杂志信息网-创作、查重、发刊有保障。

关于矿物加工的论文题目大全初中生

发布时间:2024-07-08 16:40:56

关于矿物加工的论文题目大全初中生

在我的心目中,矿物加工应该就是从矿石中提取一些我们需要的材料,比如说金银等都是这样的加工方式。

不作主观评价。太原理工大学矿物加工工程学科简介  一、学科带头人简介  樊民强,男,1964年11月生,教授,博士生导师。兼任山西省委联系的高级专家,中国煤炭学会选煤专业委员会委员,山西省煤炭深加工专业委员会副主任委员,《选煤技术》编委等。主持完成国家“863”高技术项目、国家基金及省部级、企业科研项目30多项,发表论文40多篇,其中EI和ISTP收录6篇。出版专著、教材4部。开发的选煤技术管理软件和高效旋流分选系统获得广泛工业应用。  王怀法,男,1963年4月生,教授,博士生导师。兼任山西省矿业联合会专家委员会专家,中国煤炭技术委员会资源加工利用与环境保护分会委员,中国颗粒学会颗粒制备与处理专业委员会委员,山西省煤炭深加工专业委员会常务委员等。主持完成国家基金及省部级、企业科研项目20多项,发表论文30多篇,其中SCI、EI收录8篇,获国家专利2项,出版专著1部。开发的两段充气微泡浮选柱和基于絮凝能耗梯级适配的多功能煤泥水净化系统获得工业应用。  二、学科研究方向  矿物分选的理论、工艺与设备:本研究方向完善和发展了重力选煤过程的统计理论体系,为揭示跳汰过程本质和优化控制奠定了科学基础。离心力场中细颗粒的分级分选理论研究与工业实践,粗粒浮选理论与关键设备的研究与开发是本学科着力发展的新突破点。并有望在粗粒煤和细粒煤浮选的理论、技术和装备方面取得国内领先的研究成果。  矿物分选过程模拟与优化控制:该研究方向提出了基于跳汰过程多参数可视化检测与优化控制的智能模糊控制理论与技术,开发了具有“国际领先水平”的跳汰机多参数模糊智能可视化测控系统,此外研究范围包括了选煤过程大型设备的状态监测与早期故障诊断、选煤过程模拟与优化、选煤过程计算机应用等,有望在浮选过程多尺度预测、高效旋流分选的数值仿真和智能软测量技术方面取得国内领先的研究成果。  矿物材料与粉体技术:该研究方向提出了煤粉碎-煤基高分子复合材料制备-粉煤成型的煤岩学理论方法体系,构成了煤洁净利用的重要基础理论;电子束辐照矿物/煤改性机理研究填补了国内在该领域的空白;煤矸石改性填料基础理论研究,为煤矸石高附加值利用提供了新的途径,形成了煤矿循环经济发展新的技术支撑体系。  矿山废弃物资源化与精细利用:该研究方向系统研究了煤系腐植酸性能,制备工艺与应用基础;在对高铝铁类煤矸石与冶金废料物质组成、性能系统研究的基础上,提出了碱熔融酸浸聚合制备聚合硅酸铝铁无机高分子絮凝剂的新工艺。主要特色与优势有:煤矸石制无机高分子絮凝剂技术,煤系腐植酸制备多功能液体肥料技术等。  三、学科近几年取得的主要成绩  太原理工大学矿物加工工程学科始建于1958年, 1987年恢复招生,2001年挂靠采矿工程学科招收硕士研究生,2003年获得硕士学位授予权,2005年获得博士学位授予权,2007年被山西省教育厅命名为山西省品牌专业,是目前山西省高等院校中唯一一个以煤炭、矿物高效分选与洁净利用为主要研究领域的专业教学科研机构。本学科以煤炭资源加工利用与洁净煤技术为特色,已形成了一批具有国内领先、国际先进水平的研究成果,成为我国矿物加工工程学科的人才培养与科学研究的重要基地,在国内外有较高的学术地位与影响。  本学科拥有一支以樊民强、王怀法教授为学科带头人的高水平学术梯队,现有教学科研人员22人。其中博士生导师2人,博士后4人,教授7人。  多年来围绕煤炭高效分选、型焦型煤理论与技术、煤系共伴生资源综合利用等洁净煤技术领域,承担了包括科技部863项目、国家技术创新基金、国家自然科学基金、山西省科技攻关项目、山西省自然科学基金等国家与省部级科研项目50多项,多项科学研究成果已应用在工业领域,拥有矿物分选、资源综合利用及型煤型焦等颇具特色的实验室,在山西省内独家拥有系统完整的矿产资源分选与综合利用实验系统。近5年来,在国内外学术刊物与学术会议发表论文156篇,其中SCI,EI,ISTP收录论文53篇;科研成果获国家、省部级奖6项,发明专利3项,科研成果转让6项,其中,跳汰机多参数模糊智能可视化测控系统,具有“国际领先水平”,获得国家科技进步二等奖;煤基高分子复合材料研究获得教育部技术发明一等奖。出版学术专著4部,教材3部。在跳汰分选理论与测控技术、型煤型焦成套技术、细粒煤高效分选与脱水、煤系共伴生资源综合利用等领域的研究处于国内领先、国际先进水平。

