杂志信息网-创作、查重、发刊有保障。

工业废水处理技术论文研究的技术路线

发布时间:2024-08-02 22:43:36

工业废水处理技术论文研究的技术路线

(1)发展和采用不用水或少用水及无污染或少污染的新工艺、新技术,如用干法熄焦,炼焦煤预热,直接从焦炉煤气脱硫脱氰等;(2)发展综合利用技术,如从冶金工业废水废气中回收有用物质和热能,减少物料燃料流失;(3)根据不同冶金工业废水水质要求,综合平衡,串流使用,同时改进水质稳定措施,不断提高水的循环利用率;(4)发展适合冶金工业废水特点的新的处理工艺和技术,如用磁法处理钢铁废水.具有效率高,占地少,操作管理方便等优点。

背景煤化工废水近零排放:煤化工是指以煤为原料,经化学加工转化为气体、液体和固体燃料及化学品的过程,是针对我国“富煤、贫油、少气”的能源特点发展起来的基础产业。近年来,受市场需求等因素的刺激,煤炭富集区煤化工产业呈现爆发式增长态势,《“十二五”规划纲要》明确提出,推动能源生产和利用方式变革,从生态环境保护滞后发展向生态环境保护和能源协调发展转变。我国水资源和煤炭资源逆向分布,煤炭资源丰富的地域,往往既缺水又无环境容量。煤化工废水如果不加以达标处理直接排入受纳水体会对周围水环境造成较大的污染和破坏,造成可利用的水资源量更加紧缺。因此,我国煤化工废水实施“近零排放”,实现废水回用及资源化利用势在必行。何为近零排放煤化工废水近零排放是以解决我国煤化工水资源及废水处理难题为目标,形成的煤化工废水处理及资源化利用重大技术研究领域。目前,该领域已基本确立“预处理—生化处理—深度处理—高盐水处理”实现“近零排放”的技术路线。但是,最终产生的结晶盐仍然含有多种无机盐和大量有机物。从加强环境保护的角度出发,煤化工高盐水产生的杂盐被暂定为危险废物。按目前的处理技术,一次脱盐处理后仅有60%~70%的淡水能回用。如果真正的零排放还需要把剩余的30%~40%浓盐水浓缩再处理进行回用。现代煤化工企业废水按照含盐量可分为两类:一是高浓度有机废水。 主要来源于煤气化工艺废水等, 其特点是含盐量低、污染物以COD为主;二是含盐废水。主要来源于生产过程中煤气洗涤废水、循环水系统排水、除盐水系统排水、回用系统浓水等,,其特点是含盐量高。煤化工废水“零排放”处理技术主要包括煤气化废水的预处理、生化处理、深度处理及浓盐水处理几大部分。预处理:由于煤气化废水中酚、氨和氟含量很高,而回收酚和氨不仅可以避免资源的浪费,而且大幅度降低了预处理后废水的处理难度。通常情况下,煤气化废水的物化预处理过程有:脱酚,除氨,除氟等。生化处理:预处理后,煤气化废水的COD含量仍然较高,氨氮含量为50~200mg/l,BOD5/COD范围为25~35,因此多采用具有脱氮功能的生物组合技术。目前广泛使用的生物脱氮工艺主要有:缺氧-好氧法(A/O工艺)、厌氧-缺氧-好氧法(A-A/O工艺)、SBR法、氧化沟、曝气生物滤池法(BAF)等。深度处理:多级生化工艺处理后出水COD仍在100~200mg/l,实现出水达标排放或回用都需进一步的深度处理。目前,国内外深度处理的方法主要有混凝沉淀法、高级氧化法、吸附法或膜处理技术。浓盐水处理: 针对含盐量较高的气化废水等,TDS浓度一般在10000mg/L左右,除了先通过预处理和生化处理以外,通常后续采用超滤和反渗透膜来除盐,膜产水回用,浓水进入蒸发结晶设施,这也是实现污水零排放的重点和难点所在。ZDP工艺解决煤化工废水近零排放难题海普创新开发了废水近零排放ZDP工艺该工艺可将生化尾水COD由200-500 mg/L,降低至50 mg/L以下,从而有效保护反渗透膜,避免其被污染,同时将单级反渗透产水率由45-50%提高至65-70%,两级反渗透产水率高于90%,并且反渗透浓水COD值低于150mg/L,且无色,可进一步蒸发得到副产品盐,实现废水“零”排放。其中DEEP工艺段可将尾水COD降至50mg/L以下,出水无色,高效稳定,极大地降低了膜进水负荷,避免有机物污染反渗透膜,提高单级RO产水率;或避免(催化)氧化工艺残留的氧化剂对RO膜的氧化腐蚀;而RO浓水深度处理段则可将反渗透污水COD降至150mg/L内,易于后续分盐、近零排放,(电)催化、臭氧效率低,很难低于150mg/L工艺进出水对比在双膜之间引入吸附后产水率提升煤化工行业近零排放项目现场

