杂志信息网-创作、查重、发刊有保障。

军事通信论文题目推荐大全高中英语

发布时间:2024-07-18 08:36:13

军事通信论文题目推荐大全高中英语

学术堂整理了十五个通信工程毕业论文题目供大家进行参考:  1、高移动无线通信抗多普勒效应技术研究进展  2、携能通信协作认知网络稳态吞吐量分析和优化  3、协作通信中基于链路不平衡的中继激励  4、时间反转水声通信系统的优化设计与仿真  5、散射通信系统电磁辐射影响分析  6、无人机激光通信载荷发展现状与关键技术  7、数字通信前馈算法中的最大似然同步算法仿真  8、沙尘暴对对流层散射通信的影响分析  9、测控通信系统中低延迟视频编码传输方法研究  10、传输技术在通信工程中的应用与前瞻  11、城市通信灯杆基站建设分析  12、电子通信技术中电磁场和电磁波的运用  13、关于军事通信抗干扰技术进展与展望  14、城轨无线通信系统改造方案研究  15、无线通信系统在天津东方海陆集装箱码头中的运用

《论兔子吃掉狐狸的可能性》

题目不要太大,也不要太小,太大了面太广容易泛泛,小了就无材料可查,没东西可写。写你熟悉的 资料好查的 参考

军校学员现在都在网上找答案了,哎,为国家担忧啊!靠自己学真本事,再下到部队之后,手下的兵才会看的起你,要是准备混 ,你就准备连新兵都鄙视你吧!

军事通信论文题目推荐大全高中

3000字你都敢要?厉害!!给你个提纲吧 科学技术的发展特别是军事高技术的发展正在军事领域引发一场深刻的变革。从20世纪80年代以来发生的屡次局部战争,特别是20世纪末发生的科索沃战争中,人们可以看出:现代战争已在很大程度上表现为高技术的较量,谁拥有军事高技术,谁就能够在战争中占据更大的主动权;现代战争已进入高技术时代。一、 军事高技术的内涵与特点 随便写几点二、 当代军事高技术的发展与应用 (一)军用微电子技术 (二) 军用航天技术 (三) 军用新材料技术 (四) 遥感技术 (五) 定向能技术三、 正确认识和对待高技术武器与高技术战争 (一) 以发展的眼光看待战争 (二) 以务实的态度研究战法 (三) 以全面的观点加强战备具体的自己写吧

