杂志信息网-创作、查重、发刊有保障。

数学思维与数学文化论文选题怎么写

发布时间:2024-08-01 09:22:23

数学思维与数学文化论文选题怎么写

初中数学论文|呈现本质,提高初中数学课堂效果 [摘要] 数学的教学,最终要教师本人落实到课堂中去,要做到切实提高课堂教学效果,就要求我们教师“凡是你教的

简单考虑,从以下几个方面写可能比较好:数学的思维(严密性、深邃性、直觉性……也可以参考三种哲学流派)数学的形式(体系的完备性、定理和公式的美学性)数学对人格塑造(对人的思维模式的塑造、性格特征的塑造、著名数学家的特点等)

论文的基本写作思路:就是“三段论”,即“是什么?”,“为什么?”,“怎么办?”。1、首先解释数学文化是什么, 具体概念是什么,也就是定义以及相关情况。2、详细进行论述问题, 对你要论述的问题进行展开分析、数学文化的起源,发展过程,这是重点,应当说透。3、提出论文的结论。分析了问题以后,就是怎么解决问题,也是具体对策、办法。要给人以启示、启发,看了有所收获。第1章  绪论一篇完整的论文通常由题目、摘要、目录、正文、结论、参考文献、致谢、附录等几部分构成,除外语类专业外一律采用汉语撰写。论文的总篇幅包括图表在内(附录除外),理、工、管理、文科(除外语)论文正文部分字数应不少于10000字,外语专业论文3000~5000个(外文)单词,且必须用外文撰写。第一级标题要另起一页,用三号黑体居中,行间距20磅,段前距18磅,段后距30磅,数字与标题之间空两个中文字符。正文用小四号宋体,段落行间距为20磅,段前段后均为0。首行缩进2个中文字符。第2章  正文要求论文的正文是主体部分,要着重反映自己的工作,突出新的见解,例如新思想、新观点、新规律、新研究方法、新结果等。正文可以包括:调查对象、实验和观测方法、仪器设备、材料原料、实验和观测结果、计算方法和编程原理、数据资料、经过加工整理的图表、形成的论点和导出的结论等。正文要求论点正确,推理严谨,数据可靠,文字精练,条理分明,文字图表清晰整齐。利用别人研究成果必须附加说明。引用前人材料必须引证原著文字。在论文的行文上,要注意语句通顺,达到科技论文所必须具备的“正确、准确、明确”的要求。由于研究工作涉及的学科、选题、研究方法、工作进程、结果表达方式等有很大的差异,不对正文内容作统一硬性的规定。但是,必须实事求是,合乎逻辑,层次分明。第3章 结论结论是理论分析和实验结果的逻辑发展,是整篇论文的归宿。结论是在理论分析、试验结果的基础上,经过分析、推理、判断、归纳的过程而形成的总观点。结论的措词必须严谨,逻辑性必须严密,文字必须鲜明具体。如果不可能导出应用的结论,也可以没有结论,但需进行必要的讨论。结论的内容应包含论文中研究的问题、采用的方法、得出的结果,另外可以在结论或讨论中提出建议、研究设想、仪器设备改进意见、尚待解决的问题。按照以上的顺序先把大体结构写出来,再进行细微整合即可。

数学思维与数学文化论文选题

大象希形——略论《道德经》中的“数”我国古代建筑的对称之美——数字解读**建筑(故宫等)