在19世纪,矿物加工本不是一门独立的学科,而是采矿大学科体系中的组成部分。1900年前后,冶金才从大矿业中分离出来,发展成为独立的学科。到20世纪30年代以后,选矿才开始逐步发展成为相对独立的一门工程学科。早期的矿物加工(选矿)是建立在选矿厂的工艺过程基础之上的。它本质上是选矿过程的反映,由三大板块构成:选矿方法(主要是浮选、重选及磁选)、辅助过程(例如粉碎和脱水干燥等)和选矿过程检测及控制。因此,具有很强的实用特征。20世纪后半叶,随着世界经济的迅猛发展及科学技术的飞速进步,加之高品位、易选矿产资源的逐步枯竭,资源及材料工程领域的各种学科均发生了明显的调整及变化。例如,冶金学科逐步向材料学科靠拢并转化。矿物加工也不例外,经历了一系列变化和调整,面临着重大的挑战。开采矿石的品位越来越低。以铜矿资源为例,美国的入选铜矿石的平均品位在20世纪30-40年代是!5,现在仅为6%,个别选矿厂处理的铜矿石,其品位低至35%。据估计,品位由5%下降到5%,选矿能耗将增大1倍,品位的进一步降低,选矿能耗的增长幅度将会更大。问题不仅在于此,随着入选矿石品位的降低,环境问题变得日益突出。因为炼出1吨金属铜,大约需要处理品位为5%的铜矿石200吨,而每生产1吨铜矿石,约产出3吨废石。随着入选矿石的贫化,尾矿及废渣的处理将成为制约选矿发展的一个重要因素。使用的各种化学药剂也对环境产生影响。可以说,目前的矿物加工是处在“经济—能耗—环境”三角的严酷扼制之中。难选矿的比例越来越大。随着富矿、易选矿资源的耗尽,一系列共生关系复杂、嵌布粒度细微的矿产资源的开发利用提到了议事日程。这一问题在我国表现得尤为突出,我国的大量弱磁性铁矿因为铁矿物及伴生矿物嵌布粒度太细(小于10至30�0�8m)而无法有效分选。岂止铁矿,诸如锰矿、磷矿、铝土矿等等均有相同的问题。分选技术固然是个尚未解决的问题,细磨、脱水等作业也远未达到成熟的地步。面对严酷现实的挑战,矿物加工学科已经发生并还在发生巨大的调整及变化。一些适合于处理贫矿、复杂矿的技术和直接提取有用成分的技术正在发展应用。矿物加工的对象已从天然矿产资源扩展到二次资源的回收及利用。各种固体废弃物,例如尾矿、炉渣、粉煤灰、金属废料、电器废料、塑料垃圾、生活垃圾乃至土壤都成了加工对象,经过加工又转化为有用的资源。由于现代科技的发展及人类社会的进步,需要开发超纯、超细及具有特殊功能的矿物原料及矿物材料。再如特殊功能的石墨、云母、石棉等非金属矿物材料,超细金属氧化物粉体等均需要特殊的、与传统方法迥异的加工方法,即所谓深加工工艺。事实上,20世纪后半叶,矿物加工工艺已逐步突破了传统的机械加工的框架。化学提取以及生物工程与机械加工的结合在金属矿及非金属矿的加工中早已屡见不鲜。非金属矿的深加工进一步扩展并丰富了这种结合,例如高岭土的超声剥片,石墨及各种层状矿物的有机及无机嵌层等。传统的机械加工工艺也发生了巨大的变化。超细粉碎及分级获得越来越多的应用;界面分选方法成为微细颗粒分选的主要手段;压滤及离心力场在超细颗粒的固液分离中发挥着重要的作用;而各种成型、包装工艺也变得越来越重要。矿物加工的任务也发生了变化。矿物加工已不仅是为各种工业提供合格的矿物原料,例如精矿粉或中间产品,而是扩展成了可以生产超纯、超细及具有特殊功能的矿物材料以及矿物制品的工业。矿物材料工程主要是以非金属矿石或矿物为原料(或基料),通过一定的深加工工艺制取具有确定物化性能的无机非金属材料及器件的技术。矿物材料有着巨大的应用前景,例如,沸石太阳能板,蒙脱石干燥剂,叶腊石高温绝缘体及导弹密封材料,钠云母密封材料,羟磷灰石骨骼材料,硅藻土牙模材料,火山岩防火材料等。进一步分析现代矿物加工工程所包括的单元作业,它们大体包括:粉碎、分级、超细颗粒制备、物理分选(重选、磁电选、光电选、放射选等)、浮选及其他界面分选、化学处理及生物提取、固液分离(沉降、过滤、干燥)、成型及造粒、气固分离—收尘、物料贮运,等等。将这些单元作业同冶金工程、化学工程、环境工程、无机材料工程及颗粒技术五大类学科进行比较,如下表(略)所示。分析表便可发现,表中列出的单元作业在六种不同工程领域中有很强的通用性,许多单元作业是相同的。由此可以看出这六种不同工程领域之间的有机联系及交叉关系。因此,可以说无论从矿物加工工程的历史发展角度或从上述各学科之间的共同点看,矿物加工与冶金、化工、无机材料、环境工程及颗粒技术这些工程学科领域都有着密不可分的共生关系。特别是颗粒的各种机械加工及处理单元作业,几乎成为沟通这些工程技术学科领域的共同组成要素。这些工程技术领域的主要不同之处仅在于处理的对象有别。无怪乎在欧洲往往把这些通用的物理加工单元作业统称为机械加工技术或过程加工技术。在化学工程中机械加工技术与分离技术并列几乎包括了除化学反应工程外的全部化工单元作业。在矿物加工工程中矿粒的机械加工技术与矿粒的分选技术并列则覆盖了几乎全部单元作业。因此,从现代学科体系看,可以认为矿物加工工程是由分选富集技术、机械加工技术、过程模拟控制等三大板块所构成的。回顾历史不难看到,矿物加工原本不过是矿业或冶金工程的一个分支,后来由于矿产资源开发及利用的规模迅速扩大才从矿业或冶金工程中分离出来,发展成为独立的学科。现在人们又观察到学科之间的回归及交融。随着矿产资源的贫化及其共生关系的微细粒化,化学处理变得日益重要,而化学处理本是提取冶金的主要工艺过程。现在,提取冶金与化学工程也正在相互交融。现代矿物加工中包括的矿物材料工程或技术,与无机材料工程也十分接近。矿物加工过程产生的废渣、尾矿、废水的治理本身就是环境工程的主要内容,更何况矿物加工技术(包括分选技术)已在环境治理工程中找到了用武之地。科学技术发展到今天,学科之间的界限趋于交叉融通,而市场经济的发展则要求科技界具有更大的适应性及应变能力。在这种形势下,只要不受研究对象的局限,矿物加工技术完全可以在上述多种工程技术领域得到有效的利用,反过来,吸收和利用其他工程技术领域的实际经验及研究成果又可以促进矿物加工的进一步发展。可以说,矿物加工技术的跨学科研究及应用是摆在我们面前的最大挑战和机遇

