杂志信息网-创作、查重、发刊有保障。

模糊数学论文读后感四百字初中作文

发布时间:2024-07-04 17:09:08

模糊数学论文读后感四百字初中作文

一些趣闻 一般公认,历史上可考的、年代最久远的数学家是古希腊几何学家泰勒斯。 史上著作与论文总量第二多的是十七世纪的著名瑞士数学家欧拉,他的纪录一直到二十世纪才被匈牙利数学家保罗·埃尔德什打破。数学家名言 “我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。” ----王菊珍 “一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。” ----托尔斯泰 "数学的本质在於它的自由”---- 康扥尔(Cantor) “在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要”---- 康扥尔(Cantor) "没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明”---- 希尔伯特(Hilbert) “数学是无穷的科学”----赫尔曼外尔 "问题是数学的心脏”---- PRHalmos “只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡” ----Hilbert “数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深”---- 高斯 “时间是个常数,但对勤奋者来说,是个‘变数’。用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。” ----雷巴柯夫 “在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。” ----华罗庚 “天才=1%的灵感+99%的血汗。”---- 爱迪生 “要利用时间,思考一下一天之中做了些什么,是‘正号’还是‘负号’,倘若是‘+’,则进步;倘若是‘-’,就得吸取教训,采取措施。” ----季米特洛夫 “近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。” ----爱因斯坦 “数学是无穷的科学” ----赫尔曼外尔 “数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深 数学是科学之王” ----高斯 “在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要” ----康扥尔 “只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡” ----希尔伯特 “在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么” ----毕达哥拉斯 “一门科学,只有当它成功地运用数学时,才能达到真正完善的地步” ----马克思 “一个国家的科学水平可以用它消耗的数学来度量” ----拉奥 “数学——科学不可动摇的基石,促进人类事业进步的丰富源泉。” ---- 巴罗 “在奥林匹斯山上统治著的上帝,乃是永恒的数。” ----雅可比 “如果没有数所制造的关於宇宙的永恒的仿造品,则人类将不能继续生存。” ----尼采 “不懂几何者免进。” ----柏拉图 “几何无王者之道!” ---- 欧几里得 “数学家实际上是一个著迷者,不迷就没有数学。” ---- 诺瓦利斯 “没有大胆的猜测,就做不出伟大的发现。” ---- 牛顿 “数统治着宇宙。”----毕达哥拉斯 “数学,科学的女皇;数论,数学的女皇。”----高斯 “上帝创造了整数,所有其余的数都是人造的。” ----克隆内克 “上帝是一位算术家” ----雅克比 “一个没有几分诗人气的数学家永远成不了一个完全的数学家。”----维尔斯特拉斯 “纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。”----怀德海 “可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。”----麦克斯韦 “数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。”----史密斯 “无限!再也没有其他问题如此深刻地打动过人类的心灵。”----希尔伯特 “发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。”----达尔文 “宇宙的伟大建筑是现在开始以纯数学家的面目出现了。”----京斯 “这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。”----A?N?怀德海 “给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。”----柯西 “纯数学是魔术家真正的魔杖。”----诺瓦列斯 “如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。”----柏拉图 “整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。”----伯克霍夫 “数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。”----A?埃博 “生命只为两件事,发展数学与教授数学” ----普尔森 “用心智的全部力量, 来选择我们应遵循的道路。”----笛卡儿 “我不知道, 世上人会怎样看我; 不过, 我自己觉得, 我只像一个在海滨玩耍的孩子, 一会捡起块比较光滑的卵石, 一会儿找到个美丽的贝壳; 而在我前面, 真理的大海还完全没有发现。” ----牛顿 “我之所以比笛卡儿看得远些, 是因为我站在巨人的肩上。” ----牛顿 “不亲自检查桥梁的每一部分的坚固性就不过桥的旅行者是不可能走远的。 甚至在数学中有些事情也要冒险。” ----贺拉斯兰姆 “前进吧, 前进将使你产生信念。”----达朗贝尔 “读读欧拉, 读读欧拉, 他是我们大家的老师。” ----拉普拉斯 “如果我继承可观的财产, 我在数学上可能没有多少价值了。”----拉格朗日 “我把数学看成是一件有意思的工作, 而不是想为自己建立什么纪念碑。 可以肯定地说, 我对别人的工作比自己的更喜欢。 我对自己的工作总是不满意。 ”----拉格朗日 “一个人的贡献和他的自负严格地成反比,这似乎是品行上的一个公理。 ”----拉格朗日 “看在上帝的份上, 千万别放下工作!这是你最好的药物。 ”----达朗贝尔 “我的成功只依赖两条。 一条是毫不动摇地坚持到底; 一条是用手把脑子里想出的图形一丝不差地制造出来。” ----蒙日 “天文科学的最大好处是消除由于忽视我们同自然的真正关系而造成的错误。 因为社会秩序必须建立在这种关系之上, 所以这类错误就更具灾难性。 真理和正义是社会秩序永恒不变的基础。 但愿我们摆脱这种危险的格言, 说什么进行欺骗和奴役有时比保障他们的幸福更有用! 各个时代的历史经验证明, 谁破坏这些神圣的法则, 必将遭到惩罚。” ----拉普拉斯 “有时候, 你一开始未能得到一个最简单,最美妙的证明, 但正是这样的证明才能深入到高等算术真理的奇妙联系中去。 这是我们继续研究的动力, 并且最能使我们有所发现。” ----高斯 “如果别人思考数学的真理像我一样深入持久, 他也会找到我的发现。” ----高斯 “人死了, 但事业永存。 ” ----柯西 “精巧的论证常常不是一蹴而就的,而是人们长期切磋积累的成果。 我也是慢慢学来的,而且还要继续不断的学习。” ----阿贝尔 “到底是大师的著作, 不同凡响!”----伽罗瓦 “异常抽象的问题, 必须讨论得异常清楚。 ” - ---笛卡儿 “我思故我在。”----笛卡儿 “我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。”----笛卡儿 "数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙。”----笛卡儿 “直接向大师们而不是他们的学生学习。” ----阿贝尔 “挑选好一个确定得研究对象, 锲而不舍。 你可能永远达不到终点, 但是一路上准可以发现一些有趣的东西。” ---克莱因 “我决不把我的作品看做是个人的私事, 也不追求名誉和赞美。 我只是为真理的进展竭尽所能。 是我还是别的什么人, 对我来说无关紧要, 重要的是它更接近于真理。 ” ----维尔斯特拉斯 “思维的运动形式通常是这样的:有意识的研究-潜意识的活动-有意识的研究。”----庞加莱 “人生就是持续的斗争, 如果我们偶尔享受到宁静, 那是我们先辈顽强地进行了斗争。 假使我们的精神, 我们的警惕松懈片刻, 我们将失去先辈为我们赢得的成果。 ” ----庞加莱 “如果我们想要预见数学的将来, 适当的途径是研究这门学科的历史和现状。 ”----庞加莱 “我们必须知道, 我们必将知道。” ----希尔伯特 “扔进冰水, 由他们自己学会游泳, 或者淹死。 很多学生一直要到掌握了其他人做过的, 与他们问题有关的一切,才肯试着靠自己去工作, 结果是只有极少数人养成了独立工作的习惯。 ” ----ET贝尔 “一个人如果做了出色的数学工作, 并想引起数学界的注意, 这实在是容易不过的事情, 不论这个人是如何位卑而且默默无闻, 他只需做一件事:把他对结果的论述寄给 处于领导地位的权威就行了。” ----莫德尔 “数学家通常是先通过直觉来发现一个定理; 这个结果对于他首先是似然的, 然后他再着手去制造一个证明。” ----哈代 “一个做学问的人, 除了学习知识外, 还要有“taste”, 这个词不太好翻译, 有的译成品味, 喜爱。 一个人要有大的成就, 就要有相当清楚的“taste。 ”----杨振宁 “如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。给我五个系数,我将画出一头大象;给我第六个系数,大象将会摇动尾巴。人必须确信,如果他是在给科学添加许多新的术语而让读者接着研究那摆在他们面前的奇妙难尽的东西,已经使科学获得了巨大的进展。”----柯西 “数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。”----陈省身 “科学需要实验。但实验不能绝对精确。如有数学理论,则全靠推论,就完全正确了。这是科学不能离开数学的原因。许多科学的基本观念,往往需要数学观念来表示。所以数学家有饭吃了,但不能得诺贝尔奖,是自然的。” ---陈省身 “数学中没有诺贝尔奖,这也许是件好事。诺贝尔奖太引人注目,会使数学家无法专注于自己的研究。” ----陈省身 “我们欣赏数学,我们需要数学。”----陈省身 “一个数学家的目的,是要了解数学。历史上数学的进展不外两途:增加对于已知材料的了解,和推广范围。” ----陈省身 “虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现象。”----欧拉 “因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情。”----欧拉 “迟序之数,非出神怪,有形可检,有数可推。”----祖冲之 “事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣。”----刘徽 “虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物。”----莱布尼茨 “不发生作用的东西是不会存在的。”----莱布尼茨 “考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标。” ----莱布尼茨 “几何看来有时候要领先于分析,但事实上,几何的先行于分析,只不过像一个仆人走在主人的前面一样,是为主人开路的。”----西尔维斯特 “也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我命名(已经流行通用)比起同时代其它数学家加在一起还要多。 ”----西尔维斯特 “一个没有几分诗人才能的数学家决不会成为一个完全的数学家。”----魏尔斯特拉斯 只是题材