材料成本下降、使用寿命延长,预处理要求降低是MBR的主要方向

楼主 你好,  对于研究本人没有研究。但是对于设计及应用本人遇到一些难题,希望能给楼主以后的研究带来灵感同时为行业的发展做出贡献。 MBR作为较时髦的工艺有以下优点:出水水质感官好;膜使曝气池中污泥浓度、颗粒尺寸、氧利用率均发生变化,有效提高COD、TOC、色度、病菌和SS的去除率;对世代时间长的硝化菌的有效截留,使硝化和反硝化更有效。占地面积小,对于电力、石化和工业园区更实用,对于大规模的市政污水处理应用应当慎重;促进带动相关工业的发展。  但是问题太多了:  1能耗高,(产水抽吸、气洗膜丝)  2运行问题多:如何解决组件结构复杂昂贵?如何检查系统故障? 如何保障系统的稳定性进行?如何取出膜组件?如何修理膜组件? 如何对膜系统进行有效清洗? 如何控制以实现精确的气洗?如何控制以实现精确的药洗?如何降低气水比(能耗)?如何使气洗更均匀能耗降低?如何实现精确曝气?如何控制生化池的氧气的利用?如何实现在线控制以及前馈控制?如何实现高标准的脱氮?如何实现外加碳源的精确投加?如何解决膜丝的污堵及避免不可逆污堵的发生?如何解决膜池前端异物的稳定性拦截(预处理的稳定性问题)?如何解决低度水温情况下膜通量的下降?如何蓝底含油及酚类污水对膜的损害?如何解决在催化剂作用下无极的聚集对膜丝的损害?  3对设备的要求更高:精确曝气的曝气头、高负荷污泥浓度的推流器、膜擦洗风机及曝气风机、膜丝的韧性、膜的通量、膜组架的集成稳定化等等。   另外一些问题:  膜厂商在组件设计形式上不同统一,对于设计单位选择上比较困难,对于运行单位更换时存在壁垒。  MBR对于运行方来说,与传统工艺不同,基本是全自动的控制,对运行商的自控反应能力等要求很高。一个好的技术如果运行的不好,也不能起到发挥应有的作用。  超大规模的市政污水处理厂,特别是排水严格的地区,由于水质不稳定可能造成膜堵塞,会出现排水不稳定的情况,并不适宜采用MBR技术。   哎,一堆问题。  作为一线工作人员,我希望同研究者继续探讨交流,以解决这些挠头的问题~