军事高技术对现代作战的影响高技术战争的以上特征,对军事上的影响,可以说是革命性的。它要求国家战略、国防经济、国防科技和军品生产、军事思想、战争样式和作战方式、军队建设和管理、战争准备、战略战术、后方保障等各个方面,都要进行深刻的改革。高技术战争的出现,迫使从事战争的人们重新看待一些传统的观念、理论和原则,重新衡量以前的战略、政策和一些具体做法。 (一)对国家安全战略的影响 在高技术战争条件下,从保卫国家的安全角度来说,仅仅考虑核威胁、核保护战略已远远不够了。航天战略(或宇宙战略)将成为国家战略的重要内容。一个国家的高技术水平是这个国家威慑力量中不可分割的一部分。国家的安全除了有赖于必要的常规武器、核武器外,更加有赖于高技术武器。 (二)对国防经济的影响 高技术的发展,对国防经济要求很高,国家要以相当的经费来支持高技术武器的发展。这是一个方面。另一方面,很多军事高技术与国家科技的发展密不可分,如用于外层空间的一些武器和设备,对开发宇宙资源和地球资源大有益处。开始,需要国家经济投资,但不久就可受益,反而促进国家经济的发展。高技术战争的基础是高技术,发展高技术仅仅用有限的国防经费是不够的,需要有国防经济整个系统来支撑。而且光有钱还不是唯一的条件,国防技术人才和国防技术设施要与高技术的发展相适应。为了发展高技术,需要动员整个国家的尖端技术力量,而不单纯是军事技术力量。经费和技术,是发展高技术的必不可少的物质基础。 (三)对战争样式和作战方式的影响 高技术武器用于战争,使战争的样式和作战方式有了很大发展。除了已经出现的用高技术手段进行的军事冲突和小型局部战争之外,还将有可能出现如外层空间的军事冲突和小型战争,以及星球大战和世界性高技术战争等等新的战争样式。这些新的战争样式,反映了现代复杂的国际关系,影响着战争的规模和结局。对于核武器,美苏等国正在从高技术中寻找防御的积极手段。现在已有不少人相信,运用高技术武器就可以有效地抗击核武器。因而,风靡一时的核威胁战略将受到挑战。高技术战争发动的方式和进行的方式与以往也有很大不同。远战可能多于近战,导弹战可能多于枪炮战,电子战可能充斥整个战场。作战双方利用智能武器和借助现代指挥工具进行的斗争将日益突出出来。 (四)对军队编制装备的影响 高技术战争将影响军队的组成、编制和装备。如将增加新的军种和兵种——天军、深海部队、机器人部队、飞行器分队等。军兵种的比例也将发生变化,天军、空军的比例将逐渐增大,陆军的比例将缩减。海军中深海潜艇的比例也将加大。军队人员的知识结构,必须要与高技术的装备水平相适应。军队的文化水平将大大提高,工程科技人员的比例将增大。军队人员要有高度的政治觉悟,高度的组织纪律性,坚强的体魄,娴熟的军事技能,能吃苦耐劳,克服困难,坚韧不拔,具有献身精神。军队有良好的训练水平和科学的管理水平。 (五)对作战行动的影响 作战空间增大。不光是同一作战单位的任务,正面、纵深大于以往作战,而且空中的支援和防护一般可分为超低空、低空、中空、高空,超高空以及高天(外层空间) 6 个层次。从几万米高空扩大到几百公里的外层空间。 由于远程火器增多,部队机动速度加快,作战部队的任务纵深大大地加大了。 作战行动的突然性增大。在谋略思维上能够跳出常规,在复杂的战争现象中,寻找出其不意攻其不备之点,在谋求突然性的优势中居主导地位。但是指挥决策的快速性和作战行动的快速性,无疑有助于突然性的达成。而后者,在高技术战争中是司空见惯的。 杀伤破坏程度空前残酷。既有大面积杀伤武器,又有精确制导的杀伤点状目标的武器。点面结合,破坏面积大,杀伤目标准,对人类带来的灾难超过以往。如果高能激光武器使用于战场,对其破坏杀伤力目前还没有找到抗御的方法。战场探测器材十分发达,凡是暴露的目标,一般都可侦知,凡是侦知的目标,一般都可摧毁。在这种情况下,如何保存战场上的有生力量是个十分重要的问题。如果进攻者不能在冲击前对防御一方进行十分有效的压制,那末防御者就有可能在瞬间将暴露的进攻军队予以毁伤,而将在此以前的损失和消耗捞回来。克劳塞维茨说防御是较强的作战形式,在高技术战争中这句名言将再次得到证实。 电磁频谱的斗争更加激烈。这方面的斗争不单单是象以往那样主要反映在干扰和反干扰方面,除了干扰反干扰的斗争外,还将反映在侦察反侦察、制导反制导、 C3I 系统与反 C3I 系统等方面。高技术战争中,雷达是双方很注目的目标。电子干扰对方制导系统也将日益重要。破坏对方的指挥控制系统更有积极意义。电子压制斗争是火力压制的前提,否则,很难保障火力压制的效果。所以电磁环境的优势往往伴随着胜利。 在高技术作战中,发现目标是第一位的。包括侦察卫星在内的众多的探测器对战场目标的发现并不难。由于作战双方采取的伪装、隐形、隐蔽、设置假情报、发射假信号等手段,发现的目标是鱼龙混杂,真假难辨的。如何在发现目标之后识别真假是个复杂的问题。 打击目标是继发现识别目标后的积极行动。打击一般指火力打击,主要是空中火力和地面火力打击,同时包括采取电子摧毁的打法,或将目标杀伤,或使目标摧毁,或将目标给予破坏。这是高技术战争中最积极的手段。能否大量地歼灭对方的有生力量,在任何战争中都是有决定意义的,高技术战争也不例外。 占领或保护目标一般是作战的目的,这是继火力打击以后的行动,往往是歼灭敌方有生力量的结果。就一般的进攻(或防御)作战行动来说,占领(或保护)目标是衡量完成作战任务的标志之一。有利的地形如制高点、战役战术要点,仍是兵家必争之地。 (六)对指挥的影响 由于卫星技术和其它遥感遥测技术广泛使用于军队指挥系统,获取战略情报和战场情报已不是十分困难的事;由于电子计算机成为军队指挥的重要工具,大大提高了对信息的储存、处理能力;而使用激光通信、光纤通信、传真通信和数据通信等手段,通信的可靠性和适时性提高了。自动化的指挥控制系统使军队指挥既快速又准确,尤其运用人工智能专家系统,可以提出决策建议和行动方案供指挥员选择参考,作出最佳抉择。以高技术为支撑的 C3I 系统,可供战略指挥(全国、全球、甚至外层空间)使用,也可供战役、战斗指挥使用,甚至单舰、单机、单车、单兵都可使用。这就要求指挥员和参谋人员必须既是军事专家,又是科学家和工程技术专家,熟悉自动化指挥程序和具有运用指挥设备的知识与能力。 (七)对后方保障的影响 高技术战争的极大消耗量对后勤保障提出了一个十分现实的问题:供应补给量与消耗量要成正比,要以极大的供应量来保障高技术战争的极大消耗量。假设消耗量为 N ,那末供应量应大于 N 。只有这样,才能保证战争的持续进行,如果供应量小于消耗量,那就要影响战争的进行,甚至发生粮尽弹绝的危险情况。做到及时大量的供应补给,要掌握四个环节:①预见和准备。对一场战争的可能消耗情况,预先要有足够的估计,并据以作充分的准备。如作好各类物资弹药油料等的预先储备等。②有充足而可靠的输送力量。根据战争的进展情况和各作战方向、作战地域的消耗情况,能够及时地组织输送力量,迅速地将所需物资送到。③现代化的多种输送、管理手段,包括两个方面,一是多种输送手段,如铁路、公路、飞机输送,或人力兽力输送。二是运用现代化的管理手段,掌握战场上消耗情况,控制输送力量,保障重点方向、重点物资的筹划和供应。④有应急措施和掌握预备力量。智者千虑,必有一失。问题是当出现“失着”时,有裕如的应急措施,手里有预备力量可供使用。 由于高技术战争使前方后方的界限更趋淡薄,为了组织后方的有效保障,必须注意组织对后方机构的有效防御,防止空中袭击、远程武器袭击及空降兵袭击、敌方迂回穿插部队的袭击等。因此,后方地域必须组织防空、防炮、防导弹以及对地面和对外层空间的防御。这样,才能可靠而有效地组织后方保障。

什么意思,如果需要与我在线索取加好友

提供一些通信类毕业论文的题目,供参加。GPS与GSM系统整合应用设计SDH光传输系统组网的设计小灵通系统建设在××××市的应用××××光纤接入网规划设计××地NO7信令网设计方案××××电信局动力环保集中监控系统的设计方案××地双向HFC在有线电视网络设计方案××地无线市话网络系统设计与实现××市七号信令转接点(LSTP)工程设计××地现代局域网设计及宽带接入××××无线寻呼系统网络整合××××市无线市话IPAS系统设计××地光缆监控与线路资源管理在长途线路维护中心的综合应用××地无线市话(PAS)网络系统设计××地GSM系统基站设计方案××××市至××××市SDH数字微波电路设计××地动力与环境集中监控系统的设计××××CDMA一期基站工程规划××××移动本地光纤传输网组网方案××××市通信分公司无线市话接入网工程设计××地邮政储蓄中间业务平台系统设计方案××地企业intranet网络系统建设方案××××市本地网光缆线路自动监测系统的实现××××本地电话网集中监控升级设计方案××××本地网电话的网络优化改造××××地区有线接入网的规划与建设A1000S12交换机远端模块局的设计与实施方案无线市话IPAS系统在××××的应用设计××××DCN网设计与实现××××市电信客户服务系统设计方案××××局OA网的设计与应用组建××××移动VIP大客户管理分析服务系统××××市SDH中继传输网设计方案××地宽带IP城域网的设计与实施智能小区网络通信系统技术局域网在现代企业中的应用---××××大楼办公网的组网方案××××电信二级干线监控系统设计××地PHS系统网络优化设计电话遥控电器开关电路设计电信级VOD视频点播系统解决方案××××本地网新建第二关口局的设计方案在WINDOWS平台上远程教学系统的设计与实现联机计费系统在C&C08交换机上的实现××××市电信小区宽带网的方案设计基于单片机的(4)循环码编译码器硬软件设计在集中监控操作系统下计费拥塞的解决方法××地呼叫中心的集中化解决方案××××移动IP宽带城域网的设计与实施多媒体业务(163/169)前台受理系统的设计××××市邮政局电子汇兑系统在综合网上应用设计××××市C3本地网的规划与建设××××前置交换机在联通数据业务中的应用××××市EASTAR自动停复话系统的设计

