杂志信息网-创作、查重、发刊有保障。

热泵技术研究进展论文

发布时间:2024-07-05 02:19:19

热泵技术研究进展论文

张新世

(中原石油勘探局勘察设计研究院)

论文摘要:本文介绍了地源热泵的概念及工作原理,随后详细地论述了地源热泵的特点,和地源热泵在我国发展的限制条件,并介绍了地源热泵在国内使用情况及发展前景,最后鲜明地指出地源热泵技术是目前对人类最友好最有效的供热供冷技术。

1 地源热泵的概念和工作原理

地源热泵是一种利用地下浅层地热资源(包括地下水、土壤和地表水)即可供热又可供冷的高效节能空调系统。利用逆卡诺循环,通过输入少量高品位的电能,实现低品位热能向高品位热能转移。热泵一般有蒸发器、冷凝器、压缩机和膨胀阀四部分组成。

地源热泵的工作原理是:在夏季,热泵机组将建筑物中的热量取出,转移释放到地层中;在冬季,则从地层中提取热量,向建筑物供热。通常地源热泵消耗1kW的能量,用户可以得到4kW以上的热量或冷量。

2 地源热泵的特点

我们知道在地球表面以下一定深度的地温全年相对恒定,地源热泵利用浅层地热作为冷热源,这样就排除了环境因素的影响,与其它供热供冷系统相比,具有以下显著特点。

利用的是可再生能源

地源热泵在夏季吸收建筑物散发的热量并在浅层地下保存起来,一部分热量在冬季供建筑物的采暖,另一部分热量则直接散发到空气中。就全年来说,建筑物利用浅层地热的热量或冷量大体是相等的。所以说,地源热泵利用的是可再生能源。

高效节能

由于地源热泵的热源温度全年一般为10~22℃,冬季供热时,水体温度比环境温度高,所以热泵循环的蒸发温度提高,能效比也提高。夏季制冷时,水体温度比环境温度低,冷却效果提高,机组效率也提高。水源热泵的制冷制热系数可达以上,与传统的空气源热泵相比,高出40%左右,其运行费用仅为普通中央空调的50%~60%,与电热锅炉和电热膜供热相比,节约70%左右的电能。

环保效益显著

水源热泵运行时,需要的仅仅是水源水的热量或冷量,水质不发生任何变化,也不产生任何污染,不耗水、排烟,不产生灰尘,仅仅消耗少量的电能。

从耗电方面来说,节能就是环保。使用水源热泵导致的污染物排放,比空气源热泵减少40%,比电锅炉减少70%。虽然地源热泵也使用制冷剂,但比常规空调减少25%的冲灌量。地源热泵在工厂内整装密封完好,不会像分体空调那样安装时易产生泄漏。

一机多用

一套地源热泵就可以实现供热、供冷和生活热水供应。即用一套设备可以代替原来的锅炉加空调两套系统,所以一次性投资仅是传统供热制冷的50%~70%。特别是在夏季供冷时,可以利用热泵产生的费热,免费为用户提供生活热水。所以,地源热泵特别适用同时有供热供冷和生活热水供应的建筑。

节省土地资源

水源热泵除主机和循环水泵外,没有其它安装设备。与锅炉房相比,省去了水处理间、风机间、烟囱、煤场和渣土场,节约了土地资源。

运行稳定可靠、使用寿命长

由于地源热泵的水体温度稳定,与空气源热泵相比,免除了结霜和除霜的影响。热泵的运转部件少,基本上不需要维修,运行稳定可靠,使用寿命可达20年左右。

自动化程度高

地源热泵一般是全电脑控制,可根据外部负荷的变化,调整压缩机的工作数量,并设有压缩机超温保护、断水保护等多种保护措施,可实现无人值守。

3 地源热泵供热系统的组成

地源热泵工程一般有地源水系统,热泵机房和末端风机盘管散热系统三部分组成。根据地源换热系统的形式又分为开式环路系统和闭式环路系统。

开式环路系统是将水从水井(包括湖泊和河流)中抽出,送入热交换机组进行热交换,提取热量或冷量后的水再回灌到水井中。开式环路系统用水一般只进行简单的水处理,会引起换热器表面结垢。开式系统是目前地源热泵应用的主要形式。

闭式环路系统又分为立埋式环路系统和平埋式环路系统。它是通过埋在地下的聚乙烯管环路与土壤进行热交换。通常适合安装在别墅等场地较大的建筑物。

4 地源热泵的限制条件

地源热泵被专家们称之为目前可用的对人类最友好最有效的供热供冷形式,近几年在研究和应用上得到了迅速发展,但由于受到以下客观条件的限制,这项技术的应用尚不普遍。

宣传认识不足

地源热泵技术虽然受到热暖专家的推崇,但是要获得在工程中的普遍应用,需要各阶层领导特别是工程主管领导的认可。由于这项技术是近几年随着我国能源战略的调整才发展起来的,甚至部分热暖技术人员,也存在认识不足的现象。所以,要获得社会的认同还需要加大宣传力度。

政策力度不够

我国《节约能源法》中,对热电联产和集中供热技术鼓励和发展,而对综合能源利用率是其2倍的地源热泵技术,至今还没有鼓励发展的明确条文。

水源条件的限制

对于开式环路地源热泵系统是否有充足的水源,以及当地的地质土壤条件是否能保证尾水的回灌顺利实现是地源热泵应用的前提条件。一般来说,用于小区供暖时,建筑容积率要≤1。对于闭式系统,受当地地质条件是否适合埋管和是否有足够的场地埋管等环境条件的限制。

埋管系统换热计算理论不成熟

对于地源热泵机组和末端风机盘管散热系统目前技术已相当成熟。对开式系统,当地水利部门对水源情况也相当了解;而对埋管系统,目前土壤埋管换热计算理论还不成熟,设计落后于工程应用,这就使工程质量难以保证,并使该项技术的广泛应用受到限制。

受当地水利部门政策的限制

我国南方水源充足,而北方大部分地区水源缺乏,为保护有限的水资源,每个地方政府都制定了当地的水资源使用法规。虽然地源热泵系统并不消耗水也不污染地下水,但需要大量的水作热载体。有些地方部门对取水和回灌水进行双重收费,使地源热泵的节能效果不能够充分体现,这就限制了该项技术在这些地区的发展。

5 地源热泵的应用

国外应用情况

地源热泵在日、韩、美和中、北欧应用较为普遍。据1999年的统计,在住宅供热装置中,地源热泵所占比例,瑞士96%,奥地利38%,丹麦27%。美国1998年地源热泵系统在新建筑中占30%,且以10%的速度稳步增长。其中最著名的地源热泵工程有肯塔基州刘易斯威尔的滨水区办公大楼,服务面积×104m2,每月节省运行费用25000 美元。随着该项技术的应用发展,其组织的研究也迅速发展。据有关资料介绍,日本国研究出的高温水地源热泵,出水温度达到80~150℃,且其制热系数COP高达。

国内应用情况

天津大学热能研究所的吕灿仁教授在1954年就开展了我国热泵的最早研究,1965年研制成功国内第一台水冷式热泵机组。目前多家大学和研究机构都在对水源热泵进行研究。

国内较早生产水源热泵的厂家有清华同方人工环境设备公司和山东海洋富尔达,产品都已系列化。目前热泵机组出水温度已达65℃,制冷系数COP可达。目前国内较典型的用户有沈阳东北电力住宅小区,服务面积8×104m2;北京友谊医院服务面积×104m2,全年节约采暖和供冷运行费用约9元/m2。

中原油田钻井三公司办公楼水源热泵示范工程是我局第一个地源热泵系统。选用钻井综合工程处与清华大学联合研制生产的ZYRB240 型热泵机组2台,服务面积6000m2。该项工程的成功实施必将为地源热泵在中原油田的推广应用起到有力的推动作用。

6 地源热泵的发展前景

符合政府有关部门的要求

地源热泵高效节能,环保效益好,符合我国的能源政策和环境保护政策,热泵技术的综合能源利用率约为120%~180%。所以国家把热、电、冷联产技术作为鼓励发展的通用节能技术促进了地源热泵技术的发展。

符合业主的利益

由于地源热泵即可供热,又可供冷。一套系统可以代替原来的两套系统,投资少。且地源热泵占地少,运行成本低,管理方便,这些都符合业主的根本利益。

符合用户的利益

地源热泵供热费用燃煤集中锅炉房供热费用的一半,夏季供冷费用约为冷水机组的60%,这就减少了用户供热供冷费用的支出,符合用户的切身利益。

适用地区范围广

冷水机组只能用于夏季供冷,风冷机组只适用于长江流域的供热供冷,而地源热泵除即无可利用地下水又不能埋管的极少数地区外,适用于其它绝大多数地区。

应用范围不断扩展

地源热泵不仅在建筑采暖和供冷方面得到迅速发展,目前在化工、食品、造纸、农业、冶金、木材干燥、制药等行业中也得到了`广泛应用。据预测2000年这些行业应用地源热泵1200多台,且发展势头强劲。

综上所述,地源热泵技术以其独有的优点,近几年在国内得到迅速发展。随着我国能源结构政策的调整,我国以燃煤锅炉采暖和空气源热泵供冷的传统形式会被更加高效的地源热泵所取代。随着地源热泵技术的研究和发展,它比将成为21世纪最普遍最有效的供热供冷技术。