通过学习使我懂得了学多了知识,知道了许多关于中考的新知识, 初三学生马上就要毕业了,在临近中考复习,我来谈谈怎样复习数学,掌握速效复习方法。越是时间紧,复习方法越要科学有效。掌握速效复习方法,必须做到如下几点: 1、提高复习兴趣,克服“高原现象”。所谓“高原现象”,例如,一名射手在进行一系列射击训练时,开始成绩逐渐上升,但到了一定程度之后,成绩却不再上升,甚至下降,我们把这种现象叫做高原现象。高原现象在数学复习阶段表现得十分明显。平时授新课,新鲜有趣;搞复习,要重复已学的内容,有的同学会觉得单调、枯燥无味,致使成绩提高缓慢,甚至下降。针对这种情况,一方面,同学们要从思想上提高对复习的认识,主动进行复习;另一方面,要以“新”提高复习的积极性。诸如制订新的复习计划;采用灵活的复习方法;抓住新颖有趣的内容和习题,把知识串连起来,使书“由厚变北。 2、加强双基,全面复习。在复习中,教师应当引导学生在复习好概念的基础上掌握数学的 规律。在进行概念复习时,应当从实例或学生已有的知识水平出发,逐步引导学生加以抽象,弄懂概念含义。对于容易混淆的概念,要引导学生用对比的方法,弄清它们的区别和联系。对于数学规律,应当引导学生搞清它们的来源,分清它们的条件和结论,弄清抽象、概括或证明的过程,了解它们的用途和适用范围,以及应用时应注意的问题,对于基本技能的训练和能力的培养,要遵循学生的认识规律,结合复习内容,选择合适的复习方法,有目的、有计划、分阶段地进行。 3、抓住关键,突出重点。复习中,突出重点,主要是指突出教材中的重点知识,突出不易 理解或尚未理解深透的知识,突出数学思想与解题方法。数学思想与方法是数学的精髓,是 联系数学中各类知识的纽带。要抓住教材中的重点内容,让学生掌握分析方法,引导学生从 不同角度出发思索问题,由此探索一题多解、一题多变和一题多用之法。培养学生正确地把 日常语言转化为代数、几何语言。并逐步掌握听、说、读、写译的数学语言技能。值得注意 的是,教师在培养学生解题思考的能力时,还要讲究设问艺术,多在思考的转折点上设问; 在理解的疑难处设问;在规律的概括时设问;从旧知引入新知时设问;在有比较、有联系时 设问;在学生练习时,发现带有普遍性错误的问题设问。这样,学生就会提高很快。 4、普遍检查,查漏补缺。 5、重视综合,注意专题复习。专题复习可以提高综合运用知识的能力,加强知识的横向联系。 通过以上几点工作的落实,相信能取得一个较好的复习效果,在中考中数学取得好的成绩。

模糊数学论文读后感四百字初中

一些趣闻 一般公认,历史上可考的、年代最久远的数学家是古希腊几何学家泰勒斯。 史上著作与论文总量第二多的是十七世纪的著名瑞士数学家欧拉,他的纪录一直到二十世纪才被匈牙利数学家保罗·埃尔德什打破。数学家名言 “我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。” ----王菊珍 “一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。” ----托尔斯泰 "数学的本质在於它的自由”---- 康扥尔(Cantor) “在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要”---- 康扥尔(Cantor) "没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明”---- 希尔伯特(Hilbert) “数学是无穷的科学”----赫尔曼外尔 "问题是数学的心脏”---- PRHalmos “只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡” ----Hilbert “数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深”---- 高斯 “时间是个常数,但对勤奋者来说,是个‘变数’。用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。” ----雷巴柯夫 “在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。” ----华罗庚 “天才=1%的灵感+99%的血汗。”---- 爱迪生 “要利用时间,思考一下一天之中做了些什么,是‘正号’还是‘负号’,倘若是‘+’,则进步;倘若是‘-’,就得吸取教训,采取措施。” ----季米特洛夫 “近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。” ----爱因斯坦 “数学是无穷的科学” ----赫尔曼外尔 “数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深 数学是科学之王” ----高斯 “在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要” ----康扥尔 “只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡” ----希尔伯特 “在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么” ----毕达哥拉斯 “一门科学,只有当它成功地运用数学时,才能达到真正完善的地步” ----马克思 “一个国家的科学水平可以用它消耗的数学来度量” ----拉奥 “数学——科学不可动摇的基石,促进人类事业进步的丰富源泉。” ---- 巴罗 “在奥林匹斯山上统治著的上帝,乃是永恒的数。” ----雅可比 “如果没有数所制造的关於宇宙的永恒的仿造品,则人类将不能继续生存。” ----尼采 “不懂几何者免进。” ----柏拉图 “几何无王者之道!” ---- 欧几里得 “数学家实际上是一个著迷者,不迷就没有数学。” ---- 诺瓦利斯 “没有大胆的猜测,就做不出伟大的发现。” ---- 牛顿 “数统治着宇宙。”----毕达哥拉斯 “数学,科学的女皇;数论,数学的女皇。”----高斯 “上帝创造了整数,所有其余的数都是人造的。” ----克隆内克 “上帝是一位算术家” ----雅克比 “一个没有几分诗人气的数学家永远成不了一个完全的数学家。”----维尔斯特拉斯 “纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。”----怀德海 “可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。”----麦克斯韦 “数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。”----史密斯 “无限!再也没有其他问题如此深刻地打动过人类的心灵。”----希尔伯特 “发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。”----达尔文 “宇宙的伟大建筑是现在开始以纯数学家的面目出现了。”----京斯 “这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。”----A?N?怀德海 “给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。”----柯西 “纯数学是魔术家真正的魔杖。”----诺瓦列斯 “如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。”----柏拉图 “整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。”----伯克霍夫 “数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。”----A?埃博 “生命只为两件事,发展数学与教授数学” ----普尔森 “用心智的全部力量, 来选择我们应遵循的道路。”----笛卡儿 “我不知道, 世上人会怎样看我; 不过, 我自己觉得, 我只像一个在海滨玩耍的孩子, 一会捡起块比较光滑的卵石, 一会儿找到个美丽的贝壳; 而在我前面, 真理的大海还完全没有发现。” ----牛顿 “我之所以比笛卡儿看得远些, 是因为我站在巨人的肩上。” ----牛顿 “不亲自检查桥梁的每一部分的坚固性就不过桥的旅行者是不可能走远的。 甚至在数学中有些事情也要冒险。” ----贺拉斯兰姆 “前进吧, 前进将使你产生信念。”----达朗贝尔 “读读欧拉, 读读欧拉, 他是我们大家的老师。” ----拉普拉斯 “如果我继承可观的财产, 我在数学上可能没有多少价值了。”----拉格朗日 “我把数学看成是一件有意思的工作, 而不是想为自己建立什么纪念碑。 可以肯定地说, 我对别人的工作比自己的更喜欢。 我对自己的工作总是不满意。 ”----拉格朗日 “一个人的贡献和他的自负严格地成反比,这似乎是品行上的一个公理。 ”----拉格朗日 “看在上帝的份上, 千万别放下工作!这是你最好的药物。 ”----达朗贝尔 “我的成功只依赖两条。 一条是毫不动摇地坚持到底; 一条是用手把脑子里想出的图形一丝不差地制造出来。” ----蒙日 “天文科学的最大好处是消除由于忽视我们同自然的真正关系而造成的错误。 因为社会秩序必须建立在这种关系之上, 所以这类错误就更具灾难性。 真理和正义是社会秩序永恒不变的基础。 但愿我们摆脱这种危险的格言, 说什么进行欺骗和奴役有时比保障他们的幸福更有用! 各个时代的历史经验证明, 谁破坏这些神圣的法则, 必将遭到惩罚。” ----拉普拉斯 “有时候, 你一开始未能得到一个最简单,最美妙的证明, 但正是这样的证明才能深入到高等算术真理的奇妙联系中去。 这是我们继续研究的动力, 并且最能使我们有所发现。” ----高斯 “如果别人思考数学的真理像我一样深入持久, 他也会找到我的发现。” ----高斯 “人死了, 但事业永存。 ” ----柯西 “精巧的论证常常不是一蹴而就的,而是人们长期切磋积累的成果。 我也是慢慢学来的,而且还要继续不断的学习。” ----阿贝尔 “到底是大师的著作, 不同凡响!”----伽罗瓦 “异常抽象的问题, 必须讨论得异常清楚。 ” - ---笛卡儿 “我思故我在。”----笛卡儿 “我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。”----笛卡儿 "数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙。”----笛卡儿 “直接向大师们而不是他们的学生学习。” ----阿贝尔 “挑选好一个确定得研究对象, 锲而不舍。 你可能永远达不到终点, 但是一路上准可以发现一些有趣的东西。” ---克莱因 “我决不把我的作品看做是个人的私事, 也不追求名誉和赞美。 我只是为真理的进展竭尽所能。 是我还是别的什么人, 对我来说无关紧要, 重要的是它更接近于真理。 ” ----维尔斯特拉斯 “思维的运动形式通常是这样的:有意识的研究-潜意识的活动-有意识的研究。”----庞加莱 “人生就是持续的斗争, 如果我们偶尔享受到宁静, 那是我们先辈顽强地进行了斗争。 假使我们的精神, 我们的警惕松懈片刻, 我们将失去先辈为我们赢得的成果。 ” ----庞加莱 “如果我们想要预见数学的将来, 适当的途径是研究这门学科的历史和现状。 ”----庞加莱 “我们必须知道, 我们必将知道。” ----希尔伯特 “扔进冰水, 由他们自己学会游泳, 或者淹死。 很多学生一直要到掌握了其他人做过的, 与他们问题有关的一切,才肯试着靠自己去工作, 结果是只有极少数人养成了独立工作的习惯。 ” ----ET贝尔 “一个人如果做了出色的数学工作, 并想引起数学界的注意, 这实在是容易不过的事情, 不论这个人是如何位卑而且默默无闻, 他只需做一件事:把他对结果的论述寄给 处于领导地位的权威就行了。” ----莫德尔 “数学家通常是先通过直觉来发现一个定理; 这个结果对于他首先是似然的, 然后他再着手去制造一个证明。” ----哈代 “一个做学问的人, 除了学习知识外, 还要有“taste”, 这个词不太好翻译, 有的译成品味, 喜爱。 一个人要有大的成就, 就要有相当清楚的“taste。 ”----杨振宁 “如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。给我五个系数,我将画出一头大象;给我第六个系数,大象将会摇动尾巴。人必须确信,如果他是在给科学添加许多新的术语而让读者接着研究那摆在他们面前的奇妙难尽的东西,已经使科学获得了巨大的进展。”----柯西 “数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。”----陈省身 “科学需要实验。但实验不能绝对精确。如有数学理论,则全靠推论,就完全正确了。这是科学不能离开数学的原因。许多科学的基本观念,往往需要数学观念来表示。所以数学家有饭吃了,但不能得诺贝尔奖,是自然的。” ---陈省身 “数学中没有诺贝尔奖,这也许是件好事。诺贝尔奖太引人注目,会使数学家无法专注于自己的研究。” ----陈省身 “我们欣赏数学,我们需要数学。”----陈省身 “一个数学家的目的,是要了解数学。历史上数学的进展不外两途:增加对于已知材料的了解,和推广范围。” ----陈省身 “虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现象。”----欧拉 “因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情。”----欧拉 “迟序之数,非出神怪,有形可检,有数可推。”----祖冲之 “事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣。”----刘徽 “虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物。”----莱布尼茨 “不发生作用的东西是不会存在的。”----莱布尼茨 “考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标。” ----莱布尼茨 “几何看来有时候要领先于分析,但事实上,几何的先行于分析,只不过像一个仆人走在主人的前面一样,是为主人开路的。”----西尔维斯特 “也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我命名(已经流行通用)比起同时代其它数学家加在一起还要多。 ”----西尔维斯特 “一个没有几分诗人才能的数学家决不会成为一个完全的数学家。”----魏尔斯特拉斯 只是题材