军事通信技术论文题目推荐高中英语

晕!帮一下好了 _2190/ZhongGuo_htm 高技术战争的以上特征,对军事上的影响,可以说是革命性的。它要求国家战略、国防经济、国防科技和军品生产、军事思想、战争样式和作战方式、军队建设和管理、战争准备、战略战术、后方保障等各个方面,都要进行深刻的改革。高技术战争的出现,迫使从事战争的人们重新看待一些传统的观念、理论和原则,重新衡量以前的战略、政策和一些具体做法。 (一)对国家安全战略的影响 在高技术战争条件下,从保卫国家的安全角度来说,仅仅考虑核威胁、核保护战略已远远不够了。航天战略(或宇宙战略)将成为国家战略的重要内容。一个国家的高技术水平是这个国家威慑力量中不可分割的一部分。国家的安全除了有赖于必要的常规武器、核武器外,更加有赖于高技术武器。 (二)对国防经济的影响 高技术的发展,对国防经济要求很高,国家要以相当的经费来支持高技术武器的发展。这是一个方面。另一方面,很多军事高技术与国家科技的发展密不可分,如用于外层空间的一些武器和设备,对开发宇宙资源和地球资源大有益处。开始,需要国家经济投资,但不久就可受益,反而促进国家经济的发展。高技术战争的基础是高技术,发展高技术仅仅用有限的国防经费是不够的,需要有国防经济整个系统来支撑。而且光有钱还不是唯一的条件,国防技术人才和国防技术设施要与高技术的发展相适应。为了发展高技术,需要动员整个国家的尖端技术力量,而不单纯是军事技术力量。经费和技术,是发展高技术的必不可少的物质基础。 (三)对战争样式和作战方式的影响 高技术武器用于战争,使战争的样式和作战方式有了很大发展。除了已经出现的用高技术手段进行的军事冲突和小型局部战争之外,还将有可能出现如外层空间的军事冲突和小型战争,以及星球大战和世界性高技术战争等等新的战争样式。这些新的战争样式,反映了现代复杂的国际关系,影响着战争的规模和结局。对于核武器,美苏等国正在从高技术中寻找防御的积极手段。现在已有不少人相信,运用高技术武器就可以有效地抗击核武器。因而,风靡一时的核威胁战略将受到挑战。高技术战争发动的方式和进行的方式与以往也有很大不同。远战可能多于近战,导弹战可能多于枪炮战,电子战可能充斥整个战场。作战双方利用智能武器和借助现代指挥工具进行的斗争将日益突出出来。 (四)对军队编制装备的影响 高技术战争将影响军队的组成、编制和装备。如将增加新的军种和兵种——天军、深海部队、机器人部队、飞行器分队等。军兵种的比例也将发生变化,天军、空军的比例将逐渐增大,陆军的比例将缩减。海军中深海潜艇的比例也将加大。军队人员的知识结构,必须要与高技术的装备水平相适应。军队的文化水平将大大提高,工程科技人员的比例将增大。军队人员要有高度的政治觉悟,高度的组织纪律性,坚强的体魄,娴熟的军事技能,能吃苦耐劳,克服困难,坚韧不拔,具有献身精神。军队有良好的训练水平和科学的管理水平。 (五)对作战行动的影响 作战空间增大。不光是同一作战单位的任务,正面、纵深大于以往作战,而且空中的支援和防护一般可分为超低空、低空、中空、高空,超高空以及高天(外层空间) 6 个层次。从几万米高空扩大到几百公里的外层空间。 由于远程火器增多,部队机动速度加快,作战部队的任务纵深大大地加大了。 作战行动的突然性增大。在谋略思维上能够跳出常规,在复杂的战争现象中,寻找出其不意攻其不备之点,在谋求突然性的优势中居主导地位。但是指挥决策的快速性和作战行动的快速性,无疑有助于突然性的达成。而后者,在高技术战争中是司空见惯的。 杀伤破坏程度空前残酷。既有大面积杀伤武器,又有精确制导的杀伤点状目标的武器。点面结合,破坏面积大,杀伤目标准,对人类带来的灾难超过以往。如果高能激光武器使用于战场,对其破坏杀伤力目前还没有找到抗御的方法。战场探测器材十分发达,凡是暴露的目标,一般都可侦知,凡是侦知的目标,一般都可摧毁。在这种情况下,如何保存战场上的有生力量是个十分重要的问题。如果进攻者不能在冲击前对防御一方进行十分有效的压制,那末防御者就有可能在瞬间将暴露的进攻军队予以毁伤,而将在此以前的损失和消耗捞回来。克劳塞维茨说防御是较强的作战形式,在高技术战争中这句名言将再次得到证实。 电磁频谱的斗争更加激烈。这方面的斗争不单单是象以往那样主要反映在干扰和反干扰方面,除了干扰反干扰的斗争外,还将反映在侦察反侦察、制导反制导、 C3I 系统与反 C3I 系统等方面。高技术战争中,雷达是双方很注目的目标。电子干扰对方制导系统也将日益重要。破坏对方的指挥控制系统更有积极意义。电子压制斗争是火力压制的前提,否则,很难保障火力压制的效果。所以电磁环境的优势往往伴随着胜利。 在高技术作战中,发现目标是第一位的。包括侦察卫星在内的众多的探测器对战场目标的发现并不难。由于作战双方采取的伪装、隐形、隐蔽、设置假情报、发射假信号等手段,发现的目标是鱼龙混杂,真假难辨的。如何在发现目标之后识别真假是个复杂的问题。 打击目标是继发现识别目标后的积极行动。打击一般指火力打击,主要是空中火力和地面火力打击,同时包括采取电子摧毁的打法,或将目标杀伤,或使目标摧毁,或将目标给予破坏。这是高技术战争中最积极的手段。能否大量地歼灭对方的有生力量,在任何战争中都是有决定意义的,高技术战争也不例外。 占领或保护目标一般是作战的目的,这是继火力打击以后的行动,往往是歼灭敌方有生力量的结果。就一般的进攻(或防御)作战行动来说,占领(或保护)目标是衡量完成作战任务的标志之一。有利的地形如制高点、战役战术要点,仍是兵家必争之地。 (六)对指挥的影响 由于卫星技术和其它遥感遥测技术广泛使用于军队指挥系统,获取战略情报和战场情报已不是十分困难的事;由于电子计算机成为军队指挥的重要工具,大大提高了对信息的储存、处理能力;而使用激光通信、光纤通信、传真通信和数据通信等手段,通信的可靠性和适时性提高了。自动化的指挥控制系统使军队指挥既快速又准确,尤其运用人工智能专家系统,可以提出决策建议和行动方案供指挥员选择参考,作出最佳抉择。以高技术为支撑的 C3I 系统,可供战略指挥(全国、全球、甚至外层空间)使用,也可供战役、战斗指挥使用,甚至单舰、单机、单车、单兵都可使用。这就要求指挥员和参谋人员必须既是军事专家,又是科学家和工程技术专家,熟悉自动化指挥程序和具有运用指挥设备的知识与能力。 (七)对后方保障的影响 高技术战争的极大消耗量对后勤保障提出了一个十分现实的问题:供应补给量与消耗量要成正比,要以极大的供应量来保障高技术战争的极大消耗量。假设消耗量为 N ,那末供应量应大于 N 。只有这样,才能保证战争的持续进行,如果供应量小于消耗量,那就要影响战争的进行,甚至发生粮尽弹绝的危险情况。做到及时大量的供应补给,要掌握四个环节:①预见和准备。对一场战争的可能消耗情况,预先要有足够的估计,并据以作充分的准备。如作好各类物资弹药油料等的预先储备等。②有充足而可靠的输送力量。根据战争的进展情况和各作战方向、作战地域的消耗情况,能够及时地组织输送力量,迅速地将所需物资送到。③现代化的多种输送、管理手段,包括两个方面,一是多种输送手段,如铁路、公路、飞机输送,或人力兽力输送。二是运用现代化的管理手段,掌握战场上消耗情况,控制输送力量,保障重点方向、重点物资的筹划和供应。④有应急措施和掌握预备力量。智者千虑,必有一失。问题是当出现“失着”时,有裕如的应急措施,手里有预备力量可供使用。 由于高技术战争使前方后方的界限更趋淡薄,为了组织后方的有效保障,必须注意组织对后方机构的有效防御,防止空中袭击、远程武器袭击及空降兵袭击、敌方迂回穿插部队的袭击等。因此,后方地域必须组织防空、防炮、防导弹以及对地面和对外层空间的防御。这样,才能可靠而有效地组织后方保障。 希望有用论中国国防建设在国家发展中的作用第一:国防建设可以带动经济发展,国防建设是由科技和工业实力所保证的,合理的国防建设可以促进工业的发展,盘活个企业间的联系,可以提高科技水平,促进科技发展 第二:强大的国防实力是保障贸易安全的重要因素,只有强大的国防实力才能保卫本国在海外的资产和贸易重要通道的安全,才能保卫本国公民在海外的人身安全 第三:提高国际威望众所周知,在当今国际舞台上,已经不仅仅是经济因素等一系列硬实力的竞争了,还包括,国际威望等一些软实力的竞争,只有你在世界上有资格享有发言权,那么别的国家才敬佩你,才能尊重你,这样就有利于本国企业,文化,人口,等等在世界的发展 其很大程度上要依靠强大的国防力量