关于矿物加工的论文题目大全初中

在19世纪,矿物加工本不是一门独立的学科,而是采矿大学科体系中的组成部分。1900年前后,冶金才从大矿业中分离出来,发展成为独立的学科。到20世纪30年代以后,选矿才开始逐步发展成为相对独立的一门工程学科。早期的矿物加工(选矿)是建立在选矿厂的工艺过程基础之上的。它本质上是选矿过程的反映,由三大板块构成:选矿方法(主要是浮选、重选及磁选)、辅助过程(例如粉碎和脱水干燥等)和选矿过程检测及控制。因此,具有很强的实用特征。20世纪后半叶,随着世界经济的迅猛发展及科学技术的飞速进步,加之高品位、易选矿产资源的逐步枯竭,资源及材料工程领域的各种学科均发生了明显的调整及变化。例如,冶金学科逐步向材料学科靠拢并转化。矿物加工也不例外,经历了一系列变化和调整,面临着重大的挑战。开采矿石的品位越来越低。以铜矿资源为例,美国的入选铜矿石的平均品位在20世纪30-40年代是!5,现在仅为6%,个别选矿厂处理的铜矿石,其品位低至35%。据估计,品位由5%下降到5%,选矿能耗将增大1倍,品位的进一步降低,选矿能耗的增长幅度将会更大。问题不仅在于此,随着入选矿石品位的降低,环境问题变得日益突出。因为炼出1吨金属铜,大约需要处理品位为5%的铜矿石200吨,而每生产1吨铜矿石,约产出3吨废石。随着入选矿石的贫化,尾矿及废渣的处理将成为制约选矿发展的一个重要因素。使用的各种化学药剂也对环境产生影响。可以说,目前的矿物加工是处在“经济—能耗—环境”三角的严酷扼制之中。难选矿的比例越来越大。随着富矿、易选矿资源的耗尽,一系列共生关系复杂、嵌布粒度细微的矿产资源的开发利用提到了议事日程。这一问题在我国表现得尤为突出,我国的大量弱磁性铁矿因为铁矿物及伴生矿物嵌布粒度太细(小于10至30�0�8m)而无法有效分选。岂止铁矿,诸如锰矿、磷矿、铝土矿等等均有相同的问题。分选技术固然是个尚未解决的问题,细磨、脱水等作业也远未达到成熟的地步。面对严酷现实的挑战,矿物加工学科已经发生并还在发生巨大的调整及变化。一些适合于处理贫矿、复杂矿的技术和直接提取有用成分的技术正在发展应用。矿物加工的对象已从天然矿产资源扩展到二次资源的回收及利用。各种固体废弃物,例如尾矿、炉渣、粉煤灰、金属废料、电器废料、塑料垃圾、生活垃圾乃至土壤都成了加工对象,经过加工又转化为有用的资源。由于现代科技的发展及人类社会的进步,需要开发超纯、超细及具有特殊功能的矿物原料及矿物材料。再如特殊功能的石墨、云母、石棉等非金属矿物材料,超细金属氧化物粉体等均需要特殊的、与传统方法迥异的加工方法,即所谓深加工工艺。事实上,20世纪后半叶,矿物加工工艺已逐步突破了传统的机械加工的框架。化学提取以及生物工程与机械加工的结合在金属矿及非金属矿的加工中早已屡见不鲜。非金属矿的深加工进一步扩展并丰富了这种结合,例如高岭土的超声剥片,石墨及各种层状矿物的有机及无机嵌层等。传统的机械加工工艺也发生了巨大的变化。超细粉碎及分级获得越来越多的应用;界面分选方法成为微细颗粒分选的主要手段;压滤及离心力场在超细颗粒的固液分离中发挥着重要的作用;而各种成型、包装工艺也变得越来越重要。矿物加工的任务也发生了变化。矿物加工已不仅是为各种工业提供合格的矿物原料,例如精矿粉或中间产品,而是扩展成了可以生产超纯、超细及具有特殊功能的矿物材料以及矿物制品的工业。矿物材料工程主要是以非金属矿石或矿物为原料(或基料),通过一定的深加工工艺制取具有确定物化性能的无机非金属材料及器件的技术。矿物材料有着巨大的应用前景,例如,沸石太阳能板,蒙脱石干燥剂,叶腊石高温绝缘体及导弹密封材料,钠云母密封材料,羟磷灰石骨骼材料,硅藻土牙模材料,火山岩防火材料等。进一步分析现代矿物加工工程所包括的单元作业,它们大体包括:粉碎、分级、超细颗粒制备、物理分选(重选、磁电选、光电选、放射选等)、浮选及其他界面分选、化学处理及生物提取、固液分离(沉降、过滤、干燥)、成型及造粒、气固分离—收尘、物料贮运,等等。将这些单元作业同冶金工程、化学工程、环境工程、无机材料工程及颗粒技术五大类学科进行比较,如下表(略)所示。分析表便可发现,表中列出的单元作业在六种不同工程领域中有很强的通用性,许多单元作业是相同的。由此可以看出这六种不同工程领域之间的有机联系及交叉关系。因此,可以说无论从矿物加工工程的历史发展角度或从上述各学科之间的共同点看,矿物加工与冶金、化工、无机材料、环境工程及颗粒技术这些工程学科领域都有着密不可分的共生关系。特别是颗粒的各种机械加工及处理单元作业,几乎成为沟通这些工程技术学科领域的共同组成要素。这些工程技术领域的主要不同之处仅在于处理的对象有别。无怪乎在欧洲往往把这些通用的物理加工单元作业统称为机械加工技术或过程加工技术。在化学工程中机械加工技术与分离技术并列几乎包括了除化学反应工程外的全部化工单元作业。在矿物加工工程中矿粒的机械加工技术与矿粒的分选技术并列则覆盖了几乎全部单元作业。因此,从现代学科体系看,可以认为矿物加工工程是由分选富集技术、机械加工技术、过程模拟控制等三大板块所构成的。回顾历史不难看到,矿物加工原本不过是矿业或冶金工程的一个分支,后来由于矿产资源开发及利用的规模迅速扩大才从矿业或冶金工程中分离出来,发展成为独立的学科。现在人们又观察到学科之间的回归及交融。随着矿产资源的贫化及其共生关系的微细粒化,化学处理变得日益重要,而化学处理本是提取冶金的主要工艺过程。现在,提取冶金与化学工程也正在相互交融。现代矿物加工中包括的矿物材料工程或技术,与无机材料工程也十分接近。矿物加工过程产生的废渣、尾矿、废水的治理本身就是环境工程的主要内容,更何况矿物加工技术(包括分选技术)已在环境治理工程中找到了用武之地。科学技术发展到今天,学科之间的界限趋于交叉融通,而市场经济的发展则要求科技界具有更大的适应性及应变能力。在这种形势下,只要不受研究对象的局限,矿物加工技术完全可以在上述多种工程技术领域得到有效的利用,反过来,吸收和利用其他工程技术领域的实际经验及研究成果又可以促进矿物加工的进一步发展。可以说,矿物加工技术的跨学科研究及应用是摆在我们面前的最大挑战和机遇