通过学习使我懂得了学多了知识,知道了许多关于中考的新知识, 初三学生马上就要毕业了,在临近中考复习,我来谈谈怎样复习数学,掌握速效复习方法。越是时间紧,复习方法越要科学有效。掌握速效复习方法,必须做到如下几点: 1、提高复习兴趣,克服“高原现象”。所谓“高原现象”,例如,一名射手在进行一系列射击训练时,开始成绩逐渐上升,但到了一定程度之后,成绩却不再上升,甚至下降,我们把这种现象叫做高原现象。高原现象在数学复习阶段表现得十分明显。平时授新课,新鲜有趣;搞复习,要重复已学的内容,有的同学会觉得单调、枯燥无味,致使成绩提高缓慢,甚至下降。针对这种情况,一方面,同学们要从思想上提高对复习的认识,主动进行复习;另一方面,要以“新”提高复习的积极性。诸如制订新的复习计划;采用灵活的复习方法;抓住新颖有趣的内容和习题,把知识串连起来,使书“由厚变北。 2、加强双基,全面复习。在复习中,教师应当引导学生在复习好概念的基础上掌握数学的 规律。在进行概念复习时,应当从实例或学生已有的知识水平出发,逐步引导学生加以抽象,弄懂概念含义。对于容易混淆的概念,要引导学生用对比的方法,弄清它们的区别和联系。对于数学规律,应当引导学生搞清它们的来源,分清它们的条件和结论,弄清抽象、概括或证明的过程,了解它们的用途和适用范围,以及应用时应注意的问题,对于基本技能的训练和能力的培养,要遵循学生的认识规律,结合复习内容,选择合适的复习方法,有目的、有计划、分阶段地进行。 3、抓住关键,突出重点。复习中,突出重点,主要是指突出教材中的重点知识,突出不易 理解或尚未理解深透的知识,突出数学思想与解题方法。数学思想与方法是数学的精髓,是 联系数学中各类知识的纽带。要抓住教材中的重点内容,让学生掌握分析方法,引导学生从 不同角度出发思索问题,由此探索一题多解、一题多变和一题多用之法。培养学生正确地把 日常语言转化为代数、几何语言。并逐步掌握听、说、读、写译的数学语言技能。值得注意 的是,教师在培养学生解题思考的能力时,还要讲究设问艺术,多在思考的转折点上设问; 在理解的疑难处设问;在规律的概括时设问;从旧知引入新知时设问;在有比较、有联系时 设问;在学生练习时,发现带有普遍性错误的问题设问。这样,学生就会提高很快。 4、普遍检查,查漏补缺。 5、重视综合,注意专题复习。专题复习可以提高综合运用知识的能力,加强知识的横向联系。 通过以上几点工作的落实,相信能取得一个较好的复习效果,在中考中数学取得好的成绩。

写读后感的要诀我们读完一部作品或一篇文章后,自然会受到感动,产生许多感想,但这许多感想是零碎的,有些是模糊的,一闪而失要写读后感,就要善于抓住这些零碎、甚至是模糊的感想,反复想,反复作比较,找出两个比较突出的对现实有针对性的,再集中凝神的想下去,在深思的基础上加以整理也只有这样,才能抓住具有现实意义的问题,写出真实、深刻、用于解决人们在学习上、思想上和实践上存在问题的有价值的感想来第四,要真实自然就是要写自己的真情实感自己是怎样受到感动和怎样想的,就怎样写把自己的想法写的越具体、越真实,文章就会情真意切,生动活泼,使人受到启发从表现手法上看,读后感多用夹叙夹议,必要时借助抒情的方法叙述是联系实际摆事实议论是谈感想,讲道理抒情是表达读后的激情叙述的语言要概括简洁,议论要准确,抒情要集中三者要交融一体,切忌空话、大话套话、口号从表现形式上看,也有两种:一种是联系实际说明道理的这是用自己的切身体会和具体生动的事例,从理论和实践的结合上阐明一个道理的正确性,把理论具体化、形象化,使之有血有肉,有事有理,以事明理,生动活泼另一种是从研究理论的角度出发,阐发意义根据自己的研究和理解,阐明一个较难理解的思想观点,或估价一部作品的思想意义它的作用是从理论上帮助读者加深对原文的理解这一种读后感的重点仍在“感”字上,但它的理论性较强,一定要注意关照议论文论点鲜明、论据典型、中心明确突出等特点

