杂志信息网-创作、查重、发刊有保障。

论文查重检测网站总汇

发布时间:2024-07-07 11:41:43

论文查重检测网站总汇

论文查重的网站有:万方、知网、paperpass、paperfree等。

1、万方数据文献相似性检测服务采用科学先进的检测技术,实现海量学术文献数据全文比对,秉持客观、公正、精准、全面的服务原则,为用户提供精准详实的相似性检测结果,呈现多版本、多维度的检测报告。

2、知网一般指中国知网。中国知网,始建于1999年6月,是中国核工业集团资本控股有限公司控股的同方股份有限公司旗下的学术平台。知网是国家知识基础设施(National Knowledge Infrastructure,NKI)的概念,由世界银行于1998年提出。

3、PaperPass是全球首个中文文献相似度比对系统,已经发展成为一个中文原创性检查和预防剽窃的在线网站。一直致力于学术论文的检测。PaperPass诞生于2007年。

4、PaperFree论文查重软件通过海量数据库对提交论文进行对比分析,准确地查到论文中的潜在抄袭和不当引用,实现了对学术不端行为的检测服务。

免费查重论文的方法如下:

想要免费查重,首先需要找一个可以免费查重的网站。你可以在网上搜索“免费论文查重”或者“paperfree”,然后找到paperfree的官网,点击网址进入。登录账户后,找到“免费查重”页面。进去之后可以看到相关的活动,然后就可以参加这些活动了。参与成功后,可获得相应数量的免费查重词。如果想做免费的论文查重,获取这些免费字数很重要。

领取免费字数成功后,进入查重入口,根据提示输入姓名和论文题目,上传论文文档。在提交查重时,可以用获得的免费查重字数进行检测,从而实现免费查重。

准备开始论文查重的时候,大家的论文初稿肯定已经快写完了。论文查重就是能够看到论文的重复率,这样你就可以知道你的论文是否能够通过高校的审核,并且可以根据查重报告修改自己的论文。因为你可以看到查重报告中的论文查重率和论文中有哪些具体内容是重复的。那怎么进行免费论文查重?

如果你想论文查重,知道论文查重率,还得通过专门的论文查重软件来操作。目前市面上的论文查重软件很多,各种论文查重软件之间也有差异。你最好根据你的论文类型选择最适合你论文的论文查重系统。不同论文查重平台之间的收费标准也不一样。大部分论文查重平台执行论文查重操作需要支付费用。

论文查重的网站如下:

1、知网论文查重系统:知网查重系统应当是不少人都有所了解的一个查重网站,它具备的优势也十分突出,如数据库庞大、文章、资料更新及时。

可以为使用者提供十分可靠的查重结果;知网查重系统还具备了批量上传、下载测试结果等功能,操作起来也十分的方便快捷,便于保障使用者的查重效率,节省查重时间。

2、PaperPass检测系统: PaperPass采用 了自主研发的动态指纹越级扫描检测技术,具备查重速度快、精度高的优点,高度的准确率可以为使用者提供精确的查重报告,有利于使用者及时的对论文进行修改、调整。

3、万方论文查重系统:万方查重系统采用的检测技术十分先进科学,能够为使用者提供多版本、多维度的论文查重报告;万方查重系统还可同时为科研管理、教育教学、人事管理等多个领域的学术机构提供学术成果相似性检测服务。

4、维普论文查重系统:该论文查重系统采用了国际领先的海量论文动态语义跨域识别加指纹比对技术,能够快捷准确的检测论文是否存在抄袭问题;

中文期刊论文库、硕博学位论文库、高校特色论文库、互联网数据资源等多个数据库的存在,也使得维普论文查重系统能够高效的比对文本数据。

cvpr2019检测论文汇总

小目标问题在物体检测和语义分割等视觉任务中一直是存在的一个难点,小目标的检测精度通常只有大目标的一半。

CVPR2019论文: Augmentation for small object detection 提到了一些应对小目标检测的方法,笔者结合这篇论文以及查阅其它资料,对小目标检测相关技巧在本文进行了部分总结。