参考文献

[1]刘兴中.水源热泵系统介绍.2001

[2]吴展豪.地源热泵空调系统.2001

注:本文引至全国油区城镇地热开发利用经验交流会论文集,冶金工业出版社,2003

引言空气源热泵是以空气作为高温(低温) 热源来进行供热(供冷) 的装置。相对于其它热泵类型而言 ,我国对空气源热泵的研究起步较早 ,研究内容也较多。以环境空气作为低品位热源 ,可以取之不尽 ,用之不竭 ,处处都有 ,无偿获取。空气源热泵则安装灵活、使用方便、初投资相对较低 ,且比较适用于分户安装 ,目前我国室内空调器大都采用的是这种形式。这也就使得我国空气源热泵冷热水机组市场空前繁荣 ,生产研制已经比较成型 ,产品规格齐全 ,品牌繁多。据有关调查表明 ,目前我国空气源热泵冷热水机组生产厂家已由 1995 年的十几家发展到现在的四十多家 ,据不完全统计 ,国内销售的机组已逾45个品牌 ,其中国产机组约占 25 %左右 ,其余为合资产品 ,台资产品和进口产品。为了更好地了解我国空气源热泵方面的发展动态 ,本文将对近年来我国关于空气源热泵的研究进行分析 ,并在此基础上指出空气源热泵所存在的问题及有待改进的方向 ,希望以此来进一步促进空气源热泵在我国的研究和应用。1我国空气源热泵研究状况随着空气源热泵在我国应用的日趋广泛和研究的日趋深入 ,了解我国空气源热泵的研究状况对于后续研究而言具有重要的意义。下面重点介绍我国近年来关于空气源热泵的技术进展。1. 1 空气源热泵结霜、化霜问题的研究由于空气源热泵冬季采用空气作为热源 ,所以 ,随着室外温度的降低 ,其蒸发温度也随之降低 ,蒸发器表面温度随之下降 ,甚至低于0 ℃。此时 ,当室外空气在流经蒸发器被冷却时 ,其所含的水分就会析出并依附于蒸发器表面形成霜层。结霜对热泵是极其不利的。随着霜层的形成 ,蒸发器传热热阻增加 ,蒸发温度下降 ,机组的性能下降 ,工况恶化 ,制热量也将下降 ,这将严重影响压缩机以及热泵整体的性能 ,同时 ,除霜带来的额外费用还将降低空气源热泵的经济性 ,这也就是为什么空气源热泵在寒冷、潮湿地区的应用受到限制的原因。所以说 ,结霜机理、化霜方法一直是空气源热泵研究与应用中要解决的重点与难点。目前 ,有不少关于空气源热泵机组冬季运行状况的研究[1 ,2 ,3],主要分析供热时不同工况下空气盘管表面湿空气结霜、结露及干冷却特性 ,并结合结霜过程进行试验和模拟 ,分析了迎面风速、环境温湿度、翅片间距、管排数等参数对结霜性能的影响及其所可能产生的一系列后果。了解结霜的机理的主要目的是要解决如何除霜的问题。传统的除霜控制方法主要包括 :定时除霜法 ,时间 —温度(压力) 法 ,空气压差控制除霜法 ,霜层传感器控制除霜法 ,声音震荡器控制除霜法 ,最大平均供热量控制除霜法 ,最佳除霜时间控制法等。这些方法各有利弊 ,有待完善。近年来 ,由于计算机技术的发展 ,将模糊控制技术引入空气源热泵除霜问题的研究作为一项先进可行的新技术 ,逐渐引起了人们的注意。这主要是因为空气源热泵结霜问题的影响是多因素 ,非线性的 ,而模糊控制技术的优势就是处理多维、非线性、时变问题。这样一来 ,将模糊控制技术引入空气源热泵的除霜控制 ,通过对除霜过程的系统响应分析 ,可以使除霜控制能够自动适应机组工作环境的变化 ,达到智能除霜的控制要求。关于这方面的详细研究参见文献[4 ,5 ,6 ,7]。此外 ,还有考虑环境工况变化的双温度传感器智能化除霜控制方法等[8]。尽管空气源热泵具有很多优点 ,但受室外环境的限制也比较大 ,这也是空气源热泵目前仅在我国黄河以南地区得到了广泛应用的主要原因。而在黄河以北地区 ,应用空气源热泵则根据所处地区不同有其特殊要求。目前 ,关于西安、胶东以及寒冷地区空气源热泵的实际应用情况已有研究[9 ,10 ,11 ,12],并就所遇到的如压缩比过大等具体问题提出了一些相应的改进措施 ,可在相应地区的实际应用中作为参考。此外 ,为了对空气源热泵结霜除霜所带来的损失进行量化的分析 ,有研究提出了不同地区、不同使用情况下的平均结霜除霜损失系数的概念 ,平均结霜除霜损失系数越大的地区应用空气源热泵越不经济。据此,将我国空气源热泵使用地区根据平均结霜损失系数分成 4 类 :低温结霜区 :如济南、北京、郑州、西安、兰州等 ;轻霜区 :如成都、桂林、重庆等 ;重霜区 :如长沙 ;一般结霜区 :如杭州、武汉、上海、南京、南昌、宜昌等[13 ,14]。这些都可以作为今后热泵设计选用中重要的参考依据。1. 2空气源热泵节能问题的研究火用是对系统能的质与量的综合评价。对系统进行火用分析可以揭示出系统中火用损失的部位、类型和数量 ,以便设法减少这些损失。通过火用计算分析可知 ,压缩功只有 20 %被利用 ,而有 80 %被损失 ,其中 ,压缩机火用损失占 30. 7 %,冷凝器占2014 % ,蒸发器占 1715 % ,毛细管占 10 %[23]。由此我们可以看出 ,空气源热泵系统节能的主要部件是压缩机 ,提高压缩机本身的技术指标 ,是提高整个系统火用效率的关键 ,而冷凝器和蒸发器火用优化措施主要是设法降低传热温差。当然 ,系统的节能改进与经济性是相互制约的 ,仅从能效进行分析有一定的局限性。从这个角度出发 ,有关研究人员提出供热最佳经济平衡点的概念 ,以期在此最佳经济平衡点温度条件下 ,整个供热系统(热泵 + 辅助热源) 的初投资与运行费最少 ,从而合理实现热泵节能优化[15 ,16]。此外 ,通过空气源热泵机组与水冷冷水 + 锅炉机组、溴化锂吸收式机组( + 锅炉) 这 3 种方案的经济性比较可以得出 ,空气源热泵相对于其它两种形式而言 ,经济性上具有显著的优越性[17]。1. 3 空气源热泵各部件性能、工质等对整个系统的影响有限时间热力学方法在空气源热泵的研究中应用较多。用有限时间热力学方法可以从理论上研究热阻对空气源热泵循环性能的影响 ,并由此得出对应于最大供热系数的最佳压比和供热率、供热系数之间的关系[18]。而通过有限时间热力学方法对回热式空气源热泵循环性能进行的分析 ,可以导出变温热源不可逆闭式回热式空气热泵的供热率和供热系数与循环压比间的解析式[19]。这可以对实验研究起到一定的指导意义。四通换向阀是热泵机组中用来改变制冷剂流向的一个关键控制阀件 ,上海交通大学陈芝久等人就四通换向阀的性能对热泵的影响进行了一系列详细研究 ,根据对四通换向阀的动态模拟和测试 ,就其容量的测定与换算等方面给出了一些较为合理的建议[20 ,22 ,23 ,24 ,25 ,26]。关于热泵启停机特性问题 ,有研究分析了热泵停机时系统压力平衡导致的制冷剂迁移和汽液分离器的机理 ,并指出启动时制冷剂迁移和汽液分离器将导致系统 COP 的下降[27]。随着人们对生存环境的日益重视 ,近来开展研究与探讨了不少关于空气源热泵替代工质的研究 , 如 :R410A、R134a、R744、非共沸混合溶液等。例如 ,有文献通过对 R410A 和 R22 在回热循环中的性能研究表明 ,在回热式空气源热泵循环中应用R410A 作为制冷剂对整个系统性能更为有利[20]。这种研究方法也可在其他替代工质的比较研究中作为借鉴。空气源热泵机组的噪声来源有很多方面 ,受各方面的因素影响也比较多 ,但一般来说 ,压缩机和风机是主要的噪声源 ,相应地 ,我们应该合理设计压缩机和风机的结构 ,并采取一定的隔音措施以便尽可能减少噪音。此外,合理布置机组间距离也可以有效减小噪音[28 ,29]。1. 4 计算机模拟在空气源热泵系统中的应用随着计算机技术的不断普及,计算机在暖通空调中的应用也日益广泛。前面所述及的一些研究中有很多也都应用了计算机技术 ,但关于计算机模拟在暖通空调中具有代表性的应用主要有以下几个方面 :①对压缩机的计算模拟采用神经网络法对空气源热泵中螺杆式压缩机的冬季运行特性进行模拟 ,并结合误差反向传播算法(BP 算法) 进行调整 ,结果表明 ,采用该方法对压缩机进行建模模拟可以达到较高的精度要求。模拟结果与实验结果吻合较好[30]。②对蒸发器的计算模拟通过对空气源热泵的蒸发器结霜问题进行动态模拟计算,可以详细分析蒸发器结霜和制冷剂充灌量对系统性能所产生的影响[31 ,32]。另外 ,对于采用ε2NTU 法 (效率 —传热单元数法) 对空气源热泵蒸发器肋片管在干工况、湿工况及结霜工况下的传热传质计算方法也有相关探讨[33]。③系统仿真研究通过建立房间空调器热泵运行时的瞬态仿真的数学模型,可以得出房间空调器热泵运行时的制冷系统参数及房间温度变化的曲线[34],这对实现空气源热泵系统的自控有很大的意义。④系统能耗分析软件关于空气源热泵全年能耗分析应用软件的开发应用在相关文献中有所介绍[35],该软件在求解热泵供冷全年能耗时,综合考虑了空调冷负荷、室外干球温度、热泵出水温度这 3 个因素 ,在求热泵供热能耗时 ,还将室外空气相对湿度这个重要参数考虑进去,这就使得热泵供热能耗计算更为准确 ,也为空气源热泵的应用提供了一个很好的分析方法。1. 5 其它近来针对热泵分户计量的需要,有观点在对传统的计量方法进行比较分析的基础上提出了用比率法测量热泵制热量的新思路 ,并结合实际测量给出了应用评价[36]。变频技术在空气源VRV热泵中的应用是一项新技术。根据对大金变频控制热泵式 VRV 空调系统夏季制冷运行时的节能特性所做的一系列实验研究,可以获得夏季部分负荷运行特性。通过在节能方面与普通空气源热泵进行比较,证明应用变频技术以后的空气源热泵机组比普通机组更加节能[37]。客车空调也是空气源热泵应用的一个主要方面。关于空气源热泵应用于空调客车的可行性、经济性以及所遇到的诸如融霜等问题,已有相应的探讨和试验研究[38 ,39 ,40 ,41],具体地 ,关于压缩机转速对机车热泵空调系统制冷量、输入功率及COP 等性能的影响等问题, 也有相关文献介绍[42]。此外 ,从一些空气源热泵在一些公共场所、大中型商场、毛纺厂等大型建筑中的工程应用实例介绍文献可以看出,空气源热泵不仅理论研究相对已经比较成熟 ,而且已在我国的实际工程中得到了广泛的应用。2空气源热泵有待解决的问题及改进方向对于空气源热泵而言,除了具有种种优点之外 ,仍存在很多不足及有待解决的问题。空气源热泵的性能受室外气候条件变化影响较大 ,随着室外环境的恶化而恶化。夏季 ,随着室外空气温度的升高,制冷负荷增大 ,但热泵系统冷凝温度升高 ,热泵温差增加 ,机组整体效率降低 ;冬季 ,随着空气温度的降低 ,供热负荷增大 ,而蒸发温度随之降低 ,热泵温差增大,导致机组整体效率降低。同时 ,随着室外条件的恶劣 ,热泵的工作性能急剧下降,又反过来加剧了室外环境的恶劣程度。进一步研究应考虑采取相应措施来合理改善机组的性能。空气源热泵另一个突出的问题就是蒸发器冬季结霜问题。这不但导致系统供热性能的急剧下降,还将对压缩机等重要部件产生不良影响(如冰堵) ,严重时将损坏压缩机 ,使系统不能正常运转 ,同时 ,结霜还将使机组运行费用增加。尽管我国在这方面已经做了很多研究工作,但关于结霜的控制措施及除霜技术的研究方面 ,还需要进一步进行深入研究和实验论证。如 :有研究认为,空气源热泵工作性能的平均水平是对其结霜过程进行控制、充分发挥热泵系统技术性能的关键 ,同时还指出 ,关于如何得到最佳的工作特性平均水平点,得到尽可能短的除霜周期和最佳工作效率的问题,可通过热泵系统设计中对各设备性能和循环参数的最佳耦合得到[31]。但究竟如何实现最佳耦合却缺少详细的说明和深入研究。另外 ,如何对机组本身进行优化设计,减少结霜 ,如何采用更好的除霜方式来提高空气源热泵的运行效率 ,节约机组的费用 ,这些都仍值得探讨。目前空气源热泵机组中大都采用的是一些含CFCs 或HCFCs 的等具有臭氧破坏潜能 ODP 或地球变暖潜能 GWP 的制冷剂 ,对环境的负面影响较大 ,而且 ,根据蒙特利尔议定书 ,各国将限制具有ODP和GWP 的卤代烃 CFCs 或 HCFCs 的使用 ,并规定了到 2030 年完全禁止使用的日程表。由此看来 ,对新型环保替代工质 (如 : R410A , R134a ,R744 等) 的特性的研究很有必要 ,相应地 ,采用新工质后系统的优化匹配问题也应进行详细实验和研究。由于室外空气一年四季甚至一天当中的温度波动较大 ,这就对实现整个空气源热泵系统的自动控制提出了很大的挑战 ,关于这一方面的研究尚不多见 ,还有待于逐渐探索和完善。此外 ,关于在我国北方地区应用空气源热泵的可行性问题,还需要根据各地区具体气象条件进行更为详细的实际论证和分析。3结语本文对近年来我国在空气源热泵方面的研究进展从各个方面进行了比较全面的分析。总的看来,我国空气源热泵的研究和应用工作已经取得了一定的成就 ,但仍存在一些不足之处 ,如:节能除霜方法、新工质新循环的替代、系统的智能控制等方面仍有待改进。在今后的研究中应努力解决好这些问题 ,以此促进空气源热泵在我国更广泛的应用。