"黄金有价玉有价"——翡翠质量等级鉴定与市场价格指数研究。

海洋空间利用 世界人口迅速增长,使陆地空间显得越来越拥挤,海洋空间的开发利用问题越来越令人关注。海洋可利用空间包括海上、海中、海底三个部分,随着人类逐步向海洋挺进,海洋将成为人类活动的广阔空间(图3.19未来海洋空间利用示意)。 海洋环境不同于陆地,它的环境和生态条件有其复杂性和特殊性。人类活动在近海和海洋表面,要抗御多变的海洋气象状况和海水的运动;深海活动要能适应黑暗、高压、低温、缺氧的环境;海水的腐蚀性强,海冰的破坏性大,对工程设备材料和结构有严格的要求。因此,海洋空间资源开发对科学技术和资金投入的依赖性大、技术难度高、风险大。 海洋空间利用已从传统的交通运输,扩大到生产、通信、电力输送、储藏、文化娱乐等诸多领域。交通运输方面包括海港码头、海上船舶、航海运河、海底隧道、海上桥梁、海上机场、海底管道等。生产空间有海上电站、工业人工岛、海上石油城、围海造地、海洋牧场等。通信和电力输送空间主要是海底电缆。储藏空间方面,有海底货场、海底仓库、海上油库、海洋废物处理场等。文化娱乐设施空间包括海洋公园、海滨浴场和海上运动区等。 海洋运输和港口建设 海洋曾经是人类从事交通运输的天然屏障。长期以来,人类一直在努力将海洋屏障变为海上坦途。最初,人们利用人力、风力或洋流作为动力,驾驶木船在近海活动。随着欧洲人到达美洲大陆,世界海洋航运由近海转向远洋。之后,世界大洋重要的航道陆续开辟。20世纪初,开辟了通往南极和北极的航道,巴拿马运河和苏伊士运河相继开通。现在,人类已经能够将船舶驶人世界任何海域(图3.20世界主要海运路线)。 20世纪60年代,世界石油生产和运输增长,大型油轮得到发展。集装箱船的兴起,带来了海洋货物运输的革命。今天,穿梭在辽阔海洋上的是百万吨级的大型集装箱货轮和巨型油轮。这些船舶不仅拥有无线电导航和全球定位技术等现代化仪器设备,还可以选择最佳航线服务,以节省能源和航时,减少危险。 沿海港口是海洋运输船舶停泊、中转和装卸货物的场所,也是人们开发利用海洋空间的主要场所。港口一般有一个服务区域,即腹地,该区域的商品和货物通过这个港口向外扩散。为了完成运输任务,港口要有配套的设施,如码头、装卸设备等,还要有高效率的运作服务。在港口发展过程中,受内外因素的影响,港口的规模、服务功能和范围可能有所变化。例如,某些国家的政府为吸引船舶来本国港口中转,对港口实行特殊政策,将港口辟为自由贸易区、自由港等,不需或很少缴纳费用。 荷兰的鹿特丹很早就是世界贸易的中心。之后,鹿特丹港又通过开凿连通北海的运河,改善水运条件而持续发展。鹿特丹利用中转散装货物的机能,发展了农、矿产品加工业和造船工业(图3.21鹿特丹港口的土地利用)。中继贸易也带动了腹地近代工业的迅速发展。第二次世界大战以后,西欧各国经济复兴,鹿特丹成为欧洲联盟的大门,港湾和航空设施得到完善,港口的中转机能更加突出。现在,鹿特丹是世界最大的港口之一,腹地覆盖了欧盟的半数国家。 围海造陆 沿海地区人地矛盾激化,使人们将眼光投向大海。荷兰人从13世纪就开始围海造陆,目前,荷兰有 1/5的国土是从海中围起来的。围海造陆是缓解人多地少矛盾的重要途径,但是它需要经过充分的科学论证,特别是做好以水利工程为中心的配套建设。 在近岸浅海水域用砂石、泥土和废料建造陆地,通过海堤、栈桥或者海底隧道与海岸连接,这种新建陆地称为人工岛。世界上一些沿海发达国家如日本、美国、法国、荷兰等都已建造了人工岛。其中以海上城市(图3.22日本神户人工岛)的规模最大、功能最齐全。兴建海上城市,工程和费用巨大,需要以强大的国力作基础。 澳门人多地少,有限的土地不足以满足发展居住、绿化、交通、工业、商业等的建设需要。澳门沿岸有许多淤积成的浅滩,有的在落潮时能露出水面,澳门人将它们视为良好的后备土地资源。 100多年来,澳门人利用填海造陆的办法使土地面积扩大了1倍(表3.2澳门历年土地面积的变化和图3.23澳门历年填海范围)。 海洋环境保护 海洋环境问题包括两个方面:一是海洋污染,即污染物进入海洋,超过海洋的自净能力;二是海洋生态破坏,即在各种人为因素和自然因素的影响下,海洋生态环境遭到破坏。 (一)海洋污染 海洋污染物绝大部分于陆地上的生产过程。海岸活动,例如倾倒废物和港口工程建设等,也向沿岸海域排入污染物。污染物进入海洋,污染海洋环境,危害海洋生物,甚至危及人类的健康。 工业生产过程中排出的废弃物是海洋污染物的主要来源,它们集中在大型港口和工业城市附近。1953-1970年,日本九州岛水俣湾发生的汞污染事件,就是因为工厂在生产有机产品过程中,排出含汞废物。这些有害物质流入海洋后,逐渐在鱼和贝类体内富集。最后导致100多人严重中毒,并先后死亡。 核电站和工厂排出的冷却水,水温较高,流入河口或海中时,往往给海洋生物带来影响。施入农田的杀虫剂随雨水流进河流,或者随土壤颗粒在河口附近淤积,最终进入海洋。偶发性的海上石油平台和油轮事故,引起石油渗漏和溢出,造成海洋污染。 (二)海洋生态破坏 除海洋污染外,人类的生产活动,例如工程建设和渔业生(围垦和滥捕等),以及自然环境的变化,例如全球变暖和海平面上升,都会使海洋生态环境遭到破坏和改变。人类对某些海洋生物的过度捕捞,导致海洋生物资源数量减少,质量降低,也使部分物种濒临灭绝。有些海岸工程建设和围海造田缺乏科学论证,破坏了海岸环境和海岸带生态系统。