小目标的定义: 在MS COCO数据集中,面积小于 32*32 的物体被认为是小物体。

小目标难以检测的原因: 分辨率低,图像模糊,携带的信息少。由此所导致特征表达能力弱,也就是在提取特征的过程中,能提取到的特征非常少,这不利于我们对小目标的检测。

1、由于小目标面积太小,可以放大图片后再做检测,也就是在尺度上做文章,如FPN(Feature Pyramid Networks for Object Detection),SNIP(An Analysis of Scale Invariance in Object Detection – SNIP)。

Feature-Fused SSD: Fast Detection for Small Objects, Detecting Small Objects Using a Channel-Aware Deconvolutional Network 也是在多尺度上做文章的论文。

2、在Anchor上做文章(Faster Rcnn,SSD, FPN都有各自的anchor设计),anchor在设置方面需要考虑三个因素:

anchor的密度: 由检测所用feature map的stride决定,这个值与前景阈值密切相关。

anchor的范围: RetinaNet中是anchor范围是32~512,这里应根据任务检测目标的范围确定,按需调整anchor范围,或目标变化范围太大如MS COCO,这时候应采用多尺度测试。

anchor的形状数量: RetinaNet每个位置预测三尺度三比例共9个形状的anchor,这样可以增加anchor的密度,但stride决定这些形状都是同样的滑窗步进,需考虑步进会不会太大,如RetinaNet框架前景阈值是时,一般anchor大小是stride的4倍左右。

该部分anchor内容参考于:

3、在ROI Pooling上做文章,文章SINet: A Scale-Insensitive Convolutional Neural Network for Fast Vehicle Detection 认为小目标在pooling之后会导致物体结构失真,于是提出了新的Context-Aware RoI Pooling方法。

4、用生成对抗网络(GAN)来做小目标检测:Perceptual Generative Adversarial Networks for Small Object Detection。

1、从COCO上的统计图可以发现,小目标的个数多,占到了,但是含有小目标的图片只有,大目标所占比例为,但是含有大目标的图像却有。这说明有一半的图像是不含小目标的,大部分的小目标都集中在一些少量的图片中。这就导致在训练的过程中,模型有一半的时间是学习不到小目标的特性的。

此外,对于小目标,平均能够匹配的anchor数量为1个,平均最大的IoU为,这说明很多情况下,有些小目标是没有对应的anchor或者对应的anchor非常少的,即使有对应的anchor,他们的IoU也比较小,平均最大的IoU也才。

如上图,左上角是一个anchor示意图,右上角是一个小目标所对应的anchor,一共有只有三个anchor能够与小目标配对,且配对的IoU也不高。左下角是一个大目标对应的anchor,可以发现有非常多的anchor能够与其匹配。匹配的anchor数量越多,则此目标被检出的概率也就越大。

实现方法: 1、Oversampling :我们通过在训练期间对这些图像进行过采样来解决包含小对象的相对较少图像的问题(多用这类图片)。在实验中,我们改变了过采样率和研究不仅对小物体检测而且对检测中大物体的过采样效果

2、Copy-Pasting Strategies:将小物体在图片中复制多分,在保证不影响其他物体的基础上,增加小物体在图片中出现的次数(把小目标扣下来贴到原图中去),提升被anchor包含的概率。

如上图右下角,本来只有一个小目标,对应的anchor数量为3个,现在将其复制三份,则在图中就出现了四个小目标,对应的anchor数量也就变成了12个,大大增加了这个小目标被检出的概率。从而让模型在训练的过程中,也能够有机会得到更多的小目标训练样本。

具体的实现方式如下图:图中网球和飞碟都是小物体,本来图中只有一个网球,一个飞碟,通过人工复制的方式,在图像中复制多份。同时要保证复制后的小物体不能够覆盖该原来存在的目标。

网上有人说可以试一下lucid data dreaming Lucid Data Dreaming for Multiple Object Tracking ,这是一种在视频跟踪/分割里面比较有效的数据增强手段,据说对于小目标物体检测也很有效。