戴传山

(天津大学地热研究培训中心)

一年一度的日本冷冻空调学会(JSRAE Annual Conference)于2002年11月在红叶满开的日本冈山大学举行。冈山大学工学部传热教研室是这次大会的组织者,作为该教研室即将毕业的博士留学生,我有幸协助组织并参加了这次大会。大会共宣读了173篇论文,其中18篇与地热有关,约占论文总数的10%,会议论文的内容主要包括:①对地源热泵发展的回顾;②相关的基础及软科学研究;③地下水式、桩式等地源热泵和空调系统;④利用地热进行道路融雪;⑤地源蓄冷及土壤冻结。

1 地源热泵的发展与回顾

在对世界及日本地源热泵发展的回顾中,北海道大学长野克则教授在引用的数据同时对美国、欧洲和澳大利亚的地源热泵的发展现状及市场特点进行了分析。基于2000年的数据表明美国是地源热泵普及最多的国家,全国安装负荷量为480万千瓦,相当于安装12千瓦的机组40万台,约占世界总安装量的68%。其中垂直式井下热交换器是最多的一种形式,占46%;而水平式其次约占38%;开放式换热器并不多,只占15%。

尽管日本的电价是柴油价格的4~5倍,远高出瑞典的倍,但瑞典的总安装负荷却是日本的近百倍,而且大部分的地源热泵系统是兼供热水式。在奥地利,2000年仅一年内安装的2000多台热泵当中有超过70%是以地源作为热源。在日本地源热泵受到重视是在1990年以后。主要是在四国岛及九州地区的空调和道路融雪等规模的利用。最近,日本国土资源省在其东北部成立了以环境产业研究所科技力量为中心的道路融雪项目计划,项目实施以来收到很好的效果。

日本作为经济实力第二的火山岛国,地热资源丰富,地热能的开发利用落后于许多欧洲国家甚至一些亚洲的其他发展中国家。这一事实引起日本国内许多学者和机构的注意。预计在今后几年里,日本可能在地热利用方面将有较大的投入。

2 相关的基础研究及软科学研究

如果把地源热泵的研究归结为简单的半无限大固体内的线源导热问题,最早的研究可以追溯到至少半个世纪以前。而实际上,地源热泵是涉及许多学科的复杂问题。其中难点之一是如何确定地表的边界条件。在这个问题上大阪大学的奥野博信等学者提出一个描述地表水,水蒸气及热量等平衡关系的数学及物理描述模型,并与实测结果有很好的吻合。在该模型中主要考虑了太阳的辐射、风速及环境空气的温度和湿度等参量。

另一个有趣的研究是利用国土资源数据进行关于地域性的地下水层蓄热和回收的研究论文。该论文以北海道札幌市为研究对象,利用有关札幌市内的地下、地上相关数据进行大都市的地下水层内采用蓄热和取热的技术可行性。这一研究成果可以宏观上了解蓄热和用热的区域分布,从而可以提供地源热泵的规模,并对控制大都市的热岛现象提出理论依据和对策。作者认为,严格地讲,这是一个比较复杂的动态模拟问题,也是一个必须有政府机关介入的课题。

3 地下水式、桩式等地源热泵和空调系统

由于地源热泵的众多优点,一些日本中小企业公司开始组织开发和研制地源热泵系统的工作,尽管起步较晚,但已显示出所具有的潜力。在本次会上由日本名古屋Zeneral热泵股份有限公司和东京JMC地热工程有限公司合作,在日本及我国东北长春市安装了共近90马力的地源热泵机组。见表1。

表1 Zeneral热泵股份有限公司安装的机组

A/C:空调,H/W:供热水。1HP=。

在长春安装的50马力的机组是由5台10马力的机组构成,出于实验的考虑,地源换热器是16根100m长,直径和材料各异的管材。机组的COP为~,供热温度在40℃左右。折合计算平均换热器管长取热约30W/m。

桩基式地源热泵系统有兼热源或冷源和建筑固基的双重效果。福井大学工学部对yi该系统进行了数值模拟和实验研究,也是日本国在该领域中的首次尝试。对面积为3693m2,桩根数(井下换热器)为70根的数值模拟计算表明,供热负荷可达到。供冷负荷也可达到近300GJ。相当于每根地基桩有日的供热负荷。COP值可达到~。空调系统如图1所示。在经济上,对50冷吨规模的初投资与空气源热泵系统的初投资比增加不到15%。桩基式总投资为1720万日元,而空气源式约为1515万日元。尽管实验进行的不很顺利,但通所获得的实验数据进行分析,得到的结果是与空气源空调系统相比,在制冷时节能效果可提高,而供热时约。

利用地源热泵进行道路的积雪清除是日本比较早的地热研究项目。在这一方面比较有名的研究学者是茨城产总研的盛田耕二先生。最近,私人企业公司的研究人员也开始介入,这也许和日本最近实行的道路民营化政策有关。在北方寒冷的地区,由于积雪而造成的交通事故很多,且往往主要出现在转向较急的地方(图2)。

因此在某些关键地方采用地源热泵融雪系统很有必要。为了提高冬天时运行的工作效率,在夏季可以采用同一系统收集道路上的太阳辐射热能,蓄热到地下(图3)。对加热能力为56千瓦的机组来说,可以对面积为332m2的道路进行融雪,相当于170W/m2。如果每根井下换热器的有效长度为151m的话,所需的根数和返回井下换热器的流体温度有关,温度越低所需的根数越少(图4)。

图1 桩基式地源热泵系统

图2 采用地源热泵进行道路融雪系统

图3 冬季融雪运行模式(上)和夏季蓄热模式

图4 井下换热器入口温度与换热器根数及COP的关系

4 地源蓄冷及土壤冻结

由于土壤内还有水分,在低温下可以发生相变凝固而蓄冷。发生相变的潜热量占总蓄冷量的比例较大,因此,在一定程度上含水量的多少决定了蓄冷的能力。大阪精研公司对体积含水率为土壤的蓄冷机理进行实验和理论研究。包括冷媒的入口温度,埋管的排列方式等。在一般情况下,热回收系数可以达到80%以上。根据模拟实验的结果可以进行实际应用例子的预测:冷负荷:9~105kJ/h;每米管长的回收热:630kJ/mh。那么所需的管群用地圆半径R,根数N及管长的预测值(表2)。

表2 管群范围半径及管长

冻土过程在大多数情况下对建筑物或道路是有害的。然而,采用适当的技术条件可以发挥其有益的一面。大阪摄南大学环境工学部伊藤A提出了利用冻土技术实现地基坚固强化的设想。在冻土层的周围添加抽水蒸气的排气管。外围放置的排气管可以抑制由于冻土过程中水蒸气向冻土层的不断凝聚,从而达到一个传质动态的平衡,而内部水蒸气排气管可以起到在施工即将完成自然融解时的部分排气。作者指出:这一方案也可适用于地下污染的处理,因为伴随着水蒸气的流动,污染物的浓度也随之聚集,达到回收清除的目的。文中尽管给出了传质和内部压力的变化情况,但未给出相变过程中传热过程的描述。