目前,海洋开发活动还缺乏综合的、长远的规划、综合效益比较差。 石油污染和监测防治 沿海工业生产和海运航线上的船舶,是石油污染的主要来源。因此,石油污染区域集中于沿海水域和海上航道沿线。由意外事故造成的石油泄漏,因为污染迹象明显,污染物集中,危害严重,因而倍受公众的关注,也是目前治理污染的重点。 为减少意外事故的发生,很多国家在试验新的原油装载方法。有些国家配备了除污船,用来清除港口水面垃圾和污油。 海洋权益和《联合国海洋法公约》 20世纪60年代以来,出现了世界性的开发海洋热潮。海洋科学和技术迅猛发展,成为当代新技术革命的重要领域之一。为适应国际海洋开发、保护和管理的新形势,国际社会经过20多年的努力,通过了《联合国海洋法公约》,并于1994年11月16日正式生效。海洋法公约的诞生,使国际海洋法律制度发生了重大变革。例如,长期争执不休的领海宽度问题得到了解决;国际海底及其资源确立为人类的共同继承财产。 根据《联合国海洋法公约》,全球144个沿海国家除拥有12海里领海权外,其管辖海域面积可外延到200海里,作为该国的专属经济区,享有勘探、开发、利用、保护、管理海床上覆水域及底土自然资源的主权。我国管辖海域面积为473万平方千米,约相当于我国陆地面积的二分之一,因此,加强海洋综合管理显得日益重要。 《联合国海洋法公约》的诞生,为建立国际法律新秩序迈出了重要一步。但是,因为《联合国海洋法公约》要兼顾各个国家的利益和要求,还有许多不完善和不明确之处。因此,在实施过程中,必然会产生一些新的矛盾和问题。例如,在封闭和半封闭的海域,周边国家主张的200海里专属经济区就有可能存在着重叠,还有一些岛屿主权争议和渔业资源分配等问题,这些都有可能成为相邻国家关系紧张,甚至引发国际冲突的新的因素。因此,相邻国家间管辖海域划界和海洋权益,要求有关国家本着友好协商的精神,予以公平合理的解决。 海水化学资源概况 海洋化学资源是指海水中所蕴含的可供人类利用的各种化学元素。海水的成分非常复杂,全球海洋的含盐量就达5亿亿吨,还含有大量非常稀有的元素,如金达500万吨,铀达42亿吨,所以海洋是地球上最大的矿产资源库。海洋资源的持续利用是人类生存发展的重要前提,目前,全世界每年从海洋中提取淡水20多亿吨、食盐5000万吨、镁及氧化镁260多万吨、溴20万吨,总产值达6亿多美元。水是生命之源,世界上缺水的地区愈来愈多,海水淡化已成为获得淡水资源重要的途径,所有这些都是海洋化学要研究的。 海洋生物资源 1、海洋生物资源量估计。海洋是生物资源宝库。据生物学家统计,海洋中约有20万种生物,其中已知鱼类约9万种,甲壳类约2万种。许多海洋生物具有开发利用价值,为人类提供了丰富食物和其他资源。世界海洋浮游植物产量5000亿吨,折合成鱼类年生产量约6亿吨。假如以50%的资源量为可捕量,则世界海洋中鱼类可捕量约3亿吨。 2、海洋生物资源开发状况。开发海洋生物资源的主要产业是海洋渔业,另外还有少量海洋药用生物资源开发。1989年世界海洋渔业产量约8575万吨。1990年世界渔业总产量估计(正式统计数字尚未见报道)为1亿吨,其中海洋渔业产量也比1989年有所增长。其中,世界各大洋的渔业产量分别为:太平洋54亿吨,大西洋24亿吨,印度洋6亿吨。 各国海洋渔业的发展水平差别很大。长期以来,日本和原苏联是渔业产量超过1000万吨的渔业大国。中国的渔业发展比较快,1990年渔业产量达到1200多万吨,成为第一渔业大国。美国、加拿大和欧洲的一些国家,以及南朝鲜和东南亚的某些国家,渔业也比较发达。 3、海洋生物资源开发潜力。世界大洋生物资源的开发潜力是很大的。如前述各国专家所估计的,世界海洋渔业资源的总可捕量在2-3亿吨之间,目前的实际捕捞量不足1亿吨。另外,药用和其他生物资源也有很大开发潜力。近年来,日本等国正在探索大洋深水区的生物资源开发问题,首先是进行资源调查,同时开发新的捕捞技术。据报道,过去被认为是海洋中的荒漠的大洋深水区,蕴藏着大量的中层鱼类资源,其中仅灯笼鱼的生物量就有9亿吨,每年可捕量可达5亿吨。南大洋磷虾资源年可捕量可达5?亿吨。另外,水深200?000m的区域也有许多其他经济鱼类,如长尾鳕科鱼类,深海鳕科鱼类,平头鱼科鱼类,以及金眼鲷、鲽鱼等,可捕量约3000万吨。 海洋矿藏资源概述 用“聚宝盆”来形容海洋资源是再确切不过的。单就她的矿产资源来说,其种类之繁多,含量之丰富,令人咋舌。在地球上已发现的百余种元素中,有80余种在海洋中存在,其中可提取的有60余种,这些丰富的矿产资源以不同的形式存在于海洋中:海水中的“液体矿床”;海底富集的固体矿床;从海底内部滚滚而来的油气资源。 海水中最普通的是盐,即氯化钠,是人类最早从海水中提出的矿物质之一。另外还有一种镁盐,它们是造成海水又咸又苦的主要原因。除了这两种外,还有钾盐、碘、溴等几十种稀有元素及硼、铷、钡等,它们一般在陆地上比较少,而且分布较分散,但又极具价值,对人类用处很大。 据估计海水中含有的黄金可达550万吨,银5500万吨,钡27亿吨,铀40亿吨,锌70亿吨,钼137亿吨,锂2470亿吨,钙560万亿吨,镁1767万亿吨等等。这些东西,大都是国防工农业生产及生活的必需品。例如镁是制造飞机快艇的材料,又可以做火箭的燃料及照明弹等,是金属中的“后起之秀”,而世界上目前有一半以上的镁来自海水。 海水是宝,海洋矿砂也是宝。