浅谈数学文化中的和合思想和合是我国传统文化的一个重要概念。“和”是平和、和谐、祥和、协调的意思。“合”是合作、对称、结合、统一的意思。和合思想认为,整个物质世界是一个和谐的整体,宇宙、自然、社会、精神各元素都处在一个和谐的优化结构中。而数学文化系统就是一个完美的和谐优化结构。数学文化中的数学发展史、数学哲学思想、数学方法、数学美育等重要内容蕴含着丰富的和合思想。其具体体现是整体系统性、平衡稳定性、有序对称性。一、整体系统性数学公理系统的相容性数学的公理化系统具有相容性、独立性和完备性。在这三项基本要求中,最主要的是相容性。相容性就是不矛盾性或和谐性,是指各公理不能互相抵触,它们推导的真命题也不能互相矛盾,公理系统的相容性是数学系统和谐的基础,也是基本要求。除了数学各分支自身要形成相容的公理系统之外,数学还要求各分支之间互相协调,不能互相抵触。有的系统之间,还形成密切的同构关系,在不同的数学系统之间,相容性是一致的。例如欧氏几何与非欧几何(罗式几何、黎曼几何)中平行公理是互否的命题,可在欧氏几何中构造非欧几何的模型,所以可以这样说只要欧氏几何无矛盾,那么非欧几何也是无矛盾的。数学运算系统的完整性数学的运算法则、运算公式、运算结论都是完整的、准确的。特别是数学的运算语言,它把文字语言、符号语言、图像语言完全融合到一个统一体中,互相印证、互相诠释、互相转化,达到了天衣无缝的完美。当扩充数系时,要建立新的理论和运算拓广原有运算和关系时,要尽量保持原有的运算、关系的一致性,如有不一致,必须作一规定,使新系统与原有系统和谐。数学推理系统的严密性在我们日常的数学活动中,常常用到反证法,在这种方法中,往往不仅要用到系统的公理和定理,而且要用到其他分支的知识。在整个推理过程中要和谐。例如古希腊三大著名问题之一化圆为方,即作一个与给定圆面积相等的正方形。要证明用圆规和直尺不能作出等面积的正方形就需要用到数“=”的超越性。在数学上的等式、解析式中出现“=”是和谐的体现。二、平衡稳定性“和合思想”认为天地自然万物处于平衡、和谐、有序的状态。各个事物、要素互依、互涵、互补,处于全面的、立体的相互作用的过程之中。而数学的平衡稳定性很好地体现了和合思想。数学发展的平衡稳定数学科学与其它学科相比,一个重要的特点就是历史的累积性、发展的平衡稳定性。也就是说重大的数学理论总是在继承和发展原有理论的基础上建立起来的,他们不仅不会推翻原有的理论,而且总是包容原有的理论。比如天文学的“地心说”被“日心说”所代替,物理学中关于光的“粒子说”被“波动说”代替,化学中的“燃素说”被“氧化说”代替等等,而数学从来没有发生过这样的情况。这正如一位数学史家H?汉科尔所说:“在大多数学科里,一代人的建筑为下一代人所拆毁,一个人的创造被另一个人所破坏,唯独数学,每一代人都在古老的大厦上添加一层楼”。数学的这一平衡稳定性,正是数学学科能不断焕发出无限活力和强大生命力根源。数学学习过程的平衡稳定人们对知识的学习过程都含有一定的认知结构。而学生学习数学知识的过程不外乎“同化—顺应—平衡”这样一个相对稳定的过程。同化就是把新的知识纳入已有的认知结构,使原有的知识体系不断得到充实丰富。顺应就是新的知识不能纳入原有的认知结构,就要对原有认知结构进行改造和提高,从而建立新的认知结构。平衡就是同化和顺应后,都有一个巩固阶段,在这一阶段对知识的理解和内化是平衡稳定的。人们对数学知识的学习正式在“同化—顺应—平衡”这样一个循环往复的过程中发展的。数学方法的平衡稳定数学方法是认识数学客体过程中某种有规律的程序和手段,使理论用于实践的中介,各种方法都和谐地存在在数学这个共同体中。比如常用的数学思维方法:观察、分析、综合、抽象、猜想、类比、归纳、演绎;还有常用的数学解题方法:比较方法、结构方法、模型方法、构造方法、化归方法、映射反演法、几何变换法、公理化方法等。这些方法,无论是在初等数学中,还是在高等数学中;无论是在几何学中,还是在代数学中,都在广泛的运用,始终处于平衡稳定状态中,不会因时间、空间、以及学科的变化发生变异。几何变换思想和方法,就是用运动和变化的观点去研究几何对象及其相互关系,探讨图形运动过程中不变的关系、不变量和变化关系、变化量,从中找出规律。在解题过程中,对图形有关部分进行变换,化不规则为规则,化一般为特殊,化不利条件为有利条件。三、有序对称性“凡物必有合”,“合”就是对称、结合、统一。整个世界不仅和谐合理,而且阴阳和合的对称。数学的有序对称美在初等数学中研究的对称性,可以描述的是一个图形、一个式子各个部分的关系,也可以描述两个图形、式子的关系。图形、式子的变换显示着数学中的对称美。图形对称可称为狭义对称,例如中心对称图形、轴对称图形、旋转对称图形是图形位置的一种对称。显示一种对称的美。在许多概念中和方法、命题、公式、法则中也存在对称性,也可称为一种对称。在数学中,许多概念都是一正一反,相辅相成,成对出现的。例如数学运算中加与减、乘与除、乘方与开方、微分与积分等,都可认为是一阴一阳的对称;减一个负数可变成加一个正数,除可以变成乘的运算,所以说它们之间又是统一有序的。在二元运算中通过交换律、结合律、分配律来反映其对称性。数学解题过程的有序结构从文化的角度审视数学解题过程它是数学策略、数学逻辑、数学方法、数学知识、数学技能与程式化的有机结合,是一个有序结构的统一体。比如解方程过程的基本步骤是:去分母、去括号、移项合并、两边同除以未知数的系数。这是一个和谐的有序结构。破坏了这个有序结构,就会发生解题障碍。从思维过程看,它是“观察———联想———转化”这样一个有序过程。观察是联想的基础,在观察中认识所给题目的特征;联想是转化的桥梁,在联想中寻找解题途径;转化是解题的手段,在转化中确定解题方案,从而最终解决问题。数学无论是从整体和局部,形式和内容,还是结果和过程都体现着和合思想的精神和内涵。我们用“和合思想”重新认识数学,发挥数学文化在教学中的教育功能,就能有效地培养学生科学素养和文化素养。参考文献:[1]齐民友数学文化[M]长沙:湖南教育出版社,[2]张维忠数学文化与数学课程[M]上海:上海教育出版社,[3]郑毓信数学文化学[M]成都:四川教育出版社,[4]李文林数学史教程[M]高教出版社