5 结论与讨论

本文总结了去年在日本冷冻空调大会上日本在地源热泵研究上的进展。虽然是部分反映日本国地源热泵的研究和利用情况,但一定程度上反映日本国内关于该领域的前沿方向。利用地源作为热泵的热源或冷源要比空气源有更多的优越性。作者把采用地(土壤)源的空调系统的主要优点总结如下:

(1)有稳定的运行条件。从空调机的热源稳定性条件看,垂直式井下换热器优于水平式。土壤埋式优于湖泊等开放式。一般空气源热泵在-15℃以下较难启动,而地源井下换热器的出口温度一般都高于这一温度。

(2)能够利用季节性的蓄热和蓄冷。

(3)与空气源热泵相比有较高的COP。

以上介绍了许多应用实例,给出了一些经验数据或设计模型。但作者提醒读者最好不要照搬套用这些数据。正如上面在相关的基础及软科学研究一节中所阐述的,作为基本应用和模拟条件之一的地表边界条件仍然有人在研究。合理的设计取决于对许多因素的考虑。设计者也不必望而却步,因为许多热或物质的传递过程在一定条件下都有其极限或限制,只要了解这一条件下所对应的限制,也就掌握了设计主动。这就是所谓的设计标准问题,在这一方面国内也急需论证和设立。

地源热泵技术毕业论文

浅谈建筑节能绿色环保技术的应用论文

摘要: 环保是全球当前所关注的主要问题,全民参与环保已经成为当前主要公益话题。建筑与人们生活息息相关,也是对环保事业具有重要影响的其中一个领域,绿色建筑是当前建筑领域的核心导向,如何应用环保能源以及绿色材料替换传统建筑材料或建筑模式是当前建筑企业需要关注的首要问题。随着现代科技的快速发展下,多种绿色能源以及环保材料得以出现,而将这些能源与材料应用到建筑中,将会有效推动绿色建筑的发展进程。本文对当前建筑节能绿色环保技术的应用状况加以总结,并分析其未来发展前景。

关键词: 建筑;节能绿色环保技术;应用现状

1前言

建筑事业的发展深受经济以及社会文化发展的影响,在当前全球大力发展环保事业的大背景下,建筑事业也必将受到影响,向绿色环保建筑方向发展。建筑物在建筑过程中首先占据了大量的土地资源,其次在设计过程中大量的应用玻璃等材料严重影响环境,为此,大力推动建筑领域的绿色环保化进程,对全球环保事业的发展具有重要意义。下文中将对绿色环保技术概念以及绿色环保在工程中的应用价值进行阐述,同时总结当前建筑领域环保技术的应用状况,并提出环保技术在建筑中应用的发展前景。

2节能绿色环保技术概述

节能绿色环保技术在大方向来讲是基于节能、保护生态环境等原则所开发的多种技术。在全球环保的大背景下,节能绿色环保技术得到大力开发,并广泛的应用在各个领域,而其中建筑领域便是其中之一。就建筑领域而言,绿色环保技术所指的是工程项目建设过程中,在确保工程质量的基础,不断提升工程管理水平,引进先进技术以及建筑工艺,实现节能、环保的目的。在近几年环保政策的全面落实下,提出了绿色建筑要求,绿色建筑具体所指的是确保整个工程建筑能符合到节能、节水、节电等要求[1]。

3节能绿色环保技术在工程中应用的必然趋势

建筑领域的环保主要展现在对建筑材料的合理应用以全新建筑能源的开发利用方面,由此提升建筑材料的可利用率,减少建筑材料的资源浪费。建筑工程施工期间,工程周围垃圾任意堆放成为普遍现象,严重影响周边环境,针对此,在工程施工过程中引进绿色环保技术能够有效提升工程施工效率,缩短工期,减少工程垃圾的产生量,同时减少施工对周边环境的影响周期。另外,传统工程建设中会应用到大量的玻璃或其他影响自然环境的材料,而引入绿色环保材料或建造技术则能够减少这种不利于环保的建筑材料应用量。无论给予何种方向的考虑,绿色建筑都将是建筑领域发展的必然趋势[2]。

4节能绿色环保技术在建筑中应用现状

外墙保温工程中节能技术的应用

外墙保温节能技术是在建筑物的外墙设置保温层,由此达到节能功效。外墙保温技术具有一定的连续性,由此能够规避传统墙体常见的断桥现象,同时,外墙保温技术所应用的聚苯板导热系数相对较小,能够减少工程室内热度的损失。另外,外墙保温技术的应用能够减轻墙体的重量与厚度,由此增加了建筑的可应用面积。外墙保温技术参与到建筑中,不仅不会影响到整个建筑的`质量,反而由于其增加的蓄热功能提升了建筑物的舒适度[3]。

建筑工程中光电、光热节能技术的应用

在建筑中应用的光电与光热技术主要是光电节能技术与光热节能技术,而应用能源主要来自于太阳能的转化,将太阳能转化为可利用能源,提供建筑所需的热能与电能。光电与光热节能技术的应有优势在于太阳能属于可再生资源,这种能源的可持续应有性较强,且不存在任何危害,适合长久应用,在提供便利能源的基础上实现建筑物的节能功效。另外,太阳能不需要进行运输或繁杂的转化过程,可直接在建筑物设置转化装置,便能够实现太阳能的应用,减少了过程费用。但是,值得注意的是太阳能随着季节的变化以及地区因素不能够长期维持在一个平衡的量上,属于阶段性应用能源,还具有一定的未来开发潜力。

建筑工程中地源热泵节能技术的应用

地源热泵也就是常被称之为地热的一种制冷与供热技术。地源热泵技术的应用能够为建筑物在冬季提供暖气供应,在夏季提供制冷功能,实现对建筑物的智能调节,具有一定的现实意义,也是当前建筑物中比较常见的应用技术。地源热泵技术在建筑中的应用优势在于,所占面积小、布局紧凑等。同时地源热泵节能技术的应用能够防止建筑物地面沉降问题的出现,而此项技术当前发展已经成熟,施工也较为简单,能够提供长期稳定的热能与制冷供应。

5节能绿色环保技术在建筑中应用发展前景

环保节能是当前社会发展所面临的首要问题,减少资源浪费、提升各种资源的可利用率、加强环保能源与材料的开发等。在环保这一大背景下,建筑行业作为主要领导产业必然需要作出带头作用,为环保事业的发展作出一份贡献。就绿色环保技术的应用来讲,在建筑工程中具有较大的发展潜力,建筑绿色化这一概念的提出,必然会涉及到建筑模式以及材料应用的改革,而改革过程中势必会涉及到环保能源以及环保材料的应用,基于此,环保技术在建筑领域中具有较大的应用价值以及发展前景。

6结论

综合上文所述,在环保这一大背景下,绿色建筑成为未来发展的必然趋势,环保建筑或绿色建筑的实现,将涉及到大范围环保新能源的应用。当前建筑工程中常见的环保技术包括外墙保温工程中节能技术、中光电、光热节能技术、地源热泵节能技术等,在多种绿色环保技术的应用下,推动了绿色建筑的发展进程,而远观未来这一概念也必将成为主流发展方向。

参考文献:

[1]杨燕,陈丽芳.几种主要建筑节能技术的发展现状和应用前景[J].祖国,2016,02(16):134.

[2]刘鑫.建筑节能绿色环保技术的应用现状与发展[J].建设科技,2016,06(11):104~105.

[3]周迎.建筑节能绿色环保技术的应用现状及其发展[J].科技与创新,2016,07(08):29~31.

张新世

(中原石油勘探局勘察设计研究院)

论文摘要:本文介绍了地源热泵的概念及工作原理,随后详细地论述了地源热泵的特点,和地源热泵在我国发展的限制条件,并介绍了地源热泵在国内使用情况及发展前景,最后鲜明地指出地源热泵技术是目前对人类最友好最有效的供热供冷技术。

1 地源热泵的概念和工作原理

地源热泵是一种利用地下浅层地热资源(包括地下水、土壤和地表水)即可供热又可供冷的高效节能空调系统。利用逆卡诺循环,通过输入少量高品位的电能,实现低品位热能向高品位热能转移。热泵一般有蒸发器、冷凝器、压缩机和膨胀阀四部分组成。

地源热泵的工作原理是:在夏季,热泵机组将建筑物中的热量取出,转移释放到地层中;在冬季,则从地层中提取热量,向建筑物供热。通常地源热泵消耗1kW的能量,用户可以得到4kW以上的热量或冷量。

2 地源热泵的特点

我们知道在地球表面以下一定深度的地温全年相对恒定,地源热泵利用浅层地热作为冷热源,这样就排除了环境因素的影响,与其它供热供冷系统相比,具有以下显著特点。

利用的是可再生能源

地源热泵在夏季吸收建筑物散发的热量并在浅层地下保存起来,一部分热量在冬季供建筑物的采暖,另一部分热量则直接散发到空气中。就全年来说,建筑物利用浅层地热的热量或冷量大体是相等的。所以说,地源热泵利用的是可再生能源。

高效节能

由于地源热泵的热源温度全年一般为10~22℃,冬季供热时,水体温度比环境温度高,所以热泵循环的蒸发温度提高,能效比也提高。夏季制冷时,水体温度比环境温度低,冷却效果提高,机组效率也提高。水源热泵的制冷制热系数可达以上,与传统的空气源热泵相比,高出40%左右,其运行费用仅为普通中央空调的50%~60%,与电热锅炉和电热膜供热相比,节约70%左右的电能。

环保效益显著

水源热泵运行时,需要的仅仅是水源水的热量或冷量,水质不发生任何变化,也不产生任何污染,不耗水、排烟,不产生灰尘,仅仅消耗少量的电能。

从耗电方面来说,节能就是环保。使用水源热泵导致的污染物排放,比空气源热泵减少40%,比电锅炉减少70%。虽然地源热泵也使用制冷剂,但比常规空调减少25%的冲灌量。地源热泵在工厂内整装密封完好,不会像分体空调那样安装时易产生泄漏。