海洋矿砂主要有滨海矿砂和浅海矿砂。它们都是在水深不超过几十米的海滩和浅海中的由矿物富集而具有工业价值的矿砂,是开采最方便的矿藏。从这些砂子中,可以淘出黄金,而且还能淘出比金子更有价值的金刚石、石英、钻石、独居石、钛铁矿、磷钇矿、金红石、磁铁矿等,所以海洋矿砂成为增加矿产储量的最大的潜在资源之一,愈来愈受到人们的利用。 这种矿砂主要分布在浅海部分,而在那深海底处,更有着许多令人惊喜的发现:多金属结核锰结核就是其中最有经济价值的一种。它是1872-1876年英国一艘名为“挑战号”考察船在北大西洋的深海底处首次发现的。这些黑乎乎的,或者呈褐色的锰结核鹅卵团块,有的象土豆,有的象皮球,直径一般不超过20厘米,呈高度富集状态分布于300-6000米水深的大洋底表层沉积物上。 据估计整个大洋底锰结核的蕴藏量约3万亿吨,如果开采得当,它将是世界上一项取之不尽,用之不竭的宝贵资源。目前,锰结核矿成为世界许多国家的开发热点。在海洋这一表层矿产中,还有许多沉积物软泥,也是一种非同小可的矿产,含有丰富的金属元素和浮游生物残骸。例如覆盖一亿多平方公里的海底红粘土中,富含轴、铁、锰、锌、锢、银、金等,具有较大的经济价值。 近年来,科学家们在大洋底发现了33处“热液矿床”,是由海底热液成矿作用形成的块状硫化物多金属软泥及沉积物。这种热涂矿床主要形成于洋中脊,海底裂谷带中,热液通过热泉,间歇泉或喷气孔从海底排出,遇水变冷,加上周围环境中及酸碱度变化,使矿液中金属硫化物和铁锰氧化物沉淀,形成块状物质,堆积成矿丘。有的呈烟筒状,有的呈土堆状,有的呈地毯状从数吨到数千吨不等,是又一项极有开发前途的大洋矿产资源。 石油和天然气是遍及世界各大洲大陆架的矿产资源。石油可以说是海洋矿产资源中的“宠儿”,又被称为“黑色的金子”。据报告,1990年,全世界海上石油已探明储量达970×1010吨,海上天然气已探明储量达909×1013M3。油气加在一起的价值占了海洋中已知矿产物总产值的70%以上。 石油是“工业的血液”,然而目前全世界已开采石油640亿吨,石油的枯竭在所难免,从海湾战争可以看出石油的价值所在。所以人们转而求助的就是海洋石油资源。天然气是一种无色无味的气体,又称为沼气,成分主要是甲烷。由于含碳量极高,所以极易燃烧,放出大量热量。1000立方米天然气的热量,可相当于两吨半煤燃烧放出的势量。因此,天然气的价值在海洋中仅次于石油而位居第二。 海洋能源概述 浩瀚的大海,不仅蕴藏着丰富的矿产资源,更有真正意义上取之不尽,用之不竭的海洋能源。它既不同于海底所储存的煤、石油、天然气等海底能源资源,也不同于溶于水中的铀、镁、锂、重水等化学能源资源。它有自己独特的方式与形态,就是用潮汐、波浪、海流、温度差、盐度差等方式表达的动能、势能、热能、物理化学能等能源。直接地说就是潮汐能、波浪能、海水温差能、海流能及盐度差能等。这是一种“再生性能源”,永远不会枯竭,也不会造成任何污染。 潮汐能就是潮汐运动时产生的能量,是人类利用最早的海洋动力资源。中国在唐朝沿海地区就出现了利用潮汐来推磨的小作坊。后来,到了11-12世纪,法、英等国也出现了潮汐磨坊。到了二十世纪,潮汐能的魅力达到了高峰,人们开始懂得利用海水上涨下落的潮差能来发电。据估计,全世界的海洋潮汐能约有二十亿多千瓦,每年可发电12400万亿度。 今天,世界上第一个也是最大的潮汐发电厂就处于法国的英吉利海峡的朗斯河河口,年供电量达44亿度。一些专家断言,未来无污染的廉价能源是永恒的潮汐。而另一些专家则着眼于普遍存在的,浮泛在全球潮汐之上的波浪。 波浪能主要是由风的作用引起的海水沿水平方向周期性运动而产生的能量。 波浪能是巨大的,一个巨浪就可以把13吨重的岩石抛出20米高,一个波高5米,波长100米的海浪,在一米长的波峰片上就具有3120千瓦的能量,由此可以想象整个海洋的波浪所具有的能量该是多么惊人。据计算,全球海洋的波浪能达700亿千瓦,可供开发利用的为20-30亿千瓦。每年发电量可达9-万亿度。 除了潮汐与波浪能,海流可以作出贡献,由于海流遍布大洋,纵横交错,川流不息,所以它们蕴藏的能量也是可观的。例如世界上最大的暖流——墨西哥洋流,在流经北欧时为1厘米长海岸线上提供的热量大约相当于燃烧600吨煤的热量。据估算世界上可利用的海流能约为5亿千瓦。而且利用海流发电并不复杂。因此要海流做出贡献还是有利可图的事业,当然也是冒险的事业。 把温度的差异作为海洋能源的想法倒是很奇妙。这就是海洋温差能,又叫海洋热能。由于海水是一种热容量很大的物质,海洋的体积又如此之大,所以海水容纳的热量是巨大的。这些热能主要来自太阳辐射,另外还有地球内部向海水放出的热量;海水中放射性物质的放热;海流摩擦产生的热,以及其他天体的辐射能,但99%来自太阳辐射。因此,海水热能随着海域位置的不同而差别较大。海洋热能是电能的来源之一,可转换为电能的为20亿千瓦。但1881年法国科学家德尔松石首次大胆提出海水发电的设想竟被埋没了近半个世纪,直到1926年,他的学生克劳德才实现了老师的夙愿。 此外,在江河入海口,淡水与海水之间还存在着鲜为人知的盐度差能。全世界可利用的盐度差能约26亿千瓦,其能量甚至比温差能还要大。盐差能发电原理实际上是利用浓溶液扩散到稀溶液中释放出的能量。 由此可见,海洋中蕴藏着巨大的能量,只要海水不枯竭,其能量就生生不息。作为新能源,海洋能源已吸引了越来越多的人们的兴趣。