工业废水处理技术论文研究的技术路线是什么

背景煤化工废水近零排放:煤化工是指以煤为原料,经化学加工转化为气体、液体和固体燃料及化学品的过程,是针对我国“富煤、贫油、少气”的能源特点发展起来的基础产业。近年来,受市场需求等因素的刺激,煤炭富集区煤化工产业呈现爆发式增长态势,《“十二五”规划纲要》明确提出,推动能源生产和利用方式变革,从生态环境保护滞后发展向生态环境保护和能源协调发展转变。我国水资源和煤炭资源逆向分布,煤炭资源丰富的地域,往往既缺水又无环境容量。煤化工废水如果不加以达标处理直接排入受纳水体会对周围水环境造成较大的污染和破坏,造成可利用的水资源量更加紧缺。因此,我国煤化工废水实施“近零排放”,实现废水回用及资源化利用势在必行。何为近零排放煤化工废水近零排放是以解决我国煤化工水资源及废水处理难题为目标,形成的煤化工废水处理及资源化利用重大技术研究领域。目前,该领域已基本确立“预处理—生化处理—深度处理—高盐水处理”实现“近零排放”的技术路线。但是,最终产生的结晶盐仍然含有多种无机盐和大量有机物。从加强环境保护的角度出发,煤化工高盐水产生的杂盐被暂定为危险废物。按目前的处理技术,一次脱盐处理后仅有60%~70%的淡水能回用。如果真正的零排放还需要把剩余的30%~40%浓盐水浓缩再处理进行回用。现代煤化工企业废水按照含盐量可分为两类:一是高浓度有机废水。 主要来源于煤气化工艺废水等, 其特点是含盐量低、污染物以COD为主;二是含盐废水。主要来源于生产过程中煤气洗涤废水、循环水系统排水、除盐水系统排水、回用系统浓水等,,其特点是含盐量高。煤化工废水“零排放”处理技术主要包括煤气化废水的预处理、生化处理、深度处理及浓盐水处理几大部分。预处理:由于煤气化废水中酚、氨和氟含量很高,而回收酚和氨不仅可以避免资源的浪费,而且大幅度降低了预处理后废水的处理难度。通常情况下,煤气化废水的物化预处理过程有:脱酚,除氨,除氟等。生化处理:预处理后,煤气化废水的COD含量仍然较高,氨氮含量为50~200mg/l,BOD5/COD范围为25~35,因此多采用具有脱氮功能的生物组合技术。目前广泛使用的生物脱氮工艺主要有:缺氧-好氧法(A/O工艺)、厌氧-缺氧-好氧法(A-A/O工艺)、SBR法、氧化沟、曝气生物滤池法(BAF)等。深度处理:多级生化工艺处理后出水COD仍在100~200mg/l,实现出水达标排放或回用都需进一步的深度处理。目前,国内外深度处理的方法主要有混凝沉淀法、高级氧化法、吸附法或膜处理技术。浓盐水处理: 针对含盐量较高的气化废水等,TDS浓度一般在10000mg/L左右,除了先通过预处理和生化处理以外,通常后续采用超滤和反渗透膜来除盐,膜产水回用,浓水进入蒸发结晶设施,这也是实现污水零排放的重点和难点所在。ZDP工艺解决煤化工废水近零排放难题海普创新开发了废水近零排放ZDP工艺该工艺可将生化尾水COD由200-500 mg/L,降低至50 mg/L以下,从而有效保护反渗透膜,避免其被污染,同时将单级反渗透产水率由45-50%提高至65-70%,两级反渗透产水率高于90%,并且反渗透浓水COD值低于150mg/L,且无色,可进一步蒸发得到副产品盐,实现废水“零”排放。其中DEEP工艺段可将尾水COD降至50mg/L以下,出水无色,高效稳定,极大地降低了膜进水负荷,避免有机物污染反渗透膜,提高单级RO产水率;或避免(催化)氧化工艺残留的氧化剂对RO膜的氧化腐蚀;而RO浓水深度处理段则可将反渗透污水COD降至150mg/L内,易于后续分盐、近零排放,(电)催化、臭氧效率低,很难低于150mg/L工艺进出水对比在双膜之间引入吸附后产水率提升煤化工行业近零排放项目现场

1、技术路线是指对要达到研究目标准备采取的技术手段、具体步骤及解决关键性问题的方法等在内的研究途径合理的技术路线可保证顺利的实现既定目标技术路线的合理性并不是技术路线的复杂性;2、技术路线是指进行研究的具体程序的操作步骤,应尽可能详尽每一步骤的关键点要阐述清楚并具有可操作性如有可能,可以使用流程图或示意图加以说明,以达到一目了然的效果。

中国知网也好!万方数据也好都有例子!甚至百度文库都有!  ==================论文写作方法===========================  论文网上没有免费的,与其花人民币,还不如自己写,万一碰到骗人的,就不上算了。  写作论文的简单方法,首先大概确定自己的选题,然后在网上查找几份类似的文章,通读一遍,对这方面的内容有个大概的了解!  参照论文的格式,列出提纲,补充内容,实在不会,把这几份论文综合一下,从每篇论文上复制一部分,组成一篇新的文章!  然后把按自己的语言把每一部分换下句式或词,经过换词不换意的办法处理后,网上就查不到了,祝你顺利完成论文!

氨氮废水处理技术

多谢分享!

多谢分享

谢谢分享

我这边有脱气膜法除氨氮

实用水处理技术丛书--发酵工业废水处理

顶一下,感谢分享!