一机多用

一套地源热泵就可以实现供热、供冷和生活热水供应。即用一套设备可以代替原来的锅炉加空调两套系统,所以一次性投资仅是传统供热制冷的50%~70%。特别是在夏季供冷时,可以利用热泵产生的费热,免费为用户提供生活热水。所以,地源热泵特别适用同时有供热供冷和生活热水供应的建筑。

节省土地资源

水源热泵除主机和循环水泵外,没有其它安装设备。与锅炉房相比,省去了水处理间、风机间、烟囱、煤场和渣土场,节约了土地资源。

运行稳定可靠、使用寿命长

由于地源热泵的水体温度稳定,与空气源热泵相比,免除了结霜和除霜的影响。热泵的运转部件少,基本上不需要维修,运行稳定可靠,使用寿命可达20年左右。

自动化程度高

地源热泵一般是全电脑控制,可根据外部负荷的变化,调整压缩机的工作数量,并设有压缩机超温保护、断水保护等多种保护措施,可实现无人值守。

3 地源热泵供热系统的组成

地源热泵工程一般有地源水系统,热泵机房和末端风机盘管散热系统三部分组成。根据地源换热系统的形式又分为开式环路系统和闭式环路系统。

开式环路系统是将水从水井(包括湖泊和河流)中抽出,送入热交换机组进行热交换,提取热量或冷量后的水再回灌到水井中。开式环路系统用水一般只进行简单的水处理,会引起换热器表面结垢。开式系统是目前地源热泵应用的主要形式。

闭式环路系统又分为立埋式环路系统和平埋式环路系统。它是通过埋在地下的聚乙烯管环路与土壤进行热交换。通常适合安装在别墅等场地较大的建筑物。

4 地源热泵的限制条件

地源热泵被专家们称之为目前可用的对人类最友好最有效的供热供冷形式,近几年在研究和应用上得到了迅速发展,但由于受到以下客观条件的限制,这项技术的应用尚不普遍。

宣传认识不足

地源热泵技术虽然受到热暖专家的推崇,但是要获得在工程中的普遍应用,需要各阶层领导特别是工程主管领导的认可。由于这项技术是近几年随着我国能源战略的调整才发展起来的,甚至部分热暖技术人员,也存在认识不足的现象。所以,要获得社会的认同还需要加大宣传力度。

政策力度不够

我国《节约能源法》中,对热电联产和集中供热技术鼓励和发展,而对综合能源利用率是其2倍的地源热泵技术,至今还没有鼓励发展的明确条文。

水源条件的限制

对于开式环路地源热泵系统是否有充足的水源,以及当地的地质土壤条件是否能保证尾水的回灌顺利实现是地源热泵应用的前提条件。一般来说,用于小区供暖时,建筑容积率要≤1。对于闭式系统,受当地地质条件是否适合埋管和是否有足够的场地埋管等环境条件的限制。

埋管系统换热计算理论不成熟

对于地源热泵机组和末端风机盘管散热系统目前技术已相当成熟。对开式系统,当地水利部门对水源情况也相当了解;而对埋管系统,目前土壤埋管换热计算理论还不成熟,设计落后于工程应用,这就使工程质量难以保证,并使该项技术的广泛应用受到限制。

受当地水利部门政策的限制

我国南方水源充足,而北方大部分地区水源缺乏,为保护有限的水资源,每个地方政府都制定了当地的水资源使用法规。虽然地源热泵系统并不消耗水也不污染地下水,但需要大量的水作热载体。有些地方部门对取水和回灌水进行双重收费,使地源热泵的节能效果不能够充分体现,这就限制了该项技术在这些地区的发展。

5 地源热泵的应用

国外应用情况

地源热泵在日、韩、美和中、北欧应用较为普遍。据1999年的统计,在住宅供热装置中,地源热泵所占比例,瑞士96%,奥地利38%,丹麦27%。美国1998年地源热泵系统在新建筑中占30%,且以10%的速度稳步增长。其中最著名的地源热泵工程有肯塔基州刘易斯威尔的滨水区办公大楼,服务面积×104m2,每月节省运行费用25000 美元。随着该项技术的应用发展,其组织的研究也迅速发展。据有关资料介绍,日本国研究出的高温水地源热泵,出水温度达到80~150℃,且其制热系数COP高达。

国内应用情况

天津大学热能研究所的吕灿仁教授在1954年就开展了我国热泵的最早研究,1965年研制成功国内第一台水冷式热泵机组。目前多家大学和研究机构都在对水源热泵进行研究。

国内较早生产水源热泵的厂家有清华同方人工环境设备公司和山东海洋富尔达,产品都已系列化。目前热泵机组出水温度已达65℃,制冷系数COP可达。目前国内较典型的用户有沈阳东北电力住宅小区,服务面积8×104m2;北京友谊医院服务面积×104m2,全年节约采暖和供冷运行费用约9元/m2。

中原油田钻井三公司办公楼水源热泵示范工程是我局第一个地源热泵系统。选用钻井综合工程处与清华大学联合研制生产的ZYRB240 型热泵机组2台,服务面积6000m2。该项工程的成功实施必将为地源热泵在中原油田的推广应用起到有力的推动作用。

6 地源热泵的发展前景

符合政府有关部门的要求

地源热泵高效节能,环保效益好,符合我国的能源政策和环境保护政策,热泵技术的综合能源利用率约为120%~180%。所以国家把热、电、冷联产技术作为鼓励发展的通用节能技术促进了地源热泵技术的发展。

符合业主的利益

由于地源热泵即可供热,又可供冷。一套系统可以代替原来的两套系统,投资少。且地源热泵占地少,运行成本低,管理方便,这些都符合业主的根本利益。

符合用户的利益

地源热泵供热费用燃煤集中锅炉房供热费用的一半,夏季供冷费用约为冷水机组的60%,这就减少了用户供热供冷费用的支出,符合用户的切身利益。

适用地区范围广

冷水机组只能用于夏季供冷,风冷机组只适用于长江流域的供热供冷,而地源热泵除即无可利用地下水又不能埋管的极少数地区外,适用于其它绝大多数地区。

应用范围不断扩展

地源热泵不仅在建筑采暖和供冷方面得到迅速发展,目前在化工、食品、造纸、农业、冶金、木材干燥、制药等行业中也得到了`广泛应用。据预测2000年这些行业应用地源热泵1200多台,且发展势头强劲。

综上所述,地源热泵技术以其独有的优点,近几年在国内得到迅速发展。随着我国能源结构政策的调整,我国以燃煤锅炉采暖和空气源热泵供冷的传统形式会被更加高效的地源热泵所取代。随着地源热泵技术的研究和发展,它比将成为21世纪最普遍最有效的供热供冷技术。

参考文献

[1]刘兴中.水源热泵系统介绍.2001

[2]吴展豪.地源热泵空调系统.2001

注:本文引至全国油区城镇地热开发利用经验交流会论文集,冶金工业出版社,2003

热泵热水机组研究论文

张新世

(中原石油勘探局勘察设计研究院)

论文摘要:本文介绍了地源热泵的概念及工作原理,随后详细地论述了地源热泵的特点,和地源热泵在我国发展的限制条件,并介绍了地源热泵在国内使用情况及发展前景,最后鲜明地指出地源热泵技术是目前对人类最友好最有效的供热供冷技术。

1 地源热泵的概念和工作原理

地源热泵是一种利用地下浅层地热资源(包括地下水、土壤和地表水)即可供热又可供冷的高效节能空调系统。利用逆卡诺循环,通过输入少量高品位的电能,实现低品位热能向高品位热能转移。热泵一般有蒸发器、冷凝器、压缩机和膨胀阀四部分组成。

地源热泵的工作原理是:在夏季,热泵机组将建筑物中的热量取出,转移释放到地层中;在冬季,则从地层中提取热量,向建筑物供热。通常地源热泵消耗1kW的能量,用户可以得到4kW以上的热量或冷量。

2 地源热泵的特点

我们知道在地球表面以下一定深度的地温全年相对恒定,地源热泵利用浅层地热作为冷热源,这样就排除了环境因素的影响,与其它供热供冷系统相比,具有以下显著特点。

利用的是可再生能源

地源热泵在夏季吸收建筑物散发的热量并在浅层地下保存起来,一部分热量在冬季供建筑物的采暖,另一部分热量则直接散发到空气中。就全年来说,建筑物利用浅层地热的热量或冷量大体是相等的。所以说,地源热泵利用的是可再生能源。

高效节能

由于地源热泵的热源温度全年一般为10~22℃,冬季供热时,水体温度比环境温度高,所以热泵循环的蒸发温度提高,能效比也提高。夏季制冷时,水体温度比环境温度低,冷却效果提高,机组效率也提高。水源热泵的制冷制热系数可达以上,与传统的空气源热泵相比,高出40%左右,其运行费用仅为普通中央空调的50%~60%,与电热锅炉和电热膜供热相比,节约70%左右的电能。

环保效益显著

水源热泵运行时,需要的仅仅是水源水的热量或冷量,水质不发生任何变化,也不产生任何污染,不耗水、排烟,不产生灰尘,仅仅消耗少量的电能。

从耗电方面来说,节能就是环保。使用水源热泵导致的污染物排放,比空气源热泵减少40%,比电锅炉减少70%。虽然地源热泵也使用制冷剂,但比常规空调减少25%的冲灌量。地源热泵在工厂内整装密封完好,不会像分体空调那样安装时易产生泄漏。

一机多用

一套地源热泵就可以实现供热、供冷和生活热水供应。即用一套设备可以代替原来的锅炉加空调两套系统,所以一次性投资仅是传统供热制冷的50%~70%。特别是在夏季供冷时,可以利用热泵产生的费热,免费为用户提供生活热水。所以,地源热泵特别适用同时有供热供冷和生活热水供应的建筑。