基于无人机拍摄图片的检测目前也是个热门研究点(难点是目标小,密度大)。 相关论文: The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking(数据集) Drone-based Object Counting by Spatially Regularized Regional Proposal Network Simultaneously Detecting and Counting Dense Vehicles from Drone Images Vision Meets Drones: A Challenge(数据集)

1: 2: 3: 4: 5: 6: 7:

2019年计算机视觉和模式识别大会(CVPR)已经落幕。毫无意外,自动驾驶依旧是此届 CVPR 会议议题及参展亮相的焦点。

除拥有主场之利的自动驾驶企业,例如Waymo、福特 Argo AI、Velodyne外,国内自动驾驶玩家纷纷携最新技术走向国际视野:百度、滴滴等老面孔悉数亮相;小马智行、文远知行、纽劢 科技 、图森未来、地平线也参展CVPR 2019。

一个很明显的趋势是,“开放”成为 CVPR 2019 自动驾驶的关键词。本届 CVPR 大会上,Waymo 和 都站上了开放数据集的潮头。这是继百度、安波福(Aptiv)之后,又两个走向开放的自动驾驶资深玩家。

在CVPR 2019上,Waymo和Argo AI两家公司都走上了“数据开放”的大道。

此次Waymo公布的数据集包含了3000段平均时长为20秒的驾驶记录,整个数据集包含六十万帧数据,约2500万3D边界框、2200万2D边界框,以及多样化的自动驾驶场景。数据公开之后,Waymo自动驾驶车辆的传感器特点也将一览无余。

*Waymo公开自动驾驶数据集

Waymo称其数据集包含了3000个场景,是安波福(Aptiv)开放的数据集 NuScenes 的3倍,摄像头和激光雷达之间的信息同步也更好。Waymo还提供了5个激光雷达传感器的数据,而NuScenes数据集中只有1个。

福特自动驾驶开发合作伙伴Argo AI的Argoverse数据集与Waymo略有不同。虽然它也包含激光雷达和摄像头数据,但它只覆盖了在迈阿密和匹兹堡记录的113个场景,包括Argo AI使用的所有9个摄像头以及2个激光雷达传感器的图像,其中标注的目标超过10000个。

*Argo 的数据集注重传感器与地图数据的结合

Argo AI的Argoverse数据集的特别之处在于,它是第一个包含高清地图数据的数据集。Argo AI目前在其运营区域打造了自己的高清地图。这些数据包含匹兹堡和迈阿密290公里的车道地图,如位置、连接、交通信号、海拔等信息。Argo AI在其地图解决方案中大力宣传的一个功能即其优化处理的能力:能够精确地知道在哪里寻找交通标志和信号,不必扫描整个场景来寻找。

封闭还是开放,这是一个始终萦绕在自动驾驶行业里的问题。继今年 3 月份,安波福(Aptiv)先行一步公开传感器数据集后,Waymo和Argo AI的动作都预示着“开放”成为自动驾驶未来发展趋势。

CVPR中国团

百度在此次CVPR 上备受瞩目,因其公开了L4级自动驾驶纯视觉城市道路闭环解决方案--百度Apollo Lite。

Apollo技术委员会主席王亮针对L4级全自动驾驶(Fully Autonomous Driving)环境感知技术方案进行了讲解,并公开了环视视觉解决方案百度Apollo Lite技术细节。雷锋网新智驾了解到,Apollo Lite能够支持对10路摄像头、200帧/秒数据量的并行处理,单视觉链路最高丢帧率能够控制在5‰以下,可以实现全方位360°实时环境感知,前向障碍物的稳定检测视距达到240米。

王亮表示,在传统激光雷达为主、视觉为辅的传统融合策略中,视觉感知自身的问题和缺陷在雷达感知的掩盖下暴露不够充分。通过Apollo Lite打磨迭代的纯视觉技术正在持续反哺百度坚持的多传感器融合解决方案,提升自动驾驶系统的鲁棒性和安全性。