模糊数学论文读后感四百字初中版

《数学符号史》的启示 人类最早用来计数的工具是手指和脚趾,但它们只能表示20以内的数字。当数目很多时,大多数的原始人就用小石子来记数。渐渐地,人们又发明了打绳结来记数的方法,或者在兽皮、树木、石头上刻画记数。中国古代是用木、竹或骨头制成的小棍来记数,称为算筹。这些记数方法和记数符号慢慢转变成了最早的数字符号(数码)。如今,世界各国都使用阿拉伯数字为标准数字随着生产力的发展,数字符号的产生使得人类能够在时候进行更大规模的记录,进而产生了较早期的数字运算规律,再后来,阿拉伯数字符号的发明使得“算数”往“数学”过度有了可能。而数学运用数字符号表达记录了各种高级的,高度符号化了的,抽象的数学定律。随之产生的还有“几何”。正是这些数学规律使得人类能够量化地进行工程设计和施工,人类的工业开始能够制造出复杂庞大的系统。数学也是近代化学,物理,计算机科学等重要学科的基础和研究工具。所以说,数字符号的出现,是人类社会和智能发展的必然结果,也是人类社会进步的基石之一。 数字符号见证了我们的人类史上光辉传奇

一些趣闻 一般公认,历史上可考的、年代最久远的数学家是古希腊几何学家泰勒斯。 史上著作与论文总量第二多的是十七世纪的著名瑞士数学家欧拉,他的纪录一直到二十世纪才被匈牙利数学家保罗·埃尔德什打破。数学家名言 “我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。” ----王菊珍 “一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。” ----托尔斯泰 "数学的本质在於它的自由”---- 康扥尔(Cantor) “在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要”---- 康扥尔(Cantor) "没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明”---- 希尔伯特(Hilbert) “数学是无穷的科学”----赫尔曼外尔 "问题是数学的心脏”---- PRHalmos “只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡” ----Hilbert “数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深”---- 高斯 “时间是个常数,但对勤奋者来说,是个‘变数’。用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。” ----雷巴柯夫 “在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。” ----华罗庚 “天才=1%的灵感+99%的血汗。”---- 爱迪生 “要利用时间,思考一下一天之中做了些什么,是‘正号’还是‘负号’,倘若是‘+’,则进步;倘若是‘-’,就得吸取教训,采取措施。” ----季米特洛夫 “近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。” ----爱因斯坦 “数学是无穷的科学” ----赫尔曼外尔 “数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深 数学是科学之王” ----高斯 “在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要” ----康扥尔 “只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡” ----希尔伯特 “在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么” ----毕达哥拉斯 “一门科学,只有当它成功地运用数学时,才能达到真正完善的地步” ----马克思 “一个国家的科学水平可以用它消耗的数学来度量” ----拉奥 “数学——科学不可动摇的基石,促进人类事业进步的丰富源泉。” ---- 巴罗 “在奥林匹斯山上统治著的上帝,乃是永恒的数。” ----雅可比 “如果没有数所制造的关於宇宙的永恒的仿造品,则人类将不能继续生存。” ----尼采 “不懂几何者免进。” ----柏拉图 “几何无王者之道!” ---- 欧几里得 “数学家实际上是一个著迷者,不迷就没有数学。” ---- 诺瓦利斯 “没有大胆的猜测,就做不出伟大的发现。” ---- 牛顿 “数统治着宇宙。”----毕达哥拉斯 “数学,科学的女皇;数论,数学的女皇。”----高斯 “上帝创造了整数,所有其余的数都是人造的。” ----克隆内克 “上帝是一位算术家” ----雅克比 “一个没有几分诗人气的数学家永远成不了一个完全的数学家。”----维尔斯特拉斯 “纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。”----怀德海 “可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。”----麦克斯韦 “数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。”----史密斯 “无限!再也没有其他问题如此深刻地打动过人类的心灵。”----希尔伯特 “发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。”----达尔文 “宇宙的伟大建筑是现在开始以纯数学家的面目出现了。”----京斯 “这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。”----A?N?怀德海 “给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。”----柯西 “纯数学是魔术家真正的魔杖。”----诺瓦列斯 “如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。”----柏拉图 “整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。”----伯克霍夫 “数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。”----A?埃博 “生命只为两件事,发展数学与教授数学” ----普尔森 “用心智的全部力量, 来选择我们应遵循的道路。”----笛卡儿 “我不知道, 世上人会怎样看我; 不过, 我自己觉得, 我只像一个在海滨玩耍的孩子, 一会捡起块比较光滑的卵石, 一会儿找到个美丽的贝壳; 而在我前面, 真理的大海还完全没有发现。” ----牛顿 “我之所以比笛卡儿看得远些, 是因为我站在巨人的肩上。” ----牛顿 “不亲自检查桥梁的每一部分的坚固性就不过桥的旅行者是不可能走远的。 甚至在数学中有些事情也要冒险。” ----贺拉斯兰姆 “前进吧, 前进将使你产生信念。”----达朗贝尔 “读读欧拉, 读读欧拉, 他是我们大家的老师。” ----拉普拉斯 “如果我继承可观的财产, 我在数学上可能没有多少价值了。”----拉格朗日 “我把数学看成是一件有意思的工作, 而不是想为自己建立什么纪念碑。 可以肯定地说, 我对别人的工作比自己的更喜欢。 我对自己的工作总是不满意。 ”----拉格朗日 “一个人的贡献和他的自负严格地成反比,这似乎是品行上的一个公理。 ”----拉格朗日 “看在上帝的份上, 千万别放下工作!这是你最好的药物。 ”----达朗贝尔 “我的成功只依赖两条。 一条是毫不动摇地坚持到底; 一条是用手把脑子里想出的图形一丝不差地制造出来。” ----蒙日 “天文科学的最大好处是消除由于忽视我们同自然的真正关系而造成的错误。 因为社会秩序必须建立在这种关系之上, 所以这类错误就更具灾难性。 真理和正义是社会秩序永恒不变的基础。 但愿我们摆脱这种危险的格言, 说什么进行欺骗和奴役有时比保障他们的幸福更有用! 各个时代的历史经验证明, 谁破坏这些神圣的法则, 必将遭到惩罚。” ----拉普拉斯 “有时候, 你一开始未能得到一个最简单,最美妙的证明, 但正是这样的证明才能深入到高等算术真理的奇妙联系中去。 这是我们继续研究的动力, 并且最能使我们有所发现。” ----高斯 “如果别人思考数学的真理像我一样深入持久, 他也会找到我的发现。” ----高斯 “人死了, 但事业永存。 ” ----柯西 “精巧的论证常常不是一蹴而就的,而是人们长期切磋积累的成果。 我也是慢慢学来的,而且还要继续不断的学习。” ----阿贝尔 “到底是大师的著作, 不同凡响!”----伽罗瓦 “异常抽象的问题, 必须讨论得异常清楚。 ” - ---笛卡儿 “我思故我在。”----笛卡儿 “我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。”----笛卡儿 "数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙。”----笛卡儿 “直接向大师们而不是他们的学生学习。” ----阿贝尔 “挑选好一个确定得研究对象, 锲而不舍。 你可能永远达不到终点, 但是一路上准可以发现一些有趣的东西。” ---克莱因 “我决不把我的作品看做是个人的私事, 也不追求名誉和赞美。 我只是为真理的进展竭尽所能。 是我还是别的什么人, 对我来说无关紧要, 重要的是它更接近于真理。 ” ----维尔斯特拉斯 “思维的运动形式通常是这样的:有意识的研究-潜意识的活动-有意识的研究。”----庞加莱 “人生就是持续的斗争, 如果我们偶尔享受到宁静, 那是我们先辈顽强地进行了斗争。 假使我们的精神, 我们的警惕松懈片刻, 我们将失去先辈为我们赢得的成果。 ” ----庞加莱 “如果我们想要预见数学的将来, 适当的途径是研究这门学科的历史和现状。 ”----庞加莱 “我们必须知道, 我们必将知道。” ----希尔伯特 “扔进冰水, 由他们自己学会游泳, 或者淹死。 很多学生一直要到掌握了其他人做过的, 与他们问题有关的一切,才肯试着靠自己去工作, 结果是只有极少数人养成了独立工作的习惯。 ” ----ET贝尔 “一个人如果做了出色的数学工作, 并想引起数学界的注意, 这实在是容易不过的事情, 不论这个人是如何位卑而且默默无闻, 他只需做一件事:把他对结果的论述寄给 处于领导地位的权威就行了。” ----莫德尔 “数学家通常是先通过直觉来发现一个定理; 这个结果对于他首先是似然的, 然后他再着手去制造一个证明。” ----哈代 “一个做学问的人, 除了学习知识外, 还要有“taste”, 这个词不太好翻译, 有的译成品味, 喜爱。 一个人要有大的成就, 就要有相当清楚的“taste。 ”----杨振宁 “如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。给我五个系数,我将画出一头大象;给我第六个系数,大象将会摇动尾巴。人必须确信,如果他是在给科学添加许多新的术语而让读者接着研究那摆在他们面前的奇妙难尽的东西,已经使科学获得了巨大的进展。”----柯西 “数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。”----陈省身 “科学需要实验。但实验不能绝对精确。如有数学理论,则全靠推论,就完全正确了。这是科学不能离开数学的原因。许多科学的基本观念,往往需要数学观念来表示。所以数学家有饭吃了,但不能得诺贝尔奖,是自然的。” ---陈省身 “数学中没有诺贝尔奖,这也许是件好事。诺贝尔奖太引人注目,会使数学家无法专注于自己的研究。” ----陈省身 “我们欣赏数学,我们需要数学。”----陈省身 “一个数学家的目的,是要了解数学。历史上数学的进展不外两途:增加对于已知材料的了解,和推广范围。” ----陈省身 “虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现象。”----欧拉 “因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情。”----欧拉 “迟序之数,非出神怪,有形可检,有数可推。”----祖冲之 “事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣。”----刘徽 “虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物。”----莱布尼茨 “不发生作用的东西是不会存在的。”----莱布尼茨 “考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标。” ----莱布尼茨 “几何看来有时候要领先于分析,但事实上,几何的先行于分析,只不过像一个仆人走在主人的前面一样,是为主人开路的。”----西尔维斯特 “也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我命名(已经流行通用)比起同时代其它数学家加在一起还要多。 ”----西尔维斯特 “一个没有几分诗人才能的数学家决不会成为一个完全的数学家。”----魏尔斯特拉斯 只是题材