节省土地资源

水源热泵除主机和循环水泵外,没有其它安装设备。与锅炉房相比,省去了水处理间、风机间、烟囱、煤场和渣土场,节约了土地资源。

运行稳定可靠、使用寿命长

由于地源热泵的水体温度稳定,与空气源热泵相比,免除了结霜和除霜的影响。热泵的运转部件少,基本上不需要维修,运行稳定可靠,使用寿命可达20年左右。

自动化程度高

地源热泵一般是全电脑控制,可根据外部负荷的变化,调整压缩机的工作数量,并设有压缩机超温保护、断水保护等多种保护措施,可实现无人值守。

3 地源热泵供热系统的组成

地源热泵工程一般有地源水系统,热泵机房和末端风机盘管散热系统三部分组成。根据地源换热系统的形式又分为开式环路系统和闭式环路系统。

开式环路系统是将水从水井(包括湖泊和河流)中抽出,送入热交换机组进行热交换,提取热量或冷量后的水再回灌到水井中。开式环路系统用水一般只进行简单的水处理,会引起换热器表面结垢。开式系统是目前地源热泵应用的主要形式。

闭式环路系统又分为立埋式环路系统和平埋式环路系统。它是通过埋在地下的聚乙烯管环路与土壤进行热交换。通常适合安装在别墅等场地较大的建筑物。

4 地源热泵的限制条件

地源热泵被专家们称之为目前可用的对人类最友好最有效的供热供冷形式,近几年在研究和应用上得到了迅速发展,但由于受到以下客观条件的限制,这项技术的应用尚不普遍。

宣传认识不足

地源热泵技术虽然受到热暖专家的推崇,但是要获得在工程中的普遍应用,需要各阶层领导特别是工程主管领导的认可。由于这项技术是近几年随着我国能源战略的调整才发展起来的,甚至部分热暖技术人员,也存在认识不足的现象。所以,要获得社会的认同还需要加大宣传力度。

政策力度不够

我国《节约能源法》中,对热电联产和集中供热技术鼓励和发展,而对综合能源利用率是其2倍的地源热泵技术,至今还没有鼓励发展的明确条文。

水源条件的限制

对于开式环路地源热泵系统是否有充足的水源,以及当地的地质土壤条件是否能保证尾水的回灌顺利实现是地源热泵应用的前提条件。一般来说,用于小区供暖时,建筑容积率要≤1。对于闭式系统,受当地地质条件是否适合埋管和是否有足够的场地埋管等环境条件的限制。

埋管系统换热计算理论不成熟

对于地源热泵机组和末端风机盘管散热系统目前技术已相当成熟。对开式系统,当地水利部门对水源情况也相当了解;而对埋管系统,目前土壤埋管换热计算理论还不成熟,设计落后于工程应用,这就使工程质量难以保证,并使该项技术的广泛应用受到限制。

受当地水利部门政策的限制

我国南方水源充足,而北方大部分地区水源缺乏,为保护有限的水资源,每个地方政府都制定了当地的水资源使用法规。虽然地源热泵系统并不消耗水也不污染地下水,但需要大量的水作热载体。有些地方部门对取水和回灌水进行双重收费,使地源热泵的节能效果不能够充分体现,这就限制了该项技术在这些地区的发展。

5 地源热泵的应用

国外应用情况

地源热泵在日、韩、美和中、北欧应用较为普遍。据1999年的统计,在住宅供热装置中,地源热泵所占比例,瑞士96%,奥地利38%,丹麦27%。美国1998年地源热泵系统在新建筑中占30%,且以10%的速度稳步增长。其中最著名的地源热泵工程有肯塔基州刘易斯威尔的滨水区办公大楼,服务面积×104m2,每月节省运行费用25000 美元。随着该项技术的应用发展,其组织的研究也迅速发展。据有关资料介绍,日本国研究出的高温水地源热泵,出水温度达到80~150℃,且其制热系数COP高达。

国内应用情况

天津大学热能研究所的吕灿仁教授在1954年就开展了我国热泵的最早研究,1965年研制成功国内第一台水冷式热泵机组。目前多家大学和研究机构都在对水源热泵进行研究。

国内较早生产水源热泵的厂家有清华同方人工环境设备公司和山东海洋富尔达,产品都已系列化。目前热泵机组出水温度已达65℃,制冷系数COP可达。目前国内较典型的用户有沈阳东北电力住宅小区,服务面积8×104m2;北京友谊医院服务面积×104m2,全年节约采暖和供冷运行费用约9元/m2。

中原油田钻井三公司办公楼水源热泵示范工程是我局第一个地源热泵系统。选用钻井综合工程处与清华大学联合研制生产的ZYRB240 型热泵机组2台,服务面积6000m2。该项工程的成功实施必将为地源热泵在中原油田的推广应用起到有力的推动作用。

6 地源热泵的发展前景

符合政府有关部门的要求

地源热泵高效节能,环保效益好,符合我国的能源政策和环境保护政策,热泵技术的综合能源利用率约为120%~180%。所以国家把热、电、冷联产技术作为鼓励发展的通用节能技术促进了地源热泵技术的发展。

符合业主的利益

由于地源热泵即可供热,又可供冷。一套系统可以代替原来的两套系统,投资少。且地源热泵占地少,运行成本低,管理方便,这些都符合业主的根本利益。

符合用户的利益

地源热泵供热费用燃煤集中锅炉房供热费用的一半,夏季供冷费用约为冷水机组的60%,这就减少了用户供热供冷费用的支出,符合用户的切身利益。

适用地区范围广

冷水机组只能用于夏季供冷,风冷机组只适用于长江流域的供热供冷,而地源热泵除即无可利用地下水又不能埋管的极少数地区外,适用于其它绝大多数地区。

应用范围不断扩展

地源热泵不仅在建筑采暖和供冷方面得到迅速发展,目前在化工、食品、造纸、农业、冶金、木材干燥、制药等行业中也得到了`广泛应用。据预测2000年这些行业应用地源热泵1200多台,且发展势头强劲。

综上所述,地源热泵技术以其独有的优点,近几年在国内得到迅速发展。随着我国能源结构政策的调整,我国以燃煤锅炉采暖和空气源热泵供冷的传统形式会被更加高效的地源热泵所取代。随着地源热泵技术的研究和发展,它比将成为21世纪最普遍最有效的供热供冷技术。

参考文献

[1]刘兴中.水源热泵系统介绍.2001

[2]吴展豪.地源热泵空调系统.2001

注:本文引至全国油区城镇地热开发利用经验交流会论文集,冶金工业出版社,2003

暖通专业在计算 方法 、程序编制和工程应用几方面都取得了显著成绩。下面是由我整理的暖通专业技术论文,谢谢你的阅读。

暖通空调技术与节能

摘要:随着人们生活水平的日益提高,人们生活的节奏逐渐加快及心理压力的不断增大,使得人们的工作生活环境应该予以重视。而在人们的工作生活环境中倡导环保和节能的生活方式越来越重要。本文主要是对暖通空调技术与节能进行分析。

关键词:暖通空调 技术 节能

2009年9月22日,国家主席胡锦涛在联合国气候变化峰会开幕式上发表题为《携手应对气候变化挑战――在联合国气候变化峰会开幕式上的讲话》的重要讲话,郑重承诺今后中国将进一步把应对气候变化纳入经济社会发展规划,并继续采取强有力的 措施 :一是加强节能、提高能效工作;二是大力发展可再生能源和核能;三是大力增加森林碳汇;四是大力发展绿色经济,积极发展低碳经济和循环经济,研发和推广气候友好技术。明确提出了建设生态文明的重大战略任务,强调要坚持节约资源和保护环境的基本国策,坚持走可持续发展道路,在加快建设资源节约型国家。可见节能对于一个国家乃至世界时是多么的重要。本文主要从节能方面浅谈暖通空调技术。

1.室内设计参数

常规情况下,在冬季供暖时,室内计算温度每降低1℃,能耗将减少约5%~10%;在夏季供冷时,室内计算温度每升高1℃,能耗将减少约8%~10%。室内设计参数必须在规定的参数范围内取值。近几年,低温地板辐射采暖系统已经取代散热器采暖,之所以采用这种方式,主要是因为这种方式具有能耗小、舒适性高、容易分户计量、不占用房间使用面积等优点。

2.采暖设计

采暖空调热负荷为12650KW,热指标为。热源由城市热网供给,一次水供回水温度为95/70℃,经热交换后,高温二次水供回水温度为85/60℃,供采暖系统及空气、新风处理机组使用。各类机房、自行车库等设5-8℃的值班采暖,人防掩蔽体采暖设计温度为18℃,厕所为16℃;低温二次水供回水温度为60/50℃,供风机盘管和汽车坡道化雪系统使用,或者化雪系统由于什么原因没有使用。为保证一层室内良好的温度环境,抵挡大门的冷风侵入,在各大门入口处均设置了热空气幕。

以空气为热泵的热源在寒冷地区进行采暖是当前研究的 热点 。因为它和以往的燃煤、燃油、直接用电等取暖方式比较的话,在环保、节能、安全使用,甚至经济等方面有突出的优点,其可推广性也超过了水源、地源热泵。

地板采暖的空气热泵机组容量的选择

机组容量(W)=当地建筑采暖设计负荷()×用户采暖的建筑面积()÷(1-)×

室外机最好安装在冬季主导风的背风面,应该设置遮雪蓬,机组如果安装在平台上,则底面应抬高至少20cm,以免化霜结冻,机组吸风口距障碍物至少25cm,双机之间距离至少20cm。

地板下埋管的设计

空气热泵作为热源时,供水温度或供回水平均温度应尽可能设计得低些,以使机组效率尽可能高,又由于工程实践证明本机组的供回水温差较少仅2℃-3℃,所以,选择地下埋管时可参照“低温热水地板辐射供暖应用技术规程”( DBJ/T01-49-2000)附录 E-1至 E-3中平均水温35℃一栏,按照地板所需散热量选择间距,然后,将管道直径放大到Φ20/16成间距缩小一档即可。

3.风系统设计

集中空调系统的排风热回收

一直以来,业内人士只是从经济方面的角度来衡量热回收装置的利弊,而环保与节能则被忽视。当今,业内人士考虑的角度有所转变,现在从环保和节能这个角度来衡量热回收装置的利弊。

空调区域排风中的热能量是非常多的,如果把这些热能量加以回收利用,那么环保和节能定会实现。如果新风和排风采用专门独立的管道输送,那么有利于集中热回收装置的设置。新风和排风采用热回收装置进行湿热或者全热交换,节能效果非常明显的表现出来。