今年 CVPR 2019 上,滴滴也联合加州大学伯克利分校DeepDrive深度学习自动驾驶产业联盟(BDD)举办CVPR 2019自动驾驶研讨会,详细介绍了滴滴在自动驾驶领域的 探索 和实践。

研讨会现场,滴滴自动驾驶首席工程师贾兆寅还详细介绍了滴滴近期的自动驾驶测试情况,目前滴滴已拥有超过100人的自动驾驶团队,在中国、美国多地开展测试。在积极开展路测的同时,技术团队也在逐步尝试运用丰富而多样的网约车车载数据训练算法模型。

而谈到自动驾驶的落地,贾兆寅认为滴滴短期比较理的想商业化形式可能是“混合派单”,例如在相对简单的路线派出无人车,在复杂路段派单给司机接驾。混合派单模式即可以推动自动驾驶技术更快成熟落地,也可以保证用户日常的出行体验。

今年上半年,滴滴还相继牵手BDD、图灵奖得主Yoshua Bengio领衔的蒙特利尔学习算法研究所(Mila)等顶级研究机构不断 探索 自动驾驶技术边界。

这一次 CVPR,国内自动驾驶初创团队纽劢 科技 、文远知行、小马智行、图森未来、地平线等来自国内明星自动驾驶公司都有自己的展台。

小马智行联合创始人兼CEO彭军亲临展位现场,携同感知团队在CVPR上展示小马智行自动驾驶技术的最新进展和落地成果。一辆搭载小马智行第三代自动驾驶软硬件解决方案PonyAlpha的车辆也亮相CVPR现场。

全栈式自动驾驶方案供应商文远知行、纽劢 科技 、专注于自动驾驶物流场景的图森未来、专注于边缘AI芯片及解决方案的人工智能企业地平线携自动驾驶产品参展,并将商业化、量产作为2019年的关键词。

雷锋网新智驾了解到,今年3月,图森未来对外发布最新的无人驾驶摄像头感知系统。该感知系统利用索尼的 汽车 CMOS图像传感器,能让无人车在夜间和低能见度下行驶,与之前的1000米感知技术结合后,可将无人驾驶卡车使用率提高到80%。该感知系统会在2019年第二季度量产,并于第三季度应用在图森未来的无人驾驶卡车上、提供商业化运输服务。

据雷锋网新智驾了解,配备有索尼最先进的 汽车 CMOS图像传感器,图森未来自主研发的摄像头感知系统充分支持夜间以及低能见度下的无人驾驶行驶,是图森未来进行大规模商业化的关键一步。纽劢 科技 也在本月发布了面向前装L3量产自动驾驶方案“MAX”。

这届 CVPR 上,自动驾驶企业依旧是重头戏。而作为顶级学术会议,CVPR也在源源不断向这些企业输送顶尖人才。不少自动驾驶公司也借此进行招聘。虽然自动驾驶寒冬并为一锤定音,但泡沫破碎之后,自动驾驶仍然会是未来。

全网各种论文免费查重网站汇总

免费查重论文的网站如下:

1、学信网万方查重,、这是学信网和万方合作推出的查重网站、每个应届生都有一次免费的论文查重机会。

2、免费10万字论文查重,价值100元。查重数据库包含、哲学、经济学、管理学、法学、社会科学、教育学、文学、艺术学、历史学、理学、工学、农学、医学、政治学、军事学等。

3、PaperDay,这是一个几乎完全免费的论文查重系统,标准版查重入口永久免费、没有次数限制。

4、论文狗,每天免费一篇,标准版每人每天查重一次,旗舰版需要按照次数收费。

5、paperYY,免费版每人免费查一次、(每天11:11~11:22全版本查重限时免费,每个用户每天限2次,累计限5次),自建库不限制免费查重字数。

6、freecheck,每天可领取一次免费查重。

论文:

古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。

论文发表后,文摘杂志或各种数据库对摘要可以不作修改或稍作修改而直接利用,让读者尽快了解论文的主要内容,以补充题名的不足,从而避免他人编写摘要可能产生的误解、欠缺甚至错误。所以论文摘要的质量高低,直接影响着论文的被检索率和被引频次。

