热现象的研究逐步澄清了关于热的一些模糊概念(例如区分了温度和热量),并在此基础上开始探索热现象的本质和普遍规律。关于热现象的普遍规律的研究称为热力学。到19世纪,热力学已趋于成熟。  物体有内部运动,因此就有内部能量。19世纪的系统实验研究证明:热是物体内部无序运动的表现,称为内能,以前称作热能。19世纪中期,焦耳等人用实验确定了热量和功之间的定量关系,从而建立了热力学第一定律:宏观机械运动的能量与内能可以互相转化。就一个孤立的物理系统来说,不论能量形式怎样相互转化,总的能量的数值是不变的,因此热力学第一定律就是能量守恒与转换定律的一种表现。  在卡诺研究结果的基础上,克劳修斯等科学家提出了热力学第二定律,表达了宏观非平衡过程的不可逆性。例如:一个孤立的物体,其内部各处的温度不尽相同,那么热就从温度较高的地方流向温度较低的地方,最后达到各处温度都相同的状态,也就是热平衡的状态。相反的过程是不可能的,即这个孤立的、内部各处温度都相等的物体,不可能自动回到各处温度不相同的状态。应用熵的概念,还可以把热力学第二定律表达为:一个孤立的物理系统的熵不会着时间的流逝而减少,只能增加或保持不变。当熵达到最大值时,物理系统就处于热平衡状态。                                       深入研究热现象的本质,就产生了统计力学。统计力学应用数学中统计分析的方法,研究大量粒子的平均行为。统计力学根据物质的微观组成和相互作用,研究由大量粒子组成的宏观物体的性质和行为的统计规律,是理论物理的一个重要分支。  非平衡统计力学所研究的问题复杂,直到20世纪中期以后才取得了比较大的进展。对于一个包含有大量粒子的宏观物理系统来说,系统处于无序状态的几率超过了处于有序状态的几率。孤立物理系统总是从比较有序的状态趋向比较无序的状态,在热力学中,这就相应于熵的增加。  处于平衡状态附近的非平衡系统的主要趋向是向平衡状态过渡。平衡态附近的主要非平衡过程是弛豫、输运和涨落,这方面的理论逐步发展,已趋于成熟。近20~30年来人们对于远离平衡态的物理系统,如耗散结构等进行了广泛的研究,取得了很大的进展,但还有很多问题等待解决。  在一定时期内,人们对客观世界的认识总是有局限性的,认识到的只是相对的真理,经典力学和以经典力学为基础的经典统计力学也是这样。经典力学应用于原子、分子以及宏观物体的微观结构时,其局限性就显示出来,因而发展了量子力学。与之相应,经典统计力学也发展成为以量子力学为基础的量子统计力学。

下面链接之中有好多文章,应该是比较符合你的要求的。

我是初中物理老师,我也许会出这样一个题目,但作为一个年长者的我不希望看到你直接问别人要论文。如果是我,评价这篇论文的标准是:1、基本格式,这你得重新学,网上很容易找。你虽然不是作硕博论文,但仍然要从开始就要培养一种学术习惯,美国小学生作论文就如此。这会让你的老师刮目相看的。2、在你的知识与能力范围之内,从一两件生产和生活中小现象、事实说明物理的有趣和有用,楼上的很多资料都超出你的能力范围。什么是物理学,不是你能讲清楚的,而是请你讲你眼中的物理学。3、文中是否有一二点有灵性的思维火花。物理老师一般都很看重学生的悟性与灵感以及思维的品质。到网上去找资料,到生活中去观察和实验,你会觉得会与感兴趣的其它事情一样有趣的。最后祝你物理这门课学和轻松愉快!

相关百科