1、 两个男孩各骑一辆自行车,从相距2O英里(1英里合6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?答案 每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。 许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法”他解释道2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。 在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?答案 由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。 既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。 这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.3、 一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?答案 怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。4、 《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。 问雄、兔各几何? 原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。 设x为雉数,y为兔数,则有 x+y=b, 2x+4y=a 解之得 y=b/2-a, x=a-(b/2-a) 根据这组公式很容易得出原题的答案:兔12只,雉22只。5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。问题:我们该如何定价才能赚最多的钱?答案:日租金360元。虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。6 数学家维纳的年龄,全题如下: 我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少? 解答:咋一看,这道题很难,其实不然。设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=

华罗庚故事 成功对每个人来说都是一件幸运的事,但不是每一个人都能获得成功。成功不是路边的小石子随处可捡,也不是田间的小草随意可觅。要成功,需要有一段漫长的路要走,在这期间是要经过许多挫折的。1930 年的一天,清华大学数学系主任熊庆来,坐在办公室里看一本《科学》杂志。看着看着,不禁拍案叫绝:“这个华罗庚是哪国留学生?”周围的人摇摇头,“他是在哪个大学教书的?”人们面面相觑。最后还是一位江苏籍的教员想了好一会儿,才慢吞吞地说:“我弟弟有个同乡叫华罗庚,他哪里教过什么大学啊!他只念过初中,听说是在金坛中学当事务员。” 熊庆来惊奇不已,一个初中毕业的人,能写出这样高深的数学论文,必是奇才。他当即做出决定,将华罗庚请到清华大学来。 从此,华罗庚就成为清华大学数学系助理员。在这里,他如鱼得水,每天都游弋在数学的海洋里,只给自己留下五、六个小时的睡眠时间。说起来让人很难相信,华罗庚甚至养成了熄灯之后,也能看书的习惯。他当然没有什么特异功能,只是头脑中一种逻辑思维活动。他在灯下拿来一本书,看着题目思考一会儿,然后熄灯躺在床上,闭目静思,开始在头脑中做题。碰到难处,再翻身下床,打开书看一会儿。就这样,一本需要十天半个月才能看完的书,他一夜两夜就看完了。华罗庚被人们看成是不寻常的助理员。 第二年,他的论文开始在国外著名的数学杂志陆续发表。清华大学破了先例,决定把只有初中学历的华罗庚提升为助教。 几年之后,华罗庚被保送到英国剑桥大学留学。可是他不愿读博士学位,只求做个访问学者。因为做访问学者可以冲破束缚,同时攻读七、八门学科。他说:“我到英国,是为了求学问,不是为了得学位的。” 华罗庚没有拿到博士学位。在剑桥的两年内,他写了 20 篇论文。论水平,每一篇都可以拿到一个博士学位。其中一篇关于“塔内问题”的研究,他提出的理论被数学界命名为“华氏定理”。 华罗庚曾说:“科学上没有平坦的大道,真理的长河中有无数礁石险滩。只有不畏攀登的采药者,才能登上高峰觅得仙草;只有不怕巨浪的弄潮儿,才能深入水底觅得骊珠。”科学上的每一个真理都是在经历无数次的挫折、失败之后才得出的。我们要正视挫折,正确对待挫折,只有这样,才能让挫折变成我们走向成功的阶梯。华罗庚以一种热爱科学,勤奋学习,不求名利的精神,献身于他所热爱的数学研究事业。他抛弃了世人所追求的金钱、名利、地位。最终,他的事业成功了。 华罗庚把科学研究与实际应用紧密结合起来。华罗庚把数学应用到工农业生产上,对我国现代化建设做出了突出的贡献。 挫折可以战胜,挫折孕育着成功,而前提是具有坚定的信念和勇往直前的精神。当具备了这些条件之后,挫折就会被你踩在脚下,明天就是拨开浮云见丽日之时。 14

模糊数学论文读后感四百字初一

华罗庚故事 成功对每个人来说都是一件幸运的事,但不是每一个人都能获得成功。成功不是路边的小石子随处可捡,也不是田间的小草随意可觅。要成功,需要有一段漫长的路要走,在这期间是要经过许多挫折的。1930 年的一天,清华大学数学系主任熊庆来,坐在办公室里看一本《科学》杂志。看着看着,不禁拍案叫绝:“这个华罗庚是哪国留学生?”周围的人摇摇头,“他是在哪个大学教书的?”人们面面相觑。最后还是一位江苏籍的教员想了好一会儿,才慢吞吞地说:“我弟弟有个同乡叫华罗庚,他哪里教过什么大学啊!他只念过初中,听说是在金坛中学当事务员。” 熊庆来惊奇不已,一个初中毕业的人,能写出这样高深的数学论文,必是奇才。他当即做出决定,将华罗庚请到清华大学来。 从此,华罗庚就成为清华大学数学系助理员。在这里,他如鱼得水,每天都游弋在数学的海洋里,只给自己留下五、六个小时的睡眠时间。说起来让人很难相信,华罗庚甚至养成了熄灯之后,也能看书的习惯。他当然没有什么特异功能,只是头脑中一种逻辑思维活动。他在灯下拿来一本书,看着题目思考一会儿,然后熄灯躺在床上,闭目静思,开始在头脑中做题。碰到难处,再翻身下床,打开书看一会儿。就这样,一本需要十天半个月才能看完的书,他一夜两夜就看完了。华罗庚被人们看成是不寻常的助理员。 第二年,他的论文开始在国外著名的数学杂志陆续发表。清华大学破了先例,决定把只有初中学历的华罗庚提升为助教。 几年之后,华罗庚被保送到英国剑桥大学留学。可是他不愿读博士学位,只求做个访问学者。因为做访问学者可以冲破束缚,同时攻读七、八门学科。他说:“我到英国,是为了求学问,不是为了得学位的。” 华罗庚没有拿到博士学位。在剑桥的两年内,他写了 20 篇论文。论水平,每一篇都可以拿到一个博士学位。其中一篇关于“塔内问题”的研究,他提出的理论被数学界命名为“华氏定理”。 华罗庚曾说:“科学上没有平坦的大道,真理的长河中有无数礁石险滩。只有不畏攀登的采药者,才能登上高峰觅得仙草;只有不怕巨浪的弄潮儿,才能深入水底觅得骊珠。”科学上的每一个真理都是在经历无数次的挫折、失败之后才得出的。我们要正视挫折,正确对待挫折,只有这样,才能让挫折变成我们走向成功的阶梯。华罗庚以一种热爱科学,勤奋学习,不求名利的精神,献身于他所热爱的数学研究事业。他抛弃了世人所追求的金钱、名利、地位。最终,他的事业成功了。 华罗庚把科学研究与实际应用紧密结合起来。华罗庚把数学应用到工农业生产上,对我国现代化建设做出了突出的贡献。 挫折可以战胜,挫折孕育着成功,而前提是具有坚定的信念和勇往直前的精神。当具备了这些条件之后,挫折就会被你踩在脚下,明天就是拨开浮云见丽日之时。 14