谢谢楼主分享,正需要这本书!

谢谢分享!!!

有没有汽车工业的呢

工业废水处理技术论文范文大全

工业废水处理方法流程

可以去114论文网参考下,下面是新技术,希望感兴趣加载絮凝磁分离(简称BFMS)工艺原理和优势BFMS技术是在传统的絮凝工艺中,加入磁粉,以增强絮凝的效果,形成高密度的絮体和加大絮体的比重,达到高效除污和快速沉降的目的。磁粉的离子极性和金属特性,作为絮体的核体,大大地强化了对水中悬浮污染物的絮凝结合能力,减少絮凝剂用量,在去除悬浮物,特别是在去除磷、细菌、病毒、油、重金属等方面的效果比传统工艺要好。由于磁粉的比重高达0×10³kg/m³,大约是砂子的两倍,混有磁粉的絮体比重增大,絮体快速沉降,速度可达20米/时以上,整个水处理从进水到出水可在10分钟左右完成。污泥中的磁粉,利用磁粉本身的特性使用磁鼓进行分离后回收并在系统中循环使用。高梯度磁过滤器捕集流过水中的残余微小颗粒,磁过滤器依照设定的要求被自动清洗,以达到高度净化出水的目的。根据在美国采用BFMS作深度水处理的报告,磁过滤器可达到去除26纳米病菌的结果。下面图示说明了BFMS工艺的处理过程。BFMS Process 加载絮凝磁分离工艺絮凝/ + 加载絮凝+ 沉淀分离+磁过滤Coagulation+Baiiasted Flocculation+Solids Separation+Magnetic Separation该工艺以前在工程中应用很少,原因是磁种的回收技术一直没有很好的解决,而现在这一技术难点已成功地被突破,磁种的回收率达到99%以上,该工艺技术在美国也进行了项目示范和商业项目运行。我们公司已在国内申请多项专利,形成了公司的自主知识产权。在过去三年中,我们公司用250吨/日的中试车已在城市污水处理、中水回用、地表水和地下水以及自来水处理、江水、湖水、河道水处理、高磷废水处理、造纸废水处理、采矿废水处理、炼油和油田废水处理方面成功的做了多项不同运行参数的试验,取得很好的结果;10000吨/日的中试车已于2007年5月在青岛李村河入海口的城市污水投入运行一个月,运行良好。在北京金源经开污水处理厂的出水进行除高磷深度处理运行月余,处理效果佳。作为奥运会应急城市污水处理工程,在北京清河污水厂安装了4×10000吨/日和2×5000吨/日共6组BFMS系统,综合处理效果好。该技术在胜利油田应用于处理采油废水的东营胜利油田一期工程(5000吨/日)已经投入使用,油田500吨/日地下水BFMS项目和30000吨/日采油水BFMS项目也在实施中。与其他工艺相比,磁分离技术具有以下优点:1) BFMS工艺能应用于城市污水的一级、二级、三级、中水和各种工业污水以及饮用水。2) 处理效果好,其出水质与超滤膜出水相媲美,BFMS工艺能有效地从水中除去微粒污染物、微生物污染物和部分已溶解于水中的污染物,如:COD、BOD、悬浮物、总磷、色度、浊度等,特别是对磷有强大的去除效果。也能结合生物工艺非常有效和经济地脱氮。3) 耐冲击负荷能力强,对水质的冲击有独特的耐冲击能力。当前段工序出现故障时,或其他有害金属离子进入污水处理系统,污水可直接进入磁分离系统,系统仍然能够保持较高的去除效果,大幅度去除水中污染物。4) 占地极小,20000吨/日BFMS系统的占地约为400㎡左右,另加走道、加药及操作设施总占地约700㎡左右。5) 投资低,比膜处理有明显的优势。6) 运行成本低,设备使用寿命长,除了正常的维护外,不用更换部件而造成高昂的二次投资。7) 运行管理方便,启动快捷,运行管理简单。