什么意思,如果需要与我在线索取加好友

通信技术可以写信号处理之类的,关键要创新和原创。开始也不太会,还是学长给的文方网,写的《星载信号处理平台单粒子效应检测与加固技术研究》,里面有很多数据分析都弄的服服帖帖的,靠谱啊

主要得看方向啊 通信有很多方向 比如信号处理,模式识别 基站等的设计 还有无线通信中的一些关键技术 先确定一个小方向 然后在在里面找对应的论文 知网上搜关键词 很多。

军事通信论文题目推荐大学英语

学术堂整理了十五个通信工程毕业论文题目供大家进行参考:  1、高移动无线通信抗多普勒效应技术研究进展  2、携能通信协作认知网络稳态吞吐量分析和优化  3、协作通信中基于链路不平衡的中继激励  4、时间反转水声通信系统的优化设计与仿真  5、散射通信系统电磁辐射影响分析  6、无人机激光通信载荷发展现状与关键技术  7、数字通信前馈算法中的最大似然同步算法仿真  8、沙尘暴对对流层散射通信的影响分析  9、测控通信系统中低延迟视频编码传输方法研究  10、传输技术在通信工程中的应用与前瞻  11、城市通信灯杆基站建设分析  12、电子通信技术中电磁场和电磁波的运用  13、关于军事通信抗干扰技术进展与展望  14、城轨无线通信系统改造方案研究  15、无线通信系统在天津东方海陆集装箱码头中的运用

军校学员现在都在网上找答案了,哎,为国家担忧啊!靠自己学真本事,再下到部队之后,手下的兵才会看的起你,要是准备混 ,你就准备连新兵都鄙视你吧!