数学类论文感想类的比较好写,巴巴适适论文吧 全博士专业论文辅导团队,提供课程论文、毕业论文、硕士论文、博士论文,数学论文发表、数学教学论文发表

数学的文化价值 一、数学是哲学思考的重要基础   数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。   (一)数学——-根源于实践   数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业革命,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。   数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。   其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。   其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。   但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的独立性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。   总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。   (二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗?   事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。   数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是独立的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现 数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。   有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。   就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都采取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思主义经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。

数学思维与数学文化论文选题方向

浅谈数学文化中的和合思想和合是我国传统文化的一个重要概念。“和”是平和、和谐、祥和、协调的意思。“合”是合作、对称、结合、统一的意思。和合思想认为,整个物质世界是一个和谐的整体,宇宙、自然、社会、精神各元素都处在一个和谐的优化结构中。而数学文化系统就是一个完美的和谐优化结构。数学文化中的数学发展史、数学哲学思想、数学方法、数学美育等重要内容蕴含着丰富的和合思想。其具体体现是整体系统性、平衡稳定性、有序对称性。一、整体系统性数学公理系统的相容性数学的公理化系统具有相容性、独立性和完备性。在这三项基本要求中,最主要的是相容性。相容性就是不矛盾性或和谐性,是指各公理不能互相抵触,它们推导的真命题也不能互相矛盾,公理系统的相容性是数学系统和谐的基础,也是基本要求。除了数学各分支自身要形成相容的公理系统之外,数学还要求各分支之间互相协调,不能互相抵触。有的系统之间,还形成密切的同构关系,在不同的数学系统之间,相容性是一致的。例如欧氏几何与非欧几何(罗式几何、黎曼几何)中平行公理是互否的命题,可在欧氏几何中构造非欧几何的模型,所以可以这样说只要欧氏几何无矛盾,那么非欧几何也是无矛盾的。数学运算系统的完整性数学的运算法则、运算公式、运算结论都是完整的、准确的。特别是数学的运算语言,它把文字语言、符号语言、图像语言完全融合到一个统一体中,互相印证、互相诠释、互相转化,达到了天衣无缝的完美。当扩充数系时,要建立新的理论和运算拓广原有运算和关系时,要尽量保持原有的运算、关系的一致性,如有不一致,必须作一规定,使新系统与原有系统和谐。数学推理系统的严密性在我们日常的数学活动中,常常用到反证法,在这种方法中,往往不仅要用到系统的公理和定理,而且要用到其他分支的知识。