论文查重的网站如下:

1、知网论文查重系统:知网查重系统应当是不少人都有所了解的一个查重网站,它具备的优势也十分突出,如数据库庞大、文章、资料更新及时。

可以为使用者提供十分可靠的查重结果;知网查重系统还具备了批量上传、下载测试结果等功能,操作起来也十分的方便快捷,便于保障使用者的查重效率,节省查重时间。

2、PaperPass检测系统: PaperPass采用 了自主研发的动态指纹越级扫描检测技术,具备查重速度快、精度高的优点,高度的准确率可以为使用者提供精确的查重报告,有利于使用者及时的对论文进行修改、调整。

3、万方论文查重系统:万方查重系统采用的检测技术十分先进科学,能够为使用者提供多版本、多维度的论文查重报告;万方查重系统还可同时为科研管理、教育教学、人事管理等多个领域的学术机构提供学术成果相似性检测服务。

4、维普论文查重系统:该论文查重系统采用了国际领先的海量论文动态语义跨域识别加指纹比对技术,能够快捷准确的检测论文是否存在抄袭问题;

中文期刊论文库、硕博学位论文库、高校特色论文库、互联网数据资源等多个数据库的存在,也使得维普论文查重系统能够高效的比对文本数据。

目前免费论文查重网站比较多,今天给各位同学例举部分查重系统,仅供参考:PaperFree是中英文及多语种论文相似度检测系统,特色机器人降重、在线改重功能,可以实现自动降低文章相似比例,并且在同一界面上一边修改一边检测,即时反馈查重结果,使用户体验、查重效率翻倍。PaperFree为用户人性化地完美实现了“首次免费论文检测―高效在线改重―智能机器人降重―全面再次论文检测―顺利通过论文检测“的整个全过程。PaperTime免费论文检测系统首次将在线改重、机器人降重运用到论文检测中。在线改重功实现了一边修改,一边查重,修改一句话就可以同步实时看到修改后的查重比例结果,从而有效地提升修改效率;系统同时提供的机器人降重功能是以七千万篇学术论文作为训练语料,使用深度学习的方法进行句法分析和语义分析,挖掘出词汇在语义上下文的空间向量模型中的关系。通过程序对大数据进行机器学习生成的结果,能保证在修改句子合理通顺的基础上实现智能自动降低重复比例。PaperDay以学术论文大数据和互联网技术为支撑,专注于在线论文写作辅导,提供论文学术不端行为在线查重服务。对所有注册用户提供免费查重体验,是让用户通过亲身体验认识到什么是优秀好用的论文检测系统。PaperDay系统支持中英文及多语种论文检测,整合了智能降重、论文排版、论文纠错为一体,大大提高论文写作效率,是检测文章原创性、课程论文、学术论文、毕业学位论文等学术不端行为自律查重工具。

目前免费论文检测网站比较多,主流的查重网站有知网学术不端查重、维普查重、万方查重,高校都有1-2次的免费查重机会,具体得看各个学校的要求而定,paper系列主流查重有PaperFree、PaperPass、PaperTime、Paperok等,以上几家paper系列都是跟wps、百度学术、360学术等都有合作,感兴趣的同学可以搜一下,每个学术平台免费查重优惠也是不一样,接下来我们逐步一一列举上面所提的查重软件具体情况:

知网查重

中国知网,始建于1999年6月,是中国核工业集团资本控股有限公司控股的同方股份有限公司旗下的学术平台。知网是国家知识基础设施(National Knowledge Infrastructure,NKI)的概念,由世界银行于1998年提出。CNKI工程是以实现全社会知识资源传播共享与增值利用为目标的信息化建设项目。

维普查重

维普论文检测系统,由重庆泛语科技有限公司自主研发,采用先进的海量论文动态语义跨域识别加指纹比对技术,通过运用云检测服务部署使其能够快捷、稳定、准确地检测到文章中存在的抄袭和不当引用现象,实现了对学术不端行为的检测服务。