基于WIN CE的ADSL线路参数研究ADSL line parameters research based on WIN CE _EMC&dq=ADSL&printsec=frontcover&source=web&ots=oJXbatzNWO&sig=fyomvlADYeB7NRS2gjTJAfpSapQ--------------Windows CE (also known officially as Windows Embedded CE since version 0[2][3], and sometimes abbreviated WinCE) is a variation of Microsoft's Windows operating system for minimalistic computers and embedded Windows CE is a distinctly different kernel, rather than a trimmed-down version of desktop W It is not to be confused with Windows XP Embedded which is NT- It is supported on Intel x86 and compatibles, MIPS, ARM, and Hitachi SuperH FeaturesWindows CE is optimized for devices that have minimal storage—a Windows CE kernel may run in under a megabyte of Devices are often configured without disk storage, and may be configured as a “closed” system that does not allow for end-user extension (for instance, it can be burned into ROM) Windows CE conforms to the definition of a real-time operating system, with a deterministic interrupt It supports 256 priority levels and uses priority inheritance for dealing with priority The fundamental unit of execution is the This helps to simplify the interface and improve execution Microsoft has stated that the ‘CE’ is not an intentional initialism, but many people believe CE stands for ‘Consumer Electronics’ or ‘Compact Edition’; users often disparagingly called it “Wince”[4] Microsoft says it implies a number of Windows CE design precepts, including “Compact, Connectable, Compatible, Companion, and E”[5] The first version, known during development under the codename “Pegasus”, featured a Windows-like GUI and a number of Microsoft's popular applications, all trimmed down for smaller storage, memory, and speed of the palmtops of the Since then, Windows CE has evolved into a component-based, embedded, real-time operating It is no longer targeted solely at hand-held Many platforms have been based on the core Windows CE operating system, including Microsoft's AutoPC, Pocket PC 2000, Pocket PC 2002, Windows Mobile 2003, Windows Mobile 2003 SE, Windows Mobile 0, Windows Mobile 6, Smartphone 2002, Smartphone 2003 and many industrial devices and embedded Windows CE even powered select games for the Sega Dreamcast, was the operating system of the controversial Gizmondo handheld, and can partially run on modified Microsoft Xbox game A distinctive feature of Windows CE compared to other Microsoft operating systems is that large parts of it are offered in source code First, source code was offered to several vendors, so they could adjust it to their Then products like Platform Builder (an integrated environment for Windows CE OS image creation and integration, or customized operating system designs based on CE) offered several components in source code form to the general However, a number of core components that do not need adaptation to specific hardware environments (other than the CPU family) are still distributed in binary form Development toolsVisual StudioLate versions of Microsoft Visual Studio support projects for Windows CE / Windows Mobile, producing executable programs and platform images either as an emulator or attached by cable to an actual mobile A mobile device is not necessary to develop a CE The NET Compact Framework supports a subset of the NET Framework with projects in C# and VBNET, but not Managed C++Platform BuilderThis programming tool is used for building the platform (BSP + Kernel), device drivers (shared source or custom made) and also the This is a one step environment to get the system up and One can also use Platform Builder to export an SDK (standard development kit) for the target microprocessor (SuperH, x86, MIPS, ARM ) to be used with another associated tool set named Embedded Visual C++ (eVC)The Embedded Visual C++ tool is for development of embedded application for Windows CE based This tool can be used standalone using the SDK exported from Platform Builder or using the Platform Builder using the Platform Manager connectivity Relationship to Windows Mobile, Pocket PC, and SmartPhoneOften Windows CE, Windows Mobile, and Pocket PC are used This practice is not entirely Windows CE is a modular/componentized operating system that serves as the foundation of several classes of Some of these modules provide subsets of other components' features ( varying levels of windowing support; DCOM vs COM), others which are mutually exclusive (Bitmap or TrueType font support), and others which add additional features to another One can buy a kit (the Platform Builder) which contains all these components and the tools with which to develop a custom Applications such as Excel Mobile/Pocket Excel are not part of this The older Handheld PC version of Pocket Word and several other older applications are included as samples, Windows Mobile is best described as a subset of platforms based on a Windows CE Currently, Pocket PC (now called Windows Mobile Classic), SmartPhone (Windows Mobile Standard), and PocketPC Phone Edition (Windows Mobile Professional) are the three main platforms under the Windows Mobile Each platform utilizes different components of Windows CE, as well as supplemental features and applications suited for their respective Pocket PC and Windows Mobile is a Microsoft-defined custom platform for general PDA use, and consists of a Microsoft-defined set of minimum profiles (Professional Edition, Premium Edition) of software and hardware that is The rules for manufacturing a Pocket PC device are stricter than those for producing a custom Windows CE-based The defining characteristics of the Pocket PC are the digitizer as the primary Human Interface Device and its extremely portable The SmartPhone platform is a feature rich OS and interface for cellular phone SmartPhone offers productivity features to business users, such as email, as well as multimedia capabilities for The SmartPhone interface relies heavily on joystick navigation and PhonePad Devices running SmartPhone do not include a touchscreen SmartPhone devices generally resemble other cellular handset form factors, whereas most Phone Edition devices use a PDA form factor with a larger Windows Mobile 5 supports USB 0 and new devices running this OS will also conform to the USB Mass Storage Class, meaning the storage on PPC can be accessed from any USB-equipped PC, without requiring any extra software, except requiring a compliant In other words, you can use it as a flash Competing productsCompetitors to consumer CE based PDA platforms like Pocket PC – the main application of Windows CE – are Java, Symbian OS, Palm OS, iPhone OS and Linux based packages like Qtopia Embedded Linux environment from Trolltech, Convergent Linux Platform from a La Mobile, and Access Linux Platform from Orange and AThe secondary usage of CE is in devices in need of graphical user interfaces, (point of sale terminals, media centers, web tablets, thin clients) as the main selling point CE is the look and feel being similar to desktop W The competition is Windows XP, Linux and graphical packages for simpler embedded operating Being an RTOS, Windows CE is also theoretically a competitor to any realtime operating system in the embedded space, like VxWorks, ITRON or eC The dominating method, however, of mixing Windows look and feel with realtime on the same hardware, is to run double operating systems using some virtualization technology, like TRANGO Hypervisor from TRANGO Virtual Processors or Intime from TenAsys in the case of Windows, and OS Ware from VirtualLogix, Padded Cell from Green Hills Software, OKL4 from Open Kernel Labs, TRANGO Hypervisor from TRANGO Virtual Processors, RTS Hypervisor from Real-Time Systems or PikeOS from Sysgo, in case of the ---------Asymmetric Digital Subscriber Line (ADSL) is a form of DSL, a data communications technology that enables faster data transmission over copper telephone lines than a conventional voiceband modem can It does this by utilizing frequencies that are not used by a voice telephone A splitter - or microfilter - allows a single telephone connection to be used for both ADSL service and voice calls at the same Because phone lines vary in quality and were not originally engineered with DSL in mind, it can generally only be used over short distances, typically less than 3mi (5 km) [William Stallings' book]At the telephone exchange the line generally terminates at a DSLAM where another frequency splitter separates the voice band signal for the conventional phone Data carried by the ADSL is typically routed over the telephone company's data network and eventually reaches a conventional internet In the UK under British Telecom the data network in question is its ATM network which in turn sends it to its IP network IP CThe distinguishing characteristic of ADSL over other forms of DSL is that the volume of data flow is greater in one direction than the other, it is Providers usually market ADSL as a service for consumers to connect to the Internet in a relatively passive mode: able to use the higher speed direction for the "download" from the Internet but not needing to run servers that would require high speed in the other There are both technical and marketing reasons why ADSL is in many places the most common type offered to home On the technical side, there is likely to be more crosstalk from other circuits at the DSLAM end (where the wires from many local loops are close to each other) than at the customer Thus the upload signal is weakest at the noisiest part of the local loop, while the download signal is strongest at the noisiest part of the local It therefore makes technical sense to have the DSLAM transmit at a higher bit rate than does the modem on the customer Since the typical home user in fact does prefer a higher download speed, the telephone companies chose to make a virtue out of necessity, hence ADSL On the marketing side, limiting upload speeds limits the attractiveness of this service to business customers, often causing them to purchase higher cost Digital Signal 1 services In this fashion, it segments the digital communications market between business and home usersHow ADSL worksOn the wireCurrently, most ADSL communication is full Full duplex ADSL communication is usually achieved on a wire pair by either frequency division duplex (FDD), echo canceling duplex (ECD), or time division duplexing (TDD) FDM uses two separate frequency bands, referred to as the upstream and downstream The upstream band is used for communication from the end user to the telephone central The downstream band is used for communicating from the central office to the end With standard ADSL (annex A), the band from 875 kHz to 138 kHz is used for upstream communication, while 138 kHz – 1104 kHz is used for downstream Each of these is further divided into smaller frequency channels of 3125 kH During initial training, the ADSL modem tests which of the available channels have an acceptable signal-to-noise The distance from the telephone exchange, noise on the copper wire, or interference from AM radio stations may introduce errors on some By keeping the channels small, a high error rate on one frequency thus need not render the line unusable: the channel will not be used, merely resulting in reduced throughput on an otherwise functional ADSL Vendors may support usage of higher frequencies as a proprietary extension to the However, this requires matching vendor-supplied equipment on both ends of the line, and will likely result in crosstalk issues that affect other lines in the same There is a direct relationship between the number of channels available and the throughput capacity of the ADSL The exact data capacity per channel depends on the modulation method [edit] ModulationADSL initially existed in two flavours (similar to VDSL), namely CAP and DMT CAP was the de facto standard for ADSL deployments up until 1996, deployed in 90 percent of ADSL installs at the However, DMT was chosen for the first ITU-T ADSL standards, G1 and G2 (also called Gdmt and Glite respectively) Therefore all modern installations of ADSL are based on the DMT modulation Annexes J and M shift the upstream/downstream frequency split up to 276 kHz (from 138 kHz used in the commonly deployed annex A) in order to boost upstream Additionally, the "all-digital-loop" variants of ADSL2 and ADSL2+ (annexes I and J) support an extra 256 kbit/s of upstream if the bandwidth normally used for POTS voice calls is allocated for ADSL While the ADSL access utilizes the 1 MHz band, ADSL2+ utilizes the 2 MHz The downstream and upstream rates displayed are theoretical Note also that because Digital subscriber line access multiplexers and ADSL modems may have been implemented based on differing or incomplete standards some manufacturers may advertise different For example, Ericsson has several devices that support non-standard upstream speeds of up to 2 Mbit/s in ADSL2 and ADSL2+[edit] Installation issuesDue to the way it uses the frequency spectrum, ADSL deployment presents some It is necessary to install appropriate frequency filters at the customer's premises, to avoid interferences with the voice service, while at the same time taking care to keep a clean signal level for the ADSL In the early days of DSL, installation required a technician to visit the A splitter was installed near the demarcation point, from which a dedicated data line was This way, the DSL signal is separated earlier and is not attenuated inside the customer However, this procedure is costly, and also caused problems with customers complaining about having to wait for the technician to perform the As a result, many DSL vendors started offering a self-install option, in which they ship equipment and instructions to the Instead of separating the DSL signal at the demarcation point, the opposite is done: the DSL signal is "filtered off" at each phone outlet by use of a low pass filter, also known as This method does not require any rewiring inside the customer A side effect of the move to the self-install model is that the DSL signal can be degraded, especially if more than 5 voiceband devices are connected to the The DSL signal is now present on all telephone wiring in the building, causing attenuation and A way to circumvent this is to go back to the original model, and install one filter upstream from all telephone jacks in the building, except for the jack to which the DSL modem will be Since this requires wiring changes by the customer and may not work on some household telephone wiring, it is rarely It is usually much easier to install filters at each telephone jack that is in