空调风系统

(1)有资料显示,以我国南方地区为例,夏季室内设计温度如果每降低1℃或冬季设计温度每升高1℃,其工程投资将增加6%,能耗将增加8%。该数据很明显地说明,适当提高夏季以及降低冬季的室内空气温度,都将起到显著的节能效果。与此同时,为保证室内空气质量以及人们对新鲜空气的需要,现行《采暖通风与空气调节设计规范》对最小新风量作出明确规定,要求建筑满足国家现行有关卫生标准。研究表明,加大新风量能够在一定程度上解决室内空气质量问题,但增加了空调能耗。新风定值必须按照规范来确定,因为新风量对于能耗和人体健康有着非常重要的作用,如果人员密度较大时,新风的供应按人员的密度来进行的话是非常不经济的。我国建筑采用了新风需求控制(检测室内CO2浓度),值得注意的是:新风量变化,排风量随着也发生变化,否则造成负压,可能会适得其反。

(2)暖通设计师对于规范中新风量的规定表示赞同。暖通设计师认为,在目前中央空调清洗不够规范的背景下,加大新风量是必要的。不过,对于室内设计温度的要求,他们却持保留态度。业内人士有这样的一个说法:“如果说节能像一棵树,有很多枝杈可以作为思路,那么,业主方的意见更像那个根。他们的态度,将成为决定暖通专业乃至建筑节能的根本性因素。”业内人士表示,建设方的意见非常重要。

要想增加新风量或者增强风机盘管处理室内回风的能力,风机盘管加新风的新风口应单独或布置在盘管出风口的旁边,而不应该布置在盘管回风吸入口。

(3)房间面积或空间较大、人员较多或有必要集中进行温度控制的空气调节区,其空气调节风系统宜采用全空气空调系统,不宜采用风机盘管系统,以利于集中处理、调节,发挥有利因素,弥补之前产生的问题。

(4)建筑空间高度大于或等于10m、且体积大于时,宜采用分层空调系统。与全室性空调方式比,分层空调系统夏季可以节能30%左右,但是冬季并不节能。通常设计时,夏季的气流组织为喷口侧送,下回风,高大空间上部排风;而冬季一般在底层设置地板辐射或地板送风供暖系统,也可将上部过热的空气通过风道送至房间下部。

(5)多个空气调节区合用1个空气调节风系统,各区负荷变化较大、低负荷运行时间较长,且需要分别调节室内温度,在经济条件允许时,宜采用全空气变风量空气调节系统。设计时应注意:要求采用风机调速改变系统风量,而不能采用恒速风机而改变系统阻力调节;其次,应采取保证最小新风量的措施,避免因送风量减少,造成新风量减少而不满足卫生要求的后果;再者,调节末端送风口风量时,推荐采用串联式风机驱动型末端装置以保证室内的气流分布。

(6)在某些情况下,像屋顶传热量较大、吊顶内发热量较大、吊顶空间较大(此时的吊顶至楼板底的高度超过),如果采用吊顶内回风,导致空调区域增大、空调耗能上升,这样非常不利于节能。所以对于建筑顶层或者吊顶上部有较大热量、吊顶空间较高时,直接从吊顶回风是不合理的。

4.围护结构

北京市建筑设计研究院原院长、北京市建筑设计研究院顾问总工程师吴德绳认为,暖通专业既然是建筑节能的支柱力量,因此,目光不仅要盯住如何优化暖通空调系统设计,更应该有所转移,在围护结构设计方面重点考虑。

围护结构在节能工作中,扮演着愈来愈重要的角色。所谓围护结构节能,通常是指通过改善建筑物围护结构的热工性能,使得建筑在夏季隔绝室外热量进入室内,冬季防止室内热量泄出室外,以保持室内尽可能接近舒适温度,减少通过辅助设备来达到合理舒适室温的负荷,并最终达到节能的目的,如通过采暖、制冷设备达到节能。

传统住宅建筑的围护结构是普通黏土砖,简单架空屋面和单层玻璃钢窗,它们的传热系数分别为、和。而“节能住宅”的围护结构中外墙和屋面采取了保温措施,外窗采用中空塑钢窗或断热中空铝合金窗,它们的传热系数分别为 、和,使围护结构的节能贡献约占25%。采用能效比高的采暖、空调设备(按照国家标准,房间空调器的能效比:制冷>,采暖>),使采暖、空调设备的节能贡献约占25%,两者相加总体达到节能50%的目标。

据介绍,围护结构的节能设计应该从墙体、窗户、屋面等三个方面考虑。对于设计人员而言,如何处理建筑玻璃幕墙的问题,在业内一直存在很大争议。普通玻璃幕墙是建筑节能不能实现的因素之一。统计数据表明,夏季通过玻璃窗的日照热可占制冷机最大负荷的30%,冬季单层玻璃的热损失约可占锅炉负荷的20%。窗体节能技术主要从减少渗透量、减少传热量、减少太阳辐射能三个方面考虑。另外,在保证室内采光良好的前提下,合理确定窗墙比十分重要。当窗墙面积比超过50%时,负荷将明显增加。不仅是外围护结构,内围护结构在设计中同样重要。暖通设计师要比普通建筑师更懂得建筑节能的途径,所以暖通设计师和普通建筑师多进行沟通效果才会更好。

5.实现节能

暖通空调的设计师在方案设计时,首先应深入了解业主的能源状况以及对空调的使用状况和是否有余热、废气等条件,然后对各种能源方案进行合理综合的对比。设计师在设计时应考虑的重点是:如何利用可再生能源和低品位能源。

暖通设计师在设计阶段完成基础工作之后,最关键的就是环保和节能的实现,而环保和节能的实现是通过综合利用各种先进技术、利用各种可再生资源来实现的。

利用自然条件来满足人们对于室内温度的需求,这是最理想的方式。现在通过各种设备实现对温度的调节,只不过是对人们的过错进行补救。冷热源是设计师最关注的一点,因为其能耗往往能占空调系统总能耗的50%左右。

地源热泵系统就是在这种形势下快速发展起来的,它利用地下恒温层土壤热显著提高空调系统效率。同时,采用新能源利用的供给方式,实现冷、热、电三联供;利用燃气、汽、电力能量转换的原理联合循环使用,将工业流程最尾端的余热收集起来,用于供冷系统空调冷冻水和供热系统的生活热水,这样,能源的利用率可提高至70%~80%左右。这些都给暖通空调设计师提供了广泛的节能设计思路。

6. 总结

随着全球逐渐变暖这种现象的出现,空调现在已经是人们生活中不可或缺的一部分,它使人们工作生活更加舒适,人们对于空调也有了一定的依赖性。然而,环保和节能是当今非常重要的问题,因此,在暖通空调设计方面,暖通空调的环保和节能是目前空调技术方面发展的方向,也就是说,城市供热环保和节能是目前亟须加强和可持续发展的问题。

参考文献:

[1] 赵君利. 暖通空调节能从设计开始.中国建设报,2010,(03).

[2] 胡锦涛活动报道集,2009,(09)

[3] 刘金瑶,李婉茹,刘鹏华. 浅谈暖通空调的节能.暖通空调,2008,(04).

[4] 张莉,李尧,朱玉明.暖通空调节能设计分析.山西建筑,2010,(09).

[5]__荣.建筑工程的暖通空调设计.施工技术与设计,2008,(07).

[6] 万蓉. 基于气候的采暖空调耗能及室外计算参数研究.西安建筑科技大学, 2009,(08).

点击下页还有更多>>>暖通专业技术论文

请问太阳能热水器未来发展趋势是怎样的,我正在写一篇有关太阳能热水器的论文,主要是从技术角度分析 最快乐的人并没有需要拥有世上所有最好的事,

热力学研究进展论文

工程热力学的,要求的是。任务是。具体的

同志你好: 以下是我总结的材料,请核对后使用 祝愿你工作愉快 工程热力学 热力学是研究热现象中,物质系统在平衡时的性质和建立能量的平衡关系,以及状态发生变化时,系统与外界相互作用的学科。 工程热力学是热力学最先发展的一个分支,它主要研究热能与机械能和其他能量之间相互转换的规律及其应用,是机械工程的重要基础学科之一。 工程热力学的基本任务是:通过对热力系统、热力平衡、热力状态、热力过程、热力循环和工质的分析研究,改进和完善热力发动机、制冷机和热泵的工作循环,提高热能利用率和热功转换效率。 为此,必须以热力学基本定律为依据,探讨各种热力过程的特性;研究气体和液体的热物理性质,以及蒸发和凝结等相变规律;研究溶液特性也是分析某些类型制冷机所必需的。现代工程热力学还包括诸如燃烧等化学反应过程,溶解吸收或解吸等物理化学过程,这就又涉及化学热力学方面的基本知识。 工程热力学是关于热现象的宏观理论,研究的方法是宏观的,它以归纳无数事实所得到的热力学第一定律、热力学第二定律和热力学第三定律作为推理的基础,通过物质的压力 、温度、比容等宏观参数和受热、冷却、膨胀、收缩等整体行为,对宏观现象和热力过程进行研究。 这种方法,把与物质内部结构有关的具体性质,当作宏观真实存在的物性数据予以肯定,不需要对物质的微观结构作任何假设,所以分析推理的结果具有高度的可靠性,而且条理清楚。这是它的独特优点。 古代人类早就学会了取火和用火,不过后来才注意探究热、冷现象的实质。但直到17世纪末,人们还不能正确区分温度和热量这两个基本概念的本质。在当时流行的“热质说”统治下,人们误认为物体的温度高是由于储存的“热质”数量多。1709~1714年华氏温标和1742~1745年摄氏温标的建立,才使测温有了公认的标准。随后又发展了量热技术,为科学地观测热现象提供了测试手段,使热学走上了近代实验科学的道路。 1798年,朗福德观察到用钻头钻炮筒时,消耗机械功的结果使钻头和筒身都升温。1799年,英国人戴维用两块冰相互摩擦致使表面融化,这显然无法由“热质说”得到解释。1842年,迈尔提出了能量守恒理论,认定热是能的一种形式,可与机械能互相转化,并且从空气的定压比热容与定容比热容之差计算出热功当量。 英国物理学家焦耳于1840年建立电热当量的概念,1842年以后用不同方式实测了热功当量。1850年,焦耳的实验结果已使科学界彻底抛弃了“热质说”。公认能量守恒、能的形式可以互换的热力学第一定律为客观的自然规律。能量单位焦耳就是以他的名字命名的。 热力学的形成与当时的生产实践迫切要求寻找合理的大型、高效热机有关。1824年,法国人卡诺提出著名的卡诺定理,指明工作在给定温度范围的热机所能达到的效率极限,这实质上已经建立起热力学第二定律。但受“热质说”的影响,他的证明方法还有错误。1848年,英国工程师开尔文根据卡诺定理制定了热力学温标。1850年和1851年,德国的克劳修斯和开尔文先后提出了热力学第二定律,并在此基础上重新证明了卡诺定理。 1850~1854年,克劳修斯根据卡诺定理提出并发展了熵的概念。热力学第一定律和第二定律的确认,对于两类“永动机”的不可能实现作出了科学的最后结论,正式形成了热现象的宏观理论热力学。同时也形成了“工程热力学”这门技术科学,它成为研究热机工作原理的理论基础,使内燃机、汽轮机、燃气轮机和喷气推进机等相继取得迅速进展。 与此同时,在应用热力学理论研究物质性质的过程中,还发展了热力学的数学理论,找到了反映物质各种性质的相应的热力学函数,研究了物质在相变、化学反应和溶液特性方面所遵循的各种规律 。1906年,德国的能斯脱在观察低温现象和化学反应中发现热定理;1912年,这个定理被修改成热力学第三定律的表述形式。 二十世纪初以来,对超高压、超高温水蒸汽等物性,和极低温度的研究不断获得新成果。随着对能源问题的重视,人们对与节能有关的复合循环、新型的复合工质的研究发生了很大兴趣。