很多。煤的清理、大小筛分、粉碎。矿石分类,粉碎,金属冶炼。石油加工冶炼。晒盐、淘金、

关于矿物加工的论文题目大全高中生

不作主观评价。太原理工大学矿物加工工程学科简介  一、学科带头人简介  樊民强,男,1964年11月生,教授,博士生导师。兼任山西省委联系的高级专家,中国煤炭学会选煤专业委员会委员,山西省煤炭深加工专业委员会副主任委员,《选煤技术》编委等。主持完成国家“863”高技术项目、国家基金及省部级、企业科研项目30多项,发表论文40多篇,其中EI和ISTP收录6篇。出版专著、教材4部。开发的选煤技术管理软件和高效旋流分选系统获得广泛工业应用。  王怀法,男,1963年4月生,教授,博士生导师。兼任山西省矿业联合会专家委员会专家,中国煤炭技术委员会资源加工利用与环境保护分会委员,中国颗粒学会颗粒制备与处理专业委员会委员,山西省煤炭深加工专业委员会常务委员等。主持完成国家基金及省部级、企业科研项目20多项,发表论文30多篇,其中SCI、EI收录8篇,获国家专利2项,出版专著1部。开发的两段充气微泡浮选柱和基于絮凝能耗梯级适配的多功能煤泥水净化系统获得工业应用。  二、学科研究方向  矿物分选的理论、工艺与设备:本研究方向完善和发展了重力选煤过程的统计理论体系,为揭示跳汰过程本质和优化控制奠定了科学基础。离心力场中细颗粒的分级分选理论研究与工业实践,粗粒浮选理论与关键设备的研究与开发是本学科着力发展的新突破点。并有望在粗粒煤和细粒煤浮选的理论、技术和装备方面取得国内领先的研究成果。  矿物分选过程模拟与优化控制:该研究方向提出了基于跳汰过程多参数可视化检测与优化控制的智能模糊控制理论与技术,开发了具有“国际领先水平”的跳汰机多参数模糊智能可视化测控系统,此外研究范围包括了选煤过程大型设备的状态监测与早期故障诊断、选煤过程模拟与优化、选煤过程计算机应用等,有望在浮选过程多尺度预测、高效旋流分选的数值仿真和智能软测量技术方面取得国内领先的研究成果。  矿物材料与粉体技术:该研究方向提出了煤粉碎-煤基高分子复合材料制备-粉煤成型的煤岩学理论方法体系,构成了煤洁净利用的重要基础理论;电子束辐照矿物/煤改性机理研究填补了国内在该领域的空白;煤矸石改性填料基础理论研究,为煤矸石高附加值利用提供了新的途径,形成了煤矿循环经济发展新的技术支撑体系。  矿山废弃物资源化与精细利用:该研究方向系统研究了煤系腐植酸性能,制备工艺与应用基础;在对高铝铁类煤矸石与冶金废料物质组成、性能系统研究的基础上,提出了碱熔融酸浸聚合制备聚合硅酸铝铁无机高分子絮凝剂的新工艺。主要特色与优势有:煤矸石制无机高分子絮凝剂技术,煤系腐植酸制备多功能液体肥料技术等。  三、学科近几年取得的主要成绩  太原理工大学矿物加工工程学科始建于1958年, 1987年恢复招生,2001年挂靠采矿工程学科招收硕士研究生,2003年获得硕士学位授予权,2005年获得博士学位授予权,2007年被山西省教育厅命名为山西省品牌专业,是目前山西省高等院校中唯一一个以煤炭、矿物高效分选与洁净利用为主要研究领域的专业教学科研机构。本学科以煤炭资源加工利用与洁净煤技术为特色,已形成了一批具有国内领先、国际先进水平的研究成果,成为我国矿物加工工程学科的人才培养与科学研究的重要基地,在国内外有较高的学术地位与影响。  本学科拥有一支以樊民强、王怀法教授为学科带头人的高水平学术梯队,现有教学科研人员22人。其中博士生导师2人,博士后4人,教授7人。  多年来围绕煤炭高效分选、型焦型煤理论与技术、煤系共伴生资源综合利用等洁净煤技术领域,承担了包括科技部863项目、国家技术创新基金、国家自然科学基金、山西省科技攻关项目、山西省自然科学基金等国家与省部级科研项目50多项,多项科学研究成果已应用在工业领域,拥有矿物分选、资源综合利用及型煤型焦等颇具特色的实验室,在山西省内独家拥有系统完整的矿产资源分选与综合利用实验系统。近5年来,在国内外学术刊物与学术会议发表论文156篇,其中SCI,EI,ISTP收录论文53篇;科研成果获国家、省部级奖6项,发明专利3项,科研成果转让6项,其中,跳汰机多参数模糊智能可视化测控系统,具有“国际领先水平”,获得国家科技进步二等奖;煤基高分子复合材料研究获得教育部技术发明一等奖。出版学术专著4部,教材3部。在跳汰分选理论与测控技术、型煤型焦成套技术、细粒煤高效分选与脱水、煤系共伴生资源综合利用等领域的研究处于国内领先、国际先进水平。

第一眼就是研究了很多的,这个发明让人非常羡慕,第二点就是这个矿物加工的专家,那么对这个其中的一些东西有很好的一些见解,第三点创造了很多的,这成绩很厉害。

"黄金有价玉有价"——翡翠质量等级鉴定与市场价格指数研究。

陈清如是我国著名的矿物加工专家、教育家,矿物加工学科的奠基者和开拓者之一,长期致力于选矿理论与技术研究,他主持建立了我国第一座重介质旋流器末煤选煤厂;指导研究设计了我国第一台筛下空气室跳汰机;研制出世界第一台煤用概率分级筛;创建了“空气重介质稳定流态化”的选矿理论和技术,并建立了世界第一座空气重介质流化床干法选煤示范厂,为我国矿物加工领域的科研、教育事业做出了卓越的贡献。曾获得国家科技进步二等奖2项、国家技术发明三等奖1项等省部级以上奖励13项。获全国“五一”劳动奖章、全国优秀教育工作者称号和国际选煤大会首次设立的“终身成就奖”。