军事通信论文题目大全高中英语

学术堂整理了十五个好写的英语论文题目,供大家进行参考: 试论简奥斯汀生活对其小说的影响 (On the Impact of Jane Austen’s Life on Her Novels) “真实的诺言”与传统文化的碰撞——简析“真人秀”的实质和本地化过程 (When True Lies Challenge Tradition—An Analysis of the Reality and Localization of Reality TV) 从台湾问题看中美关系 (The Sino-US Relation—The Taiwan Issue)《傲慢与偏见》的生命力 (The Great Vitality of Pride and Prejudice) 平凡中的不平凡——《傲慢与偏见》(Significance in Commonplace—Pride and Prejudice) 萨皮尔沃夫理论 (Sapir-Whorf Hypothesis) 论格里高尔的悲剧 (An Analysis of Gregor’s Tragedy) 对大学生心理健康问题予更多关注 (More Attention to the Psychological Health of College Students) 文体学: 语言学习的科学 (Stylistics: A Scientific Approach) 佛教在西方 (Buddhism in the West) 非语言交际 (Nonverbal Communication) 国际反恐 (International Anti-Terrorism) 全球资金市场近期特征与走向 (The Character and Tendency of Global Capital Market in Recent Decades) 从《老人与海》中桑堤亚哥的性格可知——人是打不败的 (A Man Cannot Be Defeated—From the Character of Santiago in The Old Man and the Sea) 南方的失落 (The Loss of the South)

军校学员现在都在网上找答案了,哎,为国家担忧啊!靠自己学真本事,再下到部队之后,手下的兵才会看的起你,要是准备混 ,你就准备连新兵都鄙视你吧!