地源热泵研究论文

介绍有关空气源热泵产品的机型、性能、报价及应用场景

戴传山

(天津大学地热研究培训中心)

一年一度的日本冷冻空调学会(JSRAE Annual Conference)于2002年11月在红叶满开的日本冈山大学举行。冈山大学工学部传热教研室是这次大会的组织者,作为该教研室即将毕业的博士留学生,我有幸协助组织并参加了这次大会。大会共宣读了173篇论文,其中18篇与地热有关,约占论文总数的10%,会议论文的内容主要包括:①对地源热泵发展的回顾;②相关的基础及软科学研究;③地下水式、桩式等地源热泵和空调系统;④利用地热进行道路融雪;⑤地源蓄冷及土壤冻结。

1 地源热泵的发展与回顾

在对世界及日本地源热泵发展的回顾中,北海道大学长野克则教授在引用的数据同时对美国、欧洲和澳大利亚的地源热泵的发展现状及市场特点进行了分析。基于2000年的数据表明美国是地源热泵普及最多的国家,全国安装负荷量为480万千瓦,相当于安装12千瓦的机组40万台,约占世界总安装量的68%。其中垂直式井下热交换器是最多的一种形式,占46%;而水平式其次约占38%;开放式换热器并不多,只占15%。

尽管日本的电价是柴油价格的4~5倍,远高出瑞典的倍,但瑞典的总安装负荷却是日本的近百倍,而且大部分的地源热泵系统是兼供热水式。在奥地利,2000年仅一年内安装的2000多台热泵当中有超过70%是以地源作为热源。在日本地源热泵受到重视是在1990年以后。主要是在四国岛及九州地区的空调和道路融雪等规模的利用。最近,日本国土资源省在其东北部成立了以环境产业研究所科技力量为中心的道路融雪项目计划,项目实施以来收到很好的效果。

日本作为经济实力第二的火山岛国,地热资源丰富,地热能的开发利用落后于许多欧洲国家甚至一些亚洲的其他发展中国家。这一事实引起日本国内许多学者和机构的注意。预计在今后几年里,日本可能在地热利用方面将有较大的投入。

2 相关的基础研究及软科学研究

如果把地源热泵的研究归结为简单的半无限大固体内的线源导热问题,最早的研究可以追溯到至少半个世纪以前。而实际上,地源热泵是涉及许多学科的复杂问题。其中难点之一是如何确定地表的边界条件。在这个问题上大阪大学的奥野博信等学者提出一个描述地表水,水蒸气及热量等平衡关系的数学及物理描述模型,并与实测结果有很好的吻合。在该模型中主要考虑了太阳的辐射、风速及环境空气的温度和湿度等参量。

另一个有趣的研究是利用国土资源数据进行关于地域性的地下水层蓄热和回收的研究论文。该论文以北海道札幌市为研究对象,利用有关札幌市内的地下、地上相关数据进行大都市的地下水层内采用蓄热和取热的技术可行性。这一研究成果可以宏观上了解蓄热和用热的区域分布,从而可以提供地源热泵的规模,并对控制大都市的热岛现象提出理论依据和对策。作者认为,严格地讲,这是一个比较复杂的动态模拟问题,也是一个必须有政府机关介入的课题。

3 地下水式、桩式等地源热泵和空调系统

由于地源热泵的众多优点,一些日本中小企业公司开始组织开发和研制地源热泵系统的工作,尽管起步较晚,但已显示出所具有的潜力。在本次会上由日本名古屋Zeneral热泵股份有限公司和东京JMC地热工程有限公司合作,在日本及我国东北长春市安装了共近90马力的地源热泵机组。见表1。

表1 Zeneral热泵股份有限公司安装的机组

A/C:空调,H/W:供热水。1HP=。

在长春安装的50马力的机组是由5台10马力的机组构成,出于实验的考虑,地源换热器是16根100m长,直径和材料各异的管材。机组的COP为~,供热温度在40℃左右。折合计算平均换热器管长取热约30W/m。

桩基式地源热泵系统有兼热源或冷源和建筑固基的双重效果。福井大学工学部对yi该系统进行了数值模拟和实验研究,也是日本国在该领域中的首次尝试。对面积为3693m2,桩根数(井下换热器)为70根的数值模拟计算表明,供热负荷可达到。供冷负荷也可达到近300GJ。相当于每根地基桩有日的供热负荷。COP值可达到~。空调系统如图1所示。在经济上,对50冷吨规模的初投资与空气源热泵系统的初投资比增加不到15%。桩基式总投资为1720万日元,而空气源式约为1515万日元。尽管实验进行的不很顺利,但通所获得的实验数据进行分析,得到的结果是与空气源空调系统相比,在制冷时节能效果可提高,而供热时约。

利用地源热泵进行道路的积雪清除是日本比较早的地热研究项目。在这一方面比较有名的研究学者是茨城产总研的盛田耕二先生。最近,私人企业公司的研究人员也开始介入,这也许和日本最近实行的道路民营化政策有关。在北方寒冷的地区,由于积雪而造成的交通事故很多,且往往主要出现在转向较急的地方(图2)。

因此在某些关键地方采用地源热泵融雪系统很有必要。为了提高冬天时运行的工作效率,在夏季可以采用同一系统收集道路上的太阳辐射热能,蓄热到地下(图3)。对加热能力为56千瓦的机组来说,可以对面积为332m2的道路进行融雪,相当于170W/m2。如果每根井下换热器的有效长度为151m的话,所需的根数和返回井下换热器的流体温度有关,温度越低所需的根数越少(图4)。

图1 桩基式地源热泵系统

图2 采用地源热泵进行道路融雪系统

图3 冬季融雪运行模式(上)和夏季蓄热模式

图4 井下换热器入口温度与换热器根数及COP的关系

4 地源蓄冷及土壤冻结

由于土壤内还有水分,在低温下可以发生相变凝固而蓄冷。发生相变的潜热量占总蓄冷量的比例较大,因此,在一定程度上含水量的多少决定了蓄冷的能力。大阪精研公司对体积含水率为土壤的蓄冷机理进行实验和理论研究。包括冷媒的入口温度,埋管的排列方式等。在一般情况下,热回收系数可以达到80%以上。根据模拟实验的结果可以进行实际应用例子的预测:冷负荷:9~105kJ/h;每米管长的回收热:630kJ/mh。那么所需的管群用地圆半径R,根数N及管长的预测值(表2)。

表2 管群范围半径及管长

冻土过程在大多数情况下对建筑物或道路是有害的。然而,采用适当的技术条件可以发挥其有益的一面。大阪摄南大学环境工学部伊藤A提出了利用冻土技术实现地基坚固强化的设想。在冻土层的周围添加抽水蒸气的排气管。外围放置的排气管可以抑制由于冻土过程中水蒸气向冻土层的不断凝聚,从而达到一个传质动态的平衡,而内部水蒸气排气管可以起到在施工即将完成自然融解时的部分排气。作者指出:这一方案也可适用于地下污染的处理,因为伴随着水蒸气的流动,污染物的浓度也随之聚集,达到回收清除的目的。文中尽管给出了传质和内部压力的变化情况,但未给出相变过程中传热过程的描述。

5 结论与讨论

本文总结了去年在日本冷冻空调大会上日本在地源热泵研究上的进展。虽然是部分反映日本国地源热泵的研究和利用情况,但一定程度上反映日本国内关于该领域的前沿方向。利用地源作为热泵的热源或冷源要比空气源有更多的优越性。作者把采用地(土壤)源的空调系统的主要优点总结如下:

(1)有稳定的运行条件。从空调机的热源稳定性条件看,垂直式井下换热器优于水平式。土壤埋式优于湖泊等开放式。一般空气源热泵在-15℃以下较难启动,而地源井下换热器的出口温度一般都高于这一温度。

(2)能够利用季节性的蓄热和蓄冷。

(3)与空气源热泵相比有较高的COP。

以上介绍了许多应用实例,给出了一些经验数据或设计模型。但作者提醒读者最好不要照搬套用这些数据。正如上面在相关的基础及软科学研究一节中所阐述的,作为基本应用和模拟条件之一的地表边界条件仍然有人在研究。合理的设计取决于对许多因素的考虑。设计者也不必望而却步,因为许多热或物质的传递过程在一定条件下都有其极限或限制,只要了解这一条件下所对应的限制,也就掌握了设计主动。这就是所谓的设计标准问题,在这一方面国内也急需论证和设立。

我在常州,你在哪个学校,我来给你搞定! ;我球球420504045 ,我把我们公司的内部培训资料给你参考一下。

相关百科