工业废水的有效治理应遵循如下原则:  ①最根本的是改革生产工艺,尽可能在生产过程中杜绝有毒有害废水的产生。如以无毒用料或产品取代有毒用料或产品。  ②在使用有毒原料以及产生有毒的中间产物和产品的生产过程中,采用合理的工艺流程和设备,并实行严格的操作和监督,消除漏逸,尽量减少流失量。  ③含有剧毒物质废水,如含有一些重金属、放射性物质、高浓度酚、氰等废水应与其他废水分流,以便于处理和回收有用物质。  ④一些流量大而污染轻的废水如冷却废水,不宜排入下水道,以免增加城市下水道和污水处理厂的负荷。这类废水应在厂内经适当处理后循环使用。  ⑤成分和性质类似于城市污水的有机废水,如造纸废水、制糖废水、食品加工废水等,可以排入城市污水系统。应建造大型污水处理厂,包括因地制宜修建的生物氧化塘、污水库、土地处理系统等简易可行的处理设施。与小型污水处理厂相比,大型污水处理厂既能显著降低基本建设和运行费用,又因水量和水质稳定,易于保持良好的运行状况和处理效果。  ⑥一些可以生物降解的有毒废水如含酚、氰废水,经厂内处理后,可按容许排放标准排入城市下水道,由污水处理厂进一步进行生物氧化降解处理。  ⑦含有难以生物降解的有毒污染物废水,不应排入城市下水道和输往污水处理厂,而应进行单独处理。  工业废水处理发展趋势  在水和其他资源日渐短缺以及环境污染治理日益迫切的情况下,工业废水处理的发展趋势是:把水和污染物作为有用资源回收利用和实行闭路循环。这可分为水和污染物综合循环回用。水和污染物各自单独循环回用。

企业的工业废水,主要分布在电子、塑胶、电镀、五金、印刷、食品、印染等行业。从工业废水的排放量和对环境污染的危害程度来看,电镀、线路板、表面处理等以无机类污染物为主的工业废水和食品、印染、印刷及生活污水等以有机类污染物为主的工业废水是处理的重点。本文主要介绍几种比较典型的工业废水处理技术。 在对零件进行磨光与抛光过程中,由于磨料及抛光剂等存在,工业废水中主要污染物为COD、BOD、SS。一般可参考以下工业废水处理工艺流程进行处理: 废水→调节池→混凝反应池→沉淀池→水解酸化池→好氧池→二沉池→过滤→排放 常见的脱脂工艺有:有机溶剂脱脂、化学脱脂、电化学脱脂、超声波脱脂。除有机溶剂脱脂外,其它脱脂工艺中由于含碱性物质、表面活性剂、缓蚀剂等组成的脱脂剂,工业废水中主要的污染物为pH、SS、COD、BOD、石油类、色度等。一般可以参考以下工业废水处理工艺进行处理:废水→隔油池→调节池→气浮设备→厌氧或水解酸化→好氧生化→沉淀→过滤或吸附→排放该类工业废水一般含有乳化油,在进行气浮前应投加CaCl2破乳剂,将乳化油破除,有利于用气浮设备去除。当废水中COD浓度高时,可先采用厌氧生化处理,如不高,则可只采用好氧生化处理。 酸洗工业废水主要在对钢铁零件的酸洗除锈过程中产生,废水pH一般为2-3,还有高浓度的Fe2+,SS浓度也高。可参考以下工业废水处理工艺进行处理:废水→调节池→中和池→曝气氧化池→混凝反应池→沉淀池→过滤池→pH回调池→排放磷化废水又叫皮膜废水,指铁件在含锰、铁、锌等磷酸盐溶液中经过化学处理,表面生成一层难溶于水的磷酸盐保护膜,作为喷涂底层,防止铁件生锈。该类工业废水中的主要污染物为:pH、SS、PO43-、COD、Zn2+等。可参考以下工业废水处理工艺进行处理:废水→调节池→一级混凝反应池→沉淀池→二级混凝反应池→二沉池→过滤池→排放铝的阳极氧化工业废水所含污染物主要为pH、COD、PO43-、SS等,因此可采用磷化工业废水处理工艺对阳极氧化废水进行处理。 针对高浓度挥发性有机废水,可采用新型的水中蒸发浓缩技术,使高浓度疑难废水实现零排放的要求。处理过程为:废水直接喷射在火焰上,将水中的有机物高温氧化做以消灭性处理,在将燃烧后的产物溶解在水中,进行蒸发浓缩处理,由于焚烧蒸发浓缩是在同一系统设备中进行,故此其占地小,因其使废水中的有机物做以消灭性处理,所有实现了其废水零排放的目的。

相关百科