基于WIN CE的ADSL线路参数研究ADSL line parameters research based on WIN CE _EMC&dq=ADSL&printsec=frontcover&source=web&ots=oJXbatzNWO&sig=fyomvlADYeB7NRS2gjTJAfpSapQ--------------Windows CE (also known officially as Windows Embedded CE since version 0[2][3], and sometimes abbreviated WinCE) is a variation of Microsoft's Windows operating system for minimalistic computers and embedded Windows CE is a distinctly different kernel, rather than a trimmed-down version of desktop W It is not to be confused with Windows XP Embedded which is NT- It is supported on Intel x86 and compatibles, MIPS, ARM, and Hitachi SuperH FeaturesWindows CE is optimized for devices that have minimal storage—a Windows CE kernel may run in under a megabyte of Devices are often configured without disk storage, and may be configured as a “closed” system that does not allow for end-user extension (for instance, it can be burned into ROM) Windows CE conforms to the definition of a real-time operating system, with a deterministic interrupt It supports 256 priority levels and uses priority inheritance for dealing with priority The fundamental unit of execution is the This helps to simplify the interface and improve execution Microsoft has stated that the ‘CE’ is not an intentional initialism, but many people believe CE stands for ‘Consumer Electronics’ or ‘Compact Edition’; users often disparagingly called it “Wince”[4] Microsoft says it implies a number of Windows CE design precepts, including “Compact, Connectable, Compatible, Companion, and E”[5] The first version, known during development under the codename “Pegasus”, featured a Windows-like GUI and a number of Microsoft's popular applications, all trimmed down for smaller storage, memory, and speed of the palmtops of the Since then, Windows CE has evolved into a component-based, embedded, real-time operating It is no longer targeted solely at hand-held Many platforms have been based on the core Windows CE operating system, including Microsoft's AutoPC, Pocket PC 2000, Pocket PC 2002, Windows Mobile 2003, Windows Mobile 2003 SE, Windows Mobile 0, Windows Mobile 6, Smartphone 2002, Smartphone 2003 and many industrial devices and embedded Windows CE even powered select games for the Sega Dreamcast, was the operating system of the controversial Gizmondo handheld, and can partially run on modified Microsoft Xbox game A distinctive feature of Windows CE compared to other Microsoft operating systems is that large parts of it are offered in source code First, source code was offered to several vendors, so they could adjust it to their Then products like Platform Builder (an integrated environment for Windows CE OS image creation and integration, or customized operating system designs based on CE) offered several components in source code form to the general However, a number of core components that do not need adaptation to specific hardware environments (other than the CPU family) are still distributed in binary form Development toolsVisual StudioLate versions of Microsoft Visual Studio support projects for Windows CE / Windows Mobile, producing executable programs and platform images either as an emulator or attached by cable to an actual mobile A mobile device is not necessary to develop a CE The NET Compact Framework supports a subset of the NET Framework with projects in C# and VBNET, but not Managed C++Platform BuilderThis programming tool is used for building the platform (BSP + Kernel), device drivers (shared source or custom made) and also the This is a one step environment to get the system up and One can also use Platform Builder to export an SDK (standard development kit) for the target microprocessor (SuperH, x86, MIPS, ARM ) to be used with another associated tool set named Embedded Visual C++ (eVC)The Embedded Visual C++ tool is for development of embedded application for Windows CE based This tool can be used standalone using the SDK exported from Platform Builder or using the Platform Builder using the Platform Manager connectivity Relationship to Windows Mobile, Pocket PC, and SmartPhoneOften Windows CE, Windows Mobile, and Pocket PC are used This practice is not entirely Windows CE is a modular/componentized operating system that serves as the foundation of several classes of Some of these modules provide subsets of other components' features ( varying levels of windowing support; DCOM vs COM), others which are mutually exclusive (Bitmap or TrueType font support), and others which add additional features to another One can buy a kit (the Platform Builder) which contains all these components and the tools with which to develop a custom Applications such as Excel Mobile/Pocket Excel are not part of this The older Handheld PC version of Pocket Word and several other older applications are included as samples, Windows Mobile is best described as a subset of platforms based on a Windows CE Currently, Pocket PC (now called Windows Mobile Classic), SmartPhone (Windows Mobile Standard), and PocketPC Phone Edition (Windows Mobile Professional) are the three main platforms under the Windows Mobile Each platform utilizes different components of Windows CE, as well as supplemental features and applications suited for their respective Pocket PC and Windows Mobile is a Microsoft-defined custom platform for general PDA use, and consists of a Microsoft-defined set of minimum profiles (Professional Edition, Premium Edition) of software and hardware that is The rules for manufacturing a Pocket PC device are stricter than those for producing a custom Windows CE-based The defining characteristics of the Pocket PC are the digitizer as the primary Human Interface Device and its extremely portable The SmartPhone platform is a feature rich OS and interface for cellular phone SmartPhone offers productivity features to business users, such as email, as well as multimedia capabilities for The SmartPhone interface relies heavily on joystick navigation and PhonePad Devices running SmartPhone do not include a touchscreen SmartPhone devices generally resemble other cellular handset form factors, whereas most Phone Edition devices use a PDA form factor with a larger Windows Mobile 5 supports USB 0 and new devices running this OS will also conform to the USB Mass Storage Class, meaning the storage on PPC can be accessed from any USB-equipped PC, without requiring any extra software, except requiring a compliant In other words, you can use it as a flash Competing productsCompetitors to consumer CE based PDA platforms like Pocket PC – the main application of Windows CE – are Java, Symbian OS, Palm OS, iPhone OS and Linux based packages like Qtopia Embedded Linux environment from Trolltech, Convergent Linux Platform from a La Mobile, and Access Linux Platform from Orange and AThe secondary usage of CE is in devices in need of graphical user interfaces, (point of sale terminals, media centers, web tablets, thin clients) as the main selling point CE is the look and feel being similar to desktop W The competition is Windows XP, Linux and graphical packages for simpler embedded operating Being an RTOS, Windows CE is also theoretically a competitor to any realtime operating system in the embedded space, like VxWorks, ITRON or eC The dominating method, however, of mixing Windows look and feel with realtime on the same