在整个推理过程中要和谐。例如古希腊三大著名问题之一化圆为方,即作一个与给定圆面积相等的正方形。要证明用圆规和直尺不能作出等面积的正方形就需要用到数“=”的超越性。在数学上的等式、解析式中出现“=”是和谐的体现。二、平衡稳定性“和合思想”认为天地自然万物处于平衡、和谐、有序的状态。各个事物、要素互依、互涵、互补,处于全面的、立体的相互作用的过程之中。而数学的平衡稳定性很好地体现了和合思想。数学发展的平衡稳定数学科学与其它学科相比,一个重要的特点就是历史的累积性、发展的平衡稳定性。也就是说重大的数学理论总是在继承和发展原有理论的基础上建立起来的,他们不仅不会推翻原有的理论,而且总是包容原有的理论。比如天文学的“地心说”被“日心说”所代替,物理学中关于光的“粒子说”被“波动说”代替,化学中的“燃素说”被“氧化说”代替等等,而数学从来没有发生过这样的情况。这正如一位数学史家H?汉科尔所说:“在大多数学科里,一代人的建筑为下一代人所拆毁,一个人的创造被另一个人所破坏,唯独数学,每一代人都在古老的大厦上添加一层楼”。数学的这一平衡稳定性,正是数学学科能不断焕发出无限活力和强大生命力根源。数学学习过程的平衡稳定人们对知识的学习过程都含有一定的认知结构。而学生学习数学知识的过程不外乎“同化—顺应—平衡”这样一个相对稳定的过程。同化就是把新的知识纳入已有的认知结构,使原有的知识体系不断得到充实丰富。顺应就是新的知识不能纳入原有的认知结构,就要对原有认知结构进行改造和提高,从而建立新的认知结构。平衡就是同化和顺应后,都有一个巩固阶段,在这一阶段对知识的理解和内化是平衡稳定的。人们对数学知识的学习正式在“同化—顺应—平衡”这样一个循环往复的过程中发展的。数学方法的平衡稳定数学方法是认识数学客体过程中某种有规律的程序和手段,使理论用于实践的中介,各种方法都和谐地存在在数学这个共同体中。比如常用的数学思维方法:观察、分析、综合、抽象、猜想、类比、归纳、演绎;还有常用的数学解题方法:比较方法、结构方法、模型方法、构造方法、化归方法、映射反演法、几何变换法、公理化方法等。这些方法,无论是在初等数学中,还是在高等数学中;无论是在几何学中,还是在代数学中,都在广泛的运用,始终处于平衡稳定状态中,不会因时间、空间、以及学科的变化发生变异。几何变换思想和方法,就是用运动和变化的观点去研究几何对象及其相互关系,探讨图形运动过程中不变的关系、不变量和变化关系、变化量,从中找出规律。在解题过程中,对图形有关部分进行变换,化不规则为规则,化一般为特殊,化不利条件为有利条件。三、有序对称性“凡物必有合”,“合”就是对称、结合、统一。整个世界不仅和谐合理,而且阴阳和合的对称。数学的有序对称美在初等数学中研究的对称性,可以描述的是一个图形、一个式子各个部分的关系,也可以描述两个图形、式子的关系。图形、式子的变换显示着数学中的对称美。图形对称可称为狭义对称,例如中心对称图形、轴对称图形、旋转对称图形是图形位置的一种对称。显示一种对称的美。在许多概念中和方法、命题、公式、法则中也存在对称性,也可称为一种对称。在数学中,许多概念都是一正一反,相辅相成,成对出现的。例如数学运算中加与减、乘与除、乘方与开方、微分与积分等,都可认为是一阴一阳的对称;减一个负数可变成加一个正数,除可以变成乘的运算,所以说它们之间又是统一有序的。在二元运算中通过交换律、结合律、分配律来反映其对称性。数学解题过程的有序结构从文化的角度审视数学解题过程它是数学策略、数学逻辑、数学方法、数学知识、数学技能与程式化的有机结合,是一个有序结构的统一体。比如解方程过程的基本步骤是:去分母、去括号、移项合并、两边同除以未知数的系数。这是一个和谐的有序结构。破坏了这个有序结构,就会发生解题障碍。从思维过程看,它是“观察———联想———转化”这样一个有序过程。观察是联想的基础,在观察中认识所给题目的特征;联想是转化的桥梁,在联想中寻找解题途径;转化是解题的手段,在转化中确定解题方案,从而最终解决问题。数学无论是从整体和局部,形式和内容,还是结果和过程都体现着和合思想的精神和内涵。我们用“和合思想”重新认识数学,发挥数学文化在教学中的教育功能,就能有效地培养学生科学素养和文化素养。参考文献:[1]齐民友数学文化[M]长沙:湖南教育出版社,[2]张维忠数学文化与数学课程[M]上海:上海教育出版社,[3]郑毓信数学文化学[M]成都:四川教育出版社,[4]李文林数学史教程[M]高教出版社