矿物加工论文题目大全初中生

南瓜子的营养价值很高,再加上口感清香,俘获了很多人的芳心,即使这样,也千万别忽视了南瓜子的禁忌。南瓜子一日建议摄取量:1天10粒南瓜子有哪些副作用?虽然南瓜子有很多营养价值,但是,经常吃也是不好的。它的副作用就是会使人发胖的。所以还是适量好了。在这个吃南瓜的季节,很多吃货都很喜欢吃南瓜子,但是南瓜子也是有副作用的。好吃的东西也不要多吃,食物都有相生相克的原理,要多注意。南瓜子不要生食,生食不但口味不好,而且食用后的保健作用也不大。已经被氧化腐败的南瓜子千万不要食用,因为食后会容易引起恶心、呕吐、腹痛的症状。吃南瓜子一定记得不要与羊肉同食,否则很有可能就会引起腹胀、胸闷等症。胃热病人宜少食南瓜子,否则就会感到脘腹胀闷。食用南瓜子应该适量,一次不要吃得太多,之前就曾有因食用南瓜子过量而导致头昏的报道。南瓜子功效南瓜子除了消水肿、改善女性漏尿、抑制前列腺肥大,南瓜子有预防女性骨质疏松等6大好处!只要1天吃10粒南瓜子,就能帮助你保持健康活力。抑制前列腺肥大前列腺肥大会压迫尿道,使尿液难以排出,并增加排尿的次数。南瓜子中含有植物固醇及木酚素,能缓和前列腺肥大的症状。南瓜子含有高浓度的锌,对男性的前列腺组织与精子有正面的保护作用。预防女性骨质疏松症女性荷尔蒙中的雌激素能预防骨质流失,因此女性更年期后荷尔蒙减少、骨质易流失,易发骨质疏松症。南瓜子含木酚素,能调节女性荷尔蒙,预防骨质疏松。增强体力南瓜子中含有磷、钙、钾、 铁、硒、锌等多种矿物质。矿物质为五大营养素之一,能维持并增强身体机能、抑制疲劳、保持体温、增强免疫力,并参与身体许多活动。促进新陈代谢南瓜子含有丰富的优质蛋白质,能增加血管弹力,改善血液循环。血液循环好,才能将养分及氧气运送至全身各处的细胞中,促进新陈代谢。降低胆固醇南瓜子所含的亚油酸,能控制血液中的胆固醇,因此摄取南瓜子可以降低胆固醇。但摄取过多亚油酸也会造成胆固醇上升,要避免食用过量。预防老化和疾病过量自由基会伤害细胞,诱发异位性皮肤炎、斑点及皱纹,加快老化,还会增加坏胆固醇、伤害血管壁,招致动脉硬化等生活习惯病。南瓜子富含β-胡萝卜素、硒等有抗氧化营养素,能击退造成老化和疾病的自由基。

南瓜子能经常吃吗?南瓜子,顾名思义,是我们平时所吃的南瓜中的种子,先是拿成熟的南瓜,之后把里面的子拿出来,经过一段时间的晾晒,再经过一些加工,就是现在我们所吃的南瓜子了。而日常生活中,有的人说不仅吃南瓜可以起到很好的降血糖作用,且其中的南瓜子也具有降糖的功效,真的是这样吗?我们先来看下南瓜,糖尿病在吃一种食物之前,都要注意以下食物本身的升糖指数,如果升糖指数比较高最好就不要食用了,如果是属于中高水平的话,就要做到限量食用,而南瓜就属于升糖指数比较高的食物了。如果经常食用,即使是南瓜的营养价值比较高,其中含有多种对身体健康有益的成分,对于降血糖都是起不到作用的,反而会因为吃了大量的南瓜,而使自身的血糖波动,甚至是有一定的加重病情的危险。但是这也并不代表糖尿病人群完全就不能吃南瓜了,而是要控制南瓜的量,如果今天你吃南瓜的量已经比较多了,那么还有一个好的办法,就是相应的去减少其它主食的量,或者是在平时用南瓜来代替自己每日的主食,也不失为是一个好的选择。同时,糖尿病的人群还需要注意的一点是,尽量选择口感不是那么软乎的南瓜,即使是烹饪过的南瓜,在时间上也不要太长,因为越软化的就越容易消化,那么餐后的血糖就越不容易控制。我们再来看下南瓜子,虽然我们感官上看南瓜子中的油脂含量是非常少的,相对于葵瓜子来说,更会健康一些,如果你是这种看法,就小看南瓜子了,因为每百克的南瓜子能够含有差不多一半左右的脂肪,如果糖尿病患者过多食用,同样会不利于病情。至于降糖更是一件不能完成的事,目前,对于治疗糖尿病以及稳定血糖最好的手段是胰岛素,而不管是南瓜还是南瓜子都不属于胰岛素,所以,对于降糖这件事它们也不会起到很好的作用。除此以外,在日常生活中,大家也不要相信某一种食物就可以起到降血糖的效果,更不要因为这样而去停药,这样对于身体健康来说都是不利的,因为再好的食疗也都是起的辅助作用,并不会达到治疗的效果,南瓜子也是一样。所以,大家平时还是该吃药吃药,当然,饮食上也要注意,这样多方面的去管理身体健康才是最好的。

关于矿物加工的论文题目大全初中化学

静电的原理人可以在灯光的照耀下,在舞台上翩翩起舞那小纸屑又能不能在乐曲的伴奏下,在塑料板上跳起舞来呢 让我们来做一个小实验首先,我们准备一些小纸屑和一根塑料棒,把小纸屑放在桌子上,再把塑料棒在身上来回摩擦多次,然后马上用摩擦过的塑料棒去吸小纸屑这时候,奇迹出现了,小纸屑穿着美丽的衣裳,开始翩翩起舞了这是为什么呢 其实这就是静电产生了作用,静电是怎么来的,原来物质都是由分子组成,分子是由原子组成,原子中有带负电的电子和带正电荷的质子组成在正常状况下,一个原子的质子数与电子数量相同,正负平衡,所以对外表现出不带电的现象但是电子环绕于原子核周围,一经外力即脱离轨道,离开原来的A原子而侵入其他的原子B,A原子因缺少电子数而带有正电现象,称为阳离子,B原子因增加电子数而呈带负电现象,称为阴离子造成不平衡电子分布的原因即是电子受外力而脱离轨道,这个外力包含各种能量(如动能热能,化学能等),任何两个不同材质的物体接触后再分离,即可产生静电,这就是所谓摩擦起电了 日常生活中,干燥和多风的秋天我们常常会碰到这种现象:晚上脱衣服睡觉时,黑暗中常听到噼啪的声响,而且伴有蓝光;见面握手时,手指刚一接触到对方,会突然感到指尖针刺般刺痛,令人大惊失色;早上起来梳头时,头发会经常"飘"起来,越理越乱;拉门把手,开水龙头时都会"触电",时常发出"啪,啪" 的声响,这就是发生在人体的静电,有些还对人体造成危害 了解了静电的原理,我们就可以想方设法避免它对人们的伤害,还可以利用这个原理制造机器设备来服务人们

这个话题蛮好写,不想从网上摘来骗分,但是实在没时间。推荐你几个要点或者方向,如果合适,请采纳,谢谢。敏感话题,一个是农药,作用毋庸置疑,但是危害很大,要点在于滥用,乱用,不对症。药物,药物本身的副作用肯定是有的,甚至可以讨论中西医。食品添加剂,应当合理使用甚至不使用。这些话题都是生活中的,又符合你的内容,在网上搜索,不算抄袭,结合自身体会写出来,500不是难事,加油。

相关百科