万方查重

万方查重是北京万方数据股份有限公司旗下唯一独立运营的产品。万方查重致力于提供多样化的科技信息服务。公司以客户为导向,依托强大的数据采集能力,应用先进的信息处理技术和检索技术,为科技界、企业界和政府部门提供高质量的信息资源产品。并陆续推出万方查重、万方毕业论文管理系统、万方VR虚拟教育平台等一系列产品。

PaperFree

PaperFree是中英文及多语种论文相似度检测系统,特色机器人降重、在线改重功能,可以实现自动降低文章相似比例,并且在同一界面上一边修改一边检测,即时反馈查重结果,使用户体验、查重效率翻倍。PaperFree为用户人性化地完美实现了“首次免费论文检测―高效在线改重―智能机器人降重―全面再次论文检测―顺利通过论文检测“的整个全过程。

PaperPass

PaperPass是全球首个中文文献相似度比对系统,已经发展成为一个中文原创性检查和预防剽窃的在线网站。一直致力于学术论文的检测。

PaperTime

PaperTime是在“教育大数据联盟平台”的基础上,优先获取教育数据资源,采用多级指纹对比技术及深度语义识别技术,实现“实时查重、在线修改、同步降重”一步到位。

Paperok

PaperOK论文查重,基于大数据海量学术文献资源及互联网资源,坚持客观、公正、精准、全面的原则,对学术不端行为进行管理,为用户提供客观详实的查重报告,为出版、科研、学术等提供支持!

行人检测论文汇总

可见光行人的检测:采用的视觉传感器为普通的光学摄像头,非常符合人的正常视觉习惯,而且硬件成本十分低廉。但是受到光照条件的限制,该方法只能应用在白天,在光照条件很差的阴雨天或夜间则无法使用 红外行人的检测:采用红外热成像摄像头,利用物体发出的热红外线进行成像,不依赖于光照,具有很好的夜视功能,在白天和晚上都适用,尤其是在夜间以及光线较差的阴雨天具有无可替代的优势

用的是知网,抄袭之后最后修改一下,比如改下表达方式,知网系统计算标准详细说明:1.看了一下这个系统的介绍,有个疑问,这套系统对于文字复制鉴别还是不错的,但对于其他方面的内容呢,比如数据,图表,能检出来吗?检不出来的话不还是没什么用吗?学术不端的各种行为中,文字复制是最为普遍和严重的,目前本检测系统对文字复制的检测已经达到相当高的水平,对于图表、公式、数据的抄袭和篡改等行为的检测,目前正在研发当中,且取得了比较大的进展,欢迎各位继续关注本检测系统的进展并多提批评性及建设性意见和建议。 2.按照这个系统39%以下的都是显示黄色,那么是否意味着在可容忍的限度内呢?最近看到对上海大学某教师的国家社科基金课题被撤消的消息,原因是其发表的两篇论文有抄袭行为,分别占到25%和30%. 请明示超过多少算是警戒线?百分比只是描述检测文献中重合文字所占的比例大小程度,并不是指该文献的抄袭严重程度。只能这么说,百分比越大,重合字数越多,存在抄袭的可能性越大。是否属于抄袭及抄袭的严重程度需由专家审查后决定。 3.如何防止学位论文学术不端行为检测系统成为个人报复的平台?这也是我们在认真考虑的事情,目前这套检测系统还只是在机构一级用户使用。我们制定了一套严格的管理流程。同时,在技术上,我们也采取了多种手段来最大可能的防止恶意行为,包括一系列严格的身份认证,日志记录等。 4.最小检测单位是句子,那么在每句话里改动一两个字就检测不出来了么?我们对句子也有相应的处理,有一个句子相似性的算法。并不是句子完全一样才判断为相同。句子有句子级的相似算法,段落有段落级的相似算法,计算一篇文献,一段话是否与其他文献文字相似,是在此基础上综合得出的。 5.如果是从相关书籍上摘下来的原话,但是此话已经被数据库中的相关文献也抄了进去,也就是说前面的文章也从相关书籍上摘了相同的话,但是我的论文中标注的这段话来自相关的书籍,这个算不算学术抄袭?检测系统不下结论,是不是抄袭最后还有人工审查这一关,所以,如果是您描述的这种情况,专家会有相应判断。我们的系统只是提供各种线索和依据,让人能够快速掌握检测文献的信息。6.知网检测系统的权威性?学术不端文献检测系统并不下结论,即检测系统并不对检测文献定性,只是将检测文献中与其他已发表文献中的雷同部分陈列出来,列出客观事实,而这篇检测文献是否属于学术不端,需专家做最后的审查确认。 一篇论文的抄袭怎么才会被检测出来?知网论文检测的条件是连续13个字相似或抄袭都会被红字标注,但是必须满足3里面的前提条件:即你所引用或抄袭的A文献文字总和在你的各个检测段落中要达到5%。