通过学习数学知识,我了解了许多以前从未知道的事情,比如,我知道我买菜如果买三百次两毛一斤的白菜总共多少钱;或者一个小虫在一秒钟生一个崽,下一秒那个崽和这个小虫有都可以生一个崽,那么一分钟后会出现多少小虫可以炒菜;又或者给我一些相关距离,让我去求埃菲尔铁塔的高度;亦或者在电力不足时我可以用微积分来计算它消失的速度·······感谢数学,让我知道了这么多不可思议的东西,我第一次知道不定积分和定积分原来就是素面朝天和浓妆抹艳,第一次知道很多貌似复杂公式最后结果就是0或1,第一次了解数学不只是1+1不等于2,可以等很多·····谢谢数学知识,是你让我了解我的生活原来还需要计算的

按照传统的定义,数学 是指研究数量关系和空间结构的一门学科。数学大体包括代数、几何、分析学、函数论、方程、概率、数论、数理逻辑、图论、组合论等几大类。所谓的数学研究工作,不仅是了解及整理已知的结果,还包含着创造新的数学成果与理论。会强调这点是因为许多人误解数学是一个已经被研究完的领域。事实上,数学上还有许多未知的领域和待解决的问题,也一直有大量新的数学成果发表。这些数学成果有些是新的数学知识,有些是是新的应用方式。所以心算家、珠算家不是数学家,数学家也不见得能够快速的做出各种计算。丘成桐博士为国际著名数学家,美国科学院院士,中国科学院外籍院士。1982年由于他在几何方面的杰出工作,获得了菲尔茨奖(被称之为数学的诺贝尔奖)。1994年,获得了瑞典皇家学员颁发的国际上著名的克雷福德奖(Clifford)。1997年获美国国家科学奖。丘成桐博士在科研方面做出了杰出的成就,赢得了许多荣誉。更为可贵的是,他十分关注中国基础研究的发展,并将其同自己的科研发展紧密联系在一起,多年来,一直运用他在国际上的影响和活动能力,协同各方面力量,为中国数学的发展作了大量的工作。欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导。欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法。"过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁。1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明。不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了。沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来。在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录。欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久。欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成。欧拉的风格是很高的,拉格朗从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生。等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算"。按照传统的定义,数学 是指研究数量关系和空间结构的一门学科。  数学大体包括代数、几何、分析学、函数论、方程、概率、数论、数理逻辑、图论、组合论等几大类。       所谓的数学研究工作,不仅是了解及整理已知的结果,还包含着创造新的数学成果与理论。会强调这点是因为许多人误解数学是一个已经被研究完的领域。事实上,数学上还有许多未知的领域和待解决的问题,也一直有大量新的数学成果发表。这些数学成果有些是新的数学知识,有些是是新的应用方式。 所以心算家、珠算家不是数学家,数学家也不见得能够快速的做出各种计算。   丘成桐(Shing—tung Yau)  丘成桐博士为国际著名数学家,美国科学院院士,中国科学院外籍院士。1982年由于他在几何方面的杰出工作,获得了菲尔茨奖(被称之为数学的诺贝尔奖)。1994年,获得了瑞典皇家学员颁发的国际上著名的克雷福德奖 (Clifford)。1997年获美国国家科学奖。  丘成桐博士在科研方面做出了杰出的成就,赢得了许多荣誉。更为可贵的是,他十分关注中国基础研究的发展,并将其同自己的科研发展紧密联系在一起,多年来,一直运用他在国际上的影响和活动能力,协同各方面力量,为中国数学的发展作了大量的工作。     欧拉  欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导。  欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法。"  过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁。1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明。不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了。  沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来。在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录。欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久。  欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成。  欧拉的风格是很高的,拉格朗从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生。等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算"。    一些趣闻    一般公认,历史上可考的、年代最久远的数学家是古希腊几何学家泰勒斯。   史上著作与论文总量第二多的是十七世纪的著名瑞士数学家欧拉,他的纪录一直到二十世纪才被匈牙利数学家保罗·埃尔德什打破。     数学家名言      “我国科学家王菊珍对待实验失败有句格言,叫做“干下去还有50%成功的希望,不干便是100%的失败。”   ----王菊珍   “一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。” ----托尔斯泰   "数学的本质在於它的自由”---- 康扥尔(Cantor)   “在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要”---- 康扥尔(Cantor)   "没有任何问题可以向无穷那样深深的触动人的情感, 很少有别的观念能像无穷那样激励理智产生富有成果的思想, 然而也没有任何其他的概念能向无穷那样需要加以阐明”---- 希尔伯特(Hilbert)   “数学是无穷的科学”----赫尔曼外尔   "问题是数学的心脏”---- PRHalmos   “只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡” ----Hilbert   “数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深”---- 高斯   “时间是个常数,但对勤奋者来说,是个‘变数’。用‘分’来计算时间的人比用‘小时’来计算时间的人时间多59倍。” ----雷巴柯夫   “在学习中要敢于做减法,就是减去前人已经解决的部分,看看还有那些问题没有解决,需要我们去探索解决。” ----华罗庚   “天才=1%的灵感+99%的血汗。”---- 爱迪生   “要利用时间,思考一下一天之中做了些什么,是‘正号’还是‘负号’,倘若是‘+’,则进步;倘若是‘-’,就得吸取教训,采取措施。” ----季米特洛夫   “近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。” ----爱因斯坦   “数学是无穷的科学” ----赫尔曼外尔   “数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深 数学是科学之王” ----高斯   “在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要” ----康扥尔   “只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡”   ----希尔伯特   “在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么” ----毕达哥拉斯   “一门科学,只有当它成功地运用数学时,才能达到真正完善的地步” ----马克思   “一个国家的科学水平可以用它消耗的数学来度量” ----拉奥   “数学——科学不可动摇的基石,促进人类事业进步的丰富源泉。” ---- 巴罗   “在奥林匹斯山上统治著的上帝,乃是永恒的数。” ----雅可比   “如果没有数所制造的关於宇宙的永恒的仿造品,则人类将不能继续生存。” ----尼采   “不懂几何者免进。” ----柏拉图   “几何无王者之道!” ---- 欧几里得   “数学家实际上是一个著迷者,不迷就没有数学。” ---- 诺瓦利斯   “没有大胆的猜测,就做不出伟大的发现。” ---- 牛顿   “数统治着宇宙。”----毕达哥拉斯   “数学,科学的女皇;数论,数学的女皇。”----高斯   “上帝创造了整数,所有其余的数都是人造的。” ----克隆内克   “上帝是一位算术家” ----雅克比   “一个没有几分诗人气的数学家永远成不了一个完全的数学家。”----维尔斯特拉斯   “纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。”----怀德海   “可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。”----麦克斯韦   “数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。”----史密斯   “无限!再也没有其他问题如此深刻地打动过人类的心灵。”----希尔伯特   “发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。”----达尔文   “宇宙的伟大建筑是现在开始以纯数学家的面目出现了。”----京斯   “这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。”----A?N?怀德海   “给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。”----柯西   “纯数学是魔术家真正的魔杖。”----诺瓦列斯   “如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。”----柏拉图   “整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。”----伯克霍夫   “数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。”----A?埃博   “生命只为两件事,发展数学与教授数学” ----普尔森   “用心智的全部力量, 来选择我们应遵循的道路。”----笛卡儿   “我不知道, 世上人会怎样看我; 不过, 我自己觉得, 我只像一个在海滨玩耍的孩子, 一会捡起块比较光滑的卵石, 一会儿找到个美丽的贝壳; 而在我前面, 真理的大海还完全没有发现。” ----牛顿   “我之所以比笛卡儿看得远些, 是因为我站在巨人的肩上。” ----牛顿   “不亲自检查桥梁的每一部分的坚固性就不过桥的旅行者是不可能走远的。 甚至在数学中有些事情也要冒险。”   ----贺拉斯兰姆   “前进吧, 前进将使你产生信念。”----达朗贝尔   “读读欧拉, 读读欧拉, 他是我们大家的老师。” ----拉普拉斯   “如果我继承可观的财产, 我在数学上可能没有多少价值了。”----拉格朗日   “我把数学看成是一件有意思的工作, 而不是想为自己建立什么纪念碑。 可以肯定地说, 我对别人的工作比自己的更喜欢。 我对自己的工作总是不满意。 ”----拉格朗日   “一个人的贡献和他的自负严格地成反比,这似乎是品行上的一个公理。 ”----拉格朗日   “看在上帝的份上, 千万别放下工作!这是你最好的药物。 ”----达朗贝尔   “我的成功只依赖两条。 一条是毫不动摇地坚持到底; 一条是用手把脑子里想出的图形一丝不差地制造出来。”   ----蒙日   “天文科学的最大好处是消除由于忽视我们同自然的真正关系而造成的错误。 因为社会秩序必须建立在这种关系之上, 所以这类错误就更具灾难性。 真理和正义是社会秩序永恒不变的基础。 但愿我们摆脱这种危险的格言, 说什么进行欺骗和奴役有时比保障他们的幸福更有用! 各个时代的历史经验证明, 谁破坏这些神圣的法则, 必将遭到惩罚。”   ----拉普拉斯   “有时候, 你一开始未能得到一个最简单,最美妙的证明, 但正是这样的证明才能深入到高等算术真理的奇妙联系中去。 这是我们继续研究的动力, 并且最能使我们有所发现。” ----高斯   “如果别人思考数学的真理像我一样深入持久, 他也会找到我的发现。” ----高斯   “人死了, 但事业永存。 ” ----柯西   “精巧的论证常常不是一蹴而就的,而是人们长期切磋积累的成果。 我也是慢慢学来的,而且还要继续不断的学习。” ----阿贝尔   “到底是大师的著作, 不同凡响!”----伽罗瓦   “异常抽象的问题, 必须讨论得异常清楚。 ” - ---笛卡儿   “我思故我在。”----笛卡儿   “我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题。我这样做,是为了研究另一种几何,即目的在于解释自然现象的几何。”----笛卡儿   "数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙。”----笛卡儿   “直接向大师们而不是他们的学生学习。” ----阿贝尔   “挑选好一个确定得研究对象, 锲而不舍。 你可能永远达不到终点, 但是一路上准可以发现一些有趣的东西。” ---克莱因   “我决不把我的作品看做是个人的私事, 也不追求名誉和赞美。 我只是为真理的进展竭尽所能。 是我还是别的什么人, 对我来说无关紧要, 重要的是它更接近于真理。 ” ----维尔斯特拉斯   “思维的运动形式通常是这样的:有意识的研究-潜意识的活动-有意识的研究。”----庞加莱   “人生就是持续的斗争, 如果我们偶尔享受到宁静, 那是我们先辈顽强地进行了斗争。 假使我们的精神, 我们的警惕松懈片刻, 我们将失去先辈为我们赢得的成果。 ” ----庞加莱   “如果我们想要预见数学的将来, 适当的途径是研究这门学科的历史和现状。 ”----庞加莱   “我们必须知道, 我们必将知道。” ----希尔伯特   “扔进冰水, 由他们自己学会游泳, 或者淹死。 很多学生一直要到掌握了其他人做过的, 与他们问题有关的一切,才肯试着靠自己去工作, 结果是只有极少数人养成了独立工作的习惯。 ” ----ET贝尔   “一个人如果做了出色的数学工作, 并想引起数学界的注意, 这实在是容易不过的事情, 不论这个人是如何位卑而且默默无闻, 他只需做一件事:把他对结果的论述寄给 处于领导地位的权威就行了。”   ----莫德尔   “数学家通常是先通过直觉来发现一个定理; 这个结果对于他首先是似然的, 然后他再着手去制造一个证明。” ----哈代   “一个做学问的人, 除了学习知识外, 还要有“taste”, 这个词不太好翻译, 有的译成品味, 喜爱。 一个人要有大的成就, 就要有相当清楚的“taste。 ”----杨振宁   “如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。给我五个系数,我将画出一头大象;给我第六个系数,大象将会摇动尾巴。人必须确信,如果他是在给科学添加许多新的术语而让读者接着研究那摆在他们面前的奇妙难尽的东西,已经使科学获得了巨大的进展。”----柯西   “数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。”----陈省身   “科学需要实验。但实验不能绝对精确。如有数学理论,则全靠推论,就完全正确了。这是科学不能离开数学的原因。许多科学的基本观念,往往需要数学观念来表示。所以数学家有饭吃了,但不能得诺贝尔奖,是自然的。”   ---陈省身   “数学中没有诺贝尔奖,这也许是件好事。诺贝尔奖太引人注目,会使数学家无法专注于自己的研究。”   ----陈省身   “我们欣赏数学,我们需要数学。”----陈省身   “一个数学家的目的,是要了解数学。历史上数学的进展不外两途:增加对于已知材料的了解,和推广范围。”   ----陈省身   “虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现象。”----欧拉   “因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极大的或极小的法则,那就根本不会发生任何事情。”----欧拉   “迟序之数,非出神怪,有形可检,有数可推。”----祖冲之   “事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。又所析理以辞,解体用图,庶亦约而能周,通而不黩,览之者思过半矣。”----刘徽   “虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物。”----莱布尼茨   “不发生作用的东西是不会存在的。”----莱布尼茨   “考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标。” ----莱布尼茨   “几何看来有时候要领先于分析,但事实上,几何的先行于分析,只不过像一个仆人走在主人的前面一样,是为主人开路的。”----西尔维斯特   “也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我命名(已经流行通用)比起同时代其它数学家加在一起还要多。 ”----西尔维斯特   “一个没有几分诗人才能的数学家决不会成为一个完全的数学家。”----魏尔斯特拉斯