hardware, is to run double operating systems using some virtualization technology, like TRANGO Hypervisor from TRANGO Virtual Processors or Intime from TenAsys in the case of Windows, and OS Ware from VirtualLogix, Padded Cell from Green Hills Software, OKL4 from Open Kernel Labs, TRANGO Hypervisor from TRANGO Virtual Processors, RTS Hypervisor from Real-Time Systems or PikeOS from Sysgo, in case of the ---------Asymmetric Digital Subscriber Line (ADSL) is a form of DSL, a data communications technology that enables faster data transmission over copper telephone lines than a conventional voiceband modem can It does this by utilizing frequencies that are not used by a voice telephone A splitter - or microfilter - allows a single telephone connection to be used for both ADSL service and voice calls at the same Because phone lines vary in quality and were not originally engineered with DSL in mind, it can generally only be used over short distances, typically less than 3mi (5 km) [William Stallings' book]At the telephone exchange the line generally terminates at a DSLAM where another frequency splitter separates the voice band signal for the conventional phone Data carried by the ADSL is typically routed over the telephone company's data network and eventually reaches a conventional internet In the UK under British Telecom the data network in question is its ATM network which in turn sends it to its IP network IP CThe distinguishing characteristic of ADSL over other forms of DSL is that the volume of data flow is greater in one direction than the other, it is Providers usually market ADSL as a service for consumers to connect to the Internet in a relatively passive mode: able to use the higher speed direction for the "download" from the Internet but not needing to run servers that would require high speed in the other There are both technical and marketing reasons why ADSL is in many places the most common type offered to home On the technical side, there is likely to be more crosstalk from other circuits at the DSLAM end (where the wires from many local loops are close to each other) than at the customer Thus the upload signal is weakest at the noisiest part of the local loop, while the download signal is strongest at the noisiest part of the local It therefore makes technical sense to have the DSLAM transmit at a higher bit rate than does the modem on the customer Since the typical home user in fact does prefer a higher download speed, the telephone companies chose to make a virtue out of necessity, hence ADSL On the marketing side, limiting upload speeds limits the attractiveness of this service to business customers, often causing them to purchase higher cost Digital Signal 1 services In this fashion, it segments the digital communications market between business and home usersHow ADSL worksOn the wireCurrently, most ADSL communication is full Full duplex ADSL communication is usually achieved on a wire pair by either frequency division duplex (FDD), echo canceling duplex (ECD), or time division duplexing (TDD) FDM uses two separate frequency bands, referred to as the upstream and downstream The upstream band is used for communication from the end user to the telephone central The downstream band is used for communicating from the central office to the end With standard ADSL (annex A), the band from 875 kHz to 138 kHz is used for upstream communication, while 138 kHz – 1104 kHz is used for downstream Each of these is further divided into smaller frequency channels of 3125 kH During initial training, the ADSL modem tests which of the available channels have an acceptable signal-to-noise The distance from the telephone exchange, noise on the copper wire, or interference from AM radio stations may introduce errors on some By keeping the channels small, a high error rate on one frequency thus need not render the line unusable: the channel will not be used, merely resulting in reduced throughput on an otherwise functional ADSL Vendors may support usage of higher frequencies as a proprietary extension to the However, this requires matching vendor-supplied equipment on both ends of the line, and will likely result in crosstalk issues that affect other lines in the same There is a direct relationship between the number of channels available and the throughput capacity of the ADSL The exact data capacity per channel depends on the modulation method [edit] ModulationADSL initially existed in two flavours (similar to VDSL), namely CAP and DMT CAP was the de facto standard for ADSL deployments up until 1996, deployed in 90 percent of ADSL installs at the However, DMT was chosen for the first ITU-T ADSL standards, G1 and G2 (also called Gdmt and Glite respectively) Therefore all modern installations of ADSL are based on the DMT modulation Annexes J and M shift the upstream/downstream frequency split up to 276 kHz (from 138 kHz used in the commonly deployed annex A) in order to boost upstream Additionally, the "all-digital-loop" variants of ADSL2 and ADSL2+ (annexes I and J) support an extra 256 kbit/s of upstream if the bandwidth normally used for POTS voice calls is allocated for ADSL While the ADSL access utilizes the 1 MHz band, ADSL2+ utilizes the 2 MHz The downstream and upstream rates displayed are theoretical Note also that because Digital subscriber line access multiplexers and ADSL modems may have been implemented based on differing or incomplete standards some manufacturers may advertise different For example, Ericsson has several devices that support non-standard upstream speeds of up to 2 Mbit/s in ADSL2 and ADSL2+[edit] Installation issuesDue to the way it uses the frequency spectrum, ADSL deployment presents some It is necessary to install appropriate frequency filters at the customer's premises, to avoid interferences with the voice service, while at the same time taking care to keep a clean signal level for the ADSL In the early days of DSL, installation required a technician to visit the A splitter was installed near the demarcation point, from which a dedicated data line was This way, the DSL signal is separated earlier and is not attenuated inside the customer However, this procedure is costly, and also caused problems with customers complaining about having to wait for the technician to perform the As a result, many DSL vendors started offering a self-install option, in which they ship equipment and instructions to the Instead of separating the DSL signal at the demarcation point, the opposite is done: the DSL signal is "filtered off" at each phone outlet by use of a low pass filter, also known as This method does not require any rewiring inside the customer A side effect of the move to the self-install model is that the DSL signal can be degraded, especially if more than 5 voiceband devices are connected to the The DSL signal is now present on all telephone wiring in the building, causing attenuation and A way to circumvent this is to go back to the original model, and install one filter upstream from all telephone jacks in the building, except for the jack to which the DSL modem will be Since this requires wiring changes by the customer and may not work on some household telephone wiring, it is rarely It is usually much easier to install filters at each telephone jack that is in

《论兔子吃掉狐狸的可能性》

相关百科