提到论文查重检测很多人都知道现在论文查重检测的要求是很严格的,学生在撰写论文的时候除了要保障质量外,在撰写的时候也是要查阅很多资料的,只有根据资料进行撰写,才可以让整篇论文的观点更加明确,但是在完成论文撰写后还要知道论文查重检测是有哪些具体的内容和要求,知道查重检测的内容才可以顺利完成,也是可以找到论文撰写的方式技巧。论文查重检测内容包括下文几方面:第一,论文正文部分内容。作为整篇论文中最重要的部分,在实际的查重检测过程中确实可以说明是否论文重复率比较高,现在很多人在撰写前也是会了解清楚论文查重检测哪些内容的,正文是论文的核心部分,所以在论文查重检测的时候是要看看如何操作才会更好的,而我们也是要针对实际情况做好市场分析的。第二,论文摘要部分内容。摘要部分的字数虽然没有很多,但在进行查重检测的时候也是要及时了解清楚的,对于摘要英文部分是不需要进行查重检测的,而中文部分是要做好详细检测的,出现的重复内容也是要及时进行修改调整的,只要降低了论文重复率,都是可以顺利通过论文审核的,对于很多学生来说可以顺利拿到毕业证书。论文重复率检测不可以高于百分之三十从本科毕业论文查重检测的要求看,论文重复率是不可以超过百分之三十,只要把握在这个范围内,都是可以顺利提交的,而在选择的时候也是可以看看论文实际撰写手法,通过这些方面都是可以详细介绍的,让大家可以知道论文查重检测哪些内容,只要达到实际的要求标准,论文质量都是会得以提升的,也是可以放心进行选择的。

所谓的查重其实很简单就是专业的系统将输入的论文通过与数据库中已有的论文进行比对,将其相同的或是意思相近的论点、结构、表述等一一的标注出来,最后生成一个查重率,一旦这个查重率超过学交的要求就被视为抄袭,要求重写或是修改,毕业将会受阻。

物体检测论文汇总

论文原文:

YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:

如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:

每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:

其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。

每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)

举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:

在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:

等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。

得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。

1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。

2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。

3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。

4、损失函数公式见下图:

在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:

解决方法:

只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。

作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为(ImageNet2012 validation set),与GoogleNet模型准确率相当。

然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。

作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}= 。

作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为,学习速率延迟为。Learning schedule为:第一轮,学习速率从缓慢增加到(因为如果初始为高学习速率,会导致模型发散);保持速率到75轮;然后在后30轮中,下降到;最后30轮,学习速率为。

作者还采用了dropout和 data augmentation来预防过拟合。dropout值为;data augmentation包括:random scaling,translation,adjust exposure和saturation。

YOLO模型相对于之前的物体检测方法有多个优点:

1、 YOLO检测物体非常快

因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。

2、 YOLO可以很好的避免背景错误,产生false positives

不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。

3、 YOLO可以学到物体的泛化特征

当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。

尽管YOLO有这些优点,它也有一些缺点:

1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。

2、YOLO容易产生物体的定位错误。

3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

相关百科