按照传统的定义,数学 是指研究数量关系和空间结构的一门学科。数学大体包括代数、几何、分析学、函数论、方程、概率、数论、数理逻辑、图论、组合论等几大类。所谓的数学研究工作,不仅是了解及整理已知的结果,还包含着创造新的数学成果与理论。会强调这点是因为许多人误解数学是一个已经被研究完的领域。事实上,数学上还有许多未知的领域和待解决的问题,也一直有大量新的数学成果发表。这些数学成果有些是新的数学知识,有些是是新的应用方式。所以心算家、珠算家不是数学家,数学家也不见得能够快速的做出各种计算。丘成桐博士为国际著名数学家,美国科学院院士,中国科学院外籍院士。1982年由于他在几何方面的杰出工作,获得了菲尔茨奖(被称之为数学的诺贝尔奖)。1994年,获得了瑞典皇家学员颁发的国际上著名的克雷福德奖(Clifford)。1997年获美国国家科学奖。丘成桐博士在科研方面做出了杰出的成就,赢得了许多荣誉。更为可贵的是,他十分关注中国基础研究的发展,并将其同自己的科研发展紧密联系在一起,多年来,一直运用他在国际上的影响和活动能力,协同各方面力量,为中国数学的发展作了大量的工作。欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导。欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法。"过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁。1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明。不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了。沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来。在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录。欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久。欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成。欧拉的风格是很高的,拉格朗从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生。等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算"。

模糊数学论文读后感四百字初中学生

《数学符号史》的启示 人类最早用来计数的工具是手指和脚趾,但它们只能表示20以内的数字。当数目很多时,大多数的原始人就用小石子来记数。渐渐地,人们又发明了打绳结来记数的方法,或者在兽皮、树木、石头上刻画记数。中国古代是用木、竹或骨头制成的小棍来记数,称为算筹。这些记数方法和记数符号慢慢转变成了最早的数字符号(数码)。如今,世界各国都使用阿拉伯数字为标准数字随着生产力的发展,数字符号的产生使得人类能够在时候进行更大规模的记录,进而产生了较早期的数字运算规律,再后来,阿拉伯数字符号的发明使得“算数”往“数学”过度有了可能。而数学运用数字符号表达记录了各种高级的,高度符号化了的,抽象的数学定律。随之产生的还有“几何”。正是这些数学规律使得人类能够量化地进行工程设计和施工,人类的工业开始能够制造出复杂庞大的系统。数学也是近代化学,物理,计算机科学等重要学科的基础和研究工具。所以说,数字符号的出现,是人类社会和智能发展的必然结果,也是人类社会进步的基石之一。 数字符号见证了我们的人类史上光辉传奇

写读后感的要诀我们读完一部作品或一篇文章后,自然会受到感动,产生许多感想,但这许多感想是零碎的,有些是模糊的,一闪而失要写读后感,就要善于抓住这些零碎、甚至是模糊的感想,反复想,反复作比较,找出两个比较突出的对现实有针对性的,再集中凝神的想下去,在深思的基础上加以整理也只有这样,才能抓住具有现实意义的问题,写出真实、深刻、用于解决人们在学习上、思想上和实践上存在问题的有价值的感想来第四,要真实自然就是要写自己的真情实感自己是怎样受到感动和怎样想的,就怎样写把自己的想法写的越具体、越真实,文章就会情真意切,生动活泼,使人受到启发从表现手法上看,读后感多用夹叙夹议,必要时借助抒情的方法叙述是联系实际摆事实议论是谈感想,讲道理抒情是表达读后的激情叙述的语言要概括简洁,议论要准确,抒情要集中三者要交融一体,切忌空话、大话套话、口号从表现形式上看,也有两种:一种是联系实际说明道理的这是用自己的切身体会和具体生动的事例,从理论和实践的结合上阐明一个道理的正确性,把理论具体化、形象化,使之有血有肉,有事有理,以事明理,生动活泼另一种是从研究理论的角度出发,阐发意义根据自己的研究和理解,阐明一个较难理解的思想观点,或估价一部作品的思想意义它的作用是从理论上帮助读者加深对原文的理解这一种读后感的重点仍在“感”字上,但它的理论性较强,一定要注意关照议论文论点鲜明、论据典型、中心明确突出等特点

数学真好玩读后感我今天看了一本书,叫《好玩的数学》。这本书可好看了,有许多魔术。我这个人向来就喜欢数学,这本书更是引人入胜。像拓扑变换呀,间隔相等哪,钟面猜心术什么的,原本乱糟糟谁也听不懂的怪东西都被它用深入浅出的手法,一个一个写得生动传神。这本书还有一个好处,就是能让你在集体活动中受欢迎。里面的一些数学魔术,不明底细的人常常会把它当作玩命。有机会表演,在场的人一定会拍手叫好。若是在联欢晚会上露一手,大家不羡慕你才怪呢!《好玩的数学》的确是一本有趣而长知识的书,真好。本书是“如何教好新课程丛书”中的一本,全书共分四章:从哪里获得数学教学素材、怎样用好教材实施教学、怎样开发学具与教具的新价值、如何在网络环境下开发教学资源。先说说第一章“从哪里获得数学教学素材”。书中列举了“趣味活动”、“日常生活”、“书报和网络”、“广告和宣传资料”、“游戏活动”五个不同的素材源。不论是有趣的数宝宝聚会,还是受中央电视台《正大综艺》节目中的“是真是假”栏目的影响而设计“这是真的吗?”来引导学生学年月日知识,抑或是找日记中的数学错误活动,都让人不得不慨叹:教学素材真是为有心人准备的。在日常生活中辨方向,利用“批发与零售”巧释连乘应用题的两种不同解法,从自然现象中看“循环”以帮助学生认识循环小数。第二章第一节“如何让学生在活动中学习概念”。在我记忆中的数学概念学习是较为枯燥的,几乎总是遵循“简单感受——告知结论——变式练习——理解概念”这样的教学模式。而本书推崇的是:对概念的学习与建构应该主要依靠学生自主、自觉的探究活动。在经历概念的形成过程之后,学生对概念的理解、掌握就会在脑子里生根发芽,在适合的土壤中,它能自主地生长,而不是教师用大量的练习“催熟”。书中所举的例子,关于“质数与合数”的教学,采用游戏方式教学效果非常好:让学生准备印有自己学号的卡片,贴在自己的身上,并把学号的因数写在卡片上,做成头饰戴在头上。上课时,先交流自己的学号号数以及号数的因数。随后,提出要求:在小组里把号数按因数的特点分成两类……另外,还有“自制扑克牌”(张数在50~100张之间,一张只写一个数,不能重复)可用来复习《数的整除》单元的知识。第三节“计算教学的思考”。在平时的教研活动中,几乎很难遇上计算教学方面的研讨。计算教学怎么就这么不招人待见呢?传统的计算教学往往是“算对就是硬道理”“一道例题一条法则”“读一读,记一记”“死记法则多练题”。于是,多年来,老师们便慨叹“这道题,我都不知道讲了多少遍,怎么学生还不会?”较好的办法是,让学生亮出“心中”的法则,在自己举例,尝试计算中体会算法,然后通过小组交流归纳出计算法则。与老师或书本将计算法则强加给学生相比,这种让学生经历学习过程后得到的感悟和理解,更有利于学生计算能力的提高。在比如教学三位数减法“300-97”时,可通过导演“没零钱,怎么办”的小品,在课上要求“演员”把“300-100+3”作为重要剧情进行展示。这样,在欣赏“找钱的过程”中,学生不知不觉地就能弄清“多减要加”的算理。对待学生的计算错误,不能因学生的一句“粗心呗”就草草了事,可以组织学习小组从计算心态、计算习惯、计算能力等方面找出出错的原因,并商议改进措施,使错误成为学生前进的铺路石。第四节“让‘量与计量’回归生活”。一看这个标题,我就想起今年上半年去花港观鱼时看到的一张通缉令上有关嫌疑人的描述:身高72cm。这一素材带回学校后,有些学生看了半天没看出问题所在。虽然,这不足以说明学生学的有关计量方面的知识与生活脱节,但在这段时间的复习卷中,遇到有关房子面积的题较为模糊——把“142平方米的房子”算成“42平方米”,不能不说是一种生活数学意识的缺失。因此,在教学量与计量时,宜让学生亲自感受,在玩中学,从而获得最直接的体验。第三章关于学具和教具开发的新价值。关于圆锥体积公式推导时同时用水和沙子做教具,在沙子装满透明容器后再用水去除空隙部分,这样观察等底等高圆柱和圆锥间的联系更有利。 在多方位认识物体时,充分利用学生的玩具做文章。再比如围棋子、小石子等也可以作为帮助学生掌握数位和数序的好学具。教学“角”这个知识时,可以充分利用每个儿童的身体部位做文章。总的来说,教具学具的开发应遵循“整合性(1+1>2)”、“生成性”和“创新性”原则。第四章关于如何在网络环境下开发教学资源,其中最引人注意的是网络环境促使学生作业形式的变革。作业变革是近段时间我极为关注的一个方面,让学生拥有一份能根据学习状况自己可选择、具有趣味性和创造性的作业一直是我对学生作业的一种美好愿望。书中的两个案例给我不少启发。一是借助专题性学习网站,让数学作业变脸,比如小学数学“年、月、日”的专题性学习网站中就包含“智慧岛”(分为年月日练习、平闰年练习、IQ题、综合检测题等等)、“网上答题聪明屋”、“作品展”、“日月时空、平闰年王国、课外资料库”。在做好技术准备后,可将作业分两个层次:一是每天10分钟的常规同步练习,在学校里就能完成;二是回家后指定在学校的某个专题性学习网站中选择性的联系。网络环境下的分层练习使不同层次的学生的学习能力得到了不同的发展。总的说来,这是一本值得小学数学教师读的书。

1、 两个男孩各骑一辆自行车,从相距2O英里(1英里合6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1O英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里?答案 每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2O英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。 许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰?冯·诺伊曼(John von Neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法”他解释道2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!”正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。 在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候?答案 由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。 既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。 这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑.3、 一架飞机从A城飞往B城,然后返回A城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城到B城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响?怀特先生论证道:“这股风根本不会影响平均地速。在飞机从A城飞往B城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从A城飞往B城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗?答案 怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的时间。逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。4、 《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。 问雄、兔各几何? 原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。 设x为雉数,y为兔数,则有 x+y=b, 2x+4y=a 解之得 y=b/2-a, x=a-(b/2-a) 根据这组公式很容易得出原题的答案:兔12只,雉22只。5、我们大家一起来试营一家有80间套房的旅馆,看看知识如何转化为财富。经调查得知,若我们把每日租金定价为160元,则可客满;而租金每涨20元,就会失去3位客人。 每间住了人的客房每日所需服务、维修等项支出共计40元。问题:我们该如何定价才能赚最多的钱?答案:日租金360元。虽然比客满价高出200元,因此失去30位客人,但余下的50位客人还是能给我们带来360*50=18000元的收入; 扣除50间房的支出40*50=2000元,每日净赚16000元。而客满时净利润只有160*80-40*80=9600元。当然,所谓“经调查得知”的行情实乃本人杜撰,据此入市,风险自担。6 数学家维纳的年龄,全题如下: 我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,维纳的年龄是多少? 解答:咋一看,这道题很难,其实不然。设维纳的年龄是x,首先岁数的立方是四位数,这确定了一个范围。10的立方是1000,20的立方是8000,21的立方是9261,是四位数;22的立方是10648;所以10=

相关百科