论文题目的确定好是一篇好的论文首先至关重要的第一步。论文的题目应简明扼要地反映论文工作的主要内容,切忌笼统。论文题目不仅应告诉读者这本论文研究了什么问题,更要告诉读者这个研究得出的结论。更多关于论文相关信息,可以去通关论文网上面看看。希望能帮到你~

数学的文化价值 一、数学是哲学思考的重要基础   数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。   (一)数学——-根源于实践   数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业革命,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。   数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。   其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。   其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。   但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的独立性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。   总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。   (二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗?   事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。   数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是独立的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现 数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。   有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。   就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都采取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思主义经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。

数学思维与文化论文选题方向怎么写

初中数学论文|呈现本质,提高初中数学课堂效果 [摘要] 数学的教学,最终要教师本人落实到课堂中去,要做到切实提高课堂教学效果,就要求我们教师“凡是你教的

简单考虑,从以下几个方面写可能比较好:数学的思维(严密性、深邃性、直觉性……也可以参考三种哲学流派)数学的形式(体系的完备性、定理和公式的美学性)数学对人格塑造(对人的思维模式的塑造、性格特征的塑造、著名数学家的特点等)

数学的文化价值 一、数学是哲学思考的重要基础   数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。   (一)数学——-根源于实践   数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业革命,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。   数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。   其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。   其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。   但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的独立性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。   总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。   (二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗?   事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。   数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是独立的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现 数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。   有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。   就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都采取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思主义经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。

数学思维与文化论文选题意义怎么写

数学文化的教育价值[摘 要] 数学是人类文化的一个重要的组成部分,它在人类文明与社会进步中起着重要的作用。数学文化的教育价值,在于它对人类理性思维、创造性思维所作出的独特贡献。每一个现代人都需要接受数学教育,通过对数学的认识与理解,提高文化素质,从而创造出更有内涵、更有意义的人类文化。[关键词] 数学文化 教育 理性 创造性数学具有一般文化的三条准则,即:相关性、相容性和大众性。相关性主要是与现实相关,而不是悬浮在半空中的虚无缥缈的东西;相容性则不仅强调它作为逻辑封闭系统的一面,还体现了作为多元文化的一种活动模式;而大众性则反映了对于学习和实践的每个人来说都是开放的。除此之外,更主要的方面是数学与一般大众文化比较所表现出来的特殊性,它构成了数学文化的个性,即独特的语言系统、价值判定准则和发展模式,使数学自身构成一种独立的文化体系,从而使得数学对象的人为性、数学活动的整体性,以及数学发展的历史性充满了人文价值,也更加凸现数学的文化意义。

巧用现代教育技术,让生活走进数学课堂 单位:北滘镇水口小学作者:黄庆莲联系电话:26657359 巧用现代教育技术,让生活走进数学课堂摘要:数学源于生活,应用于生活,新教学理念要求教师注重渗透生活中处处有数学的观念,鼓励学生学以致用。因此文章结合教材内容和生活实际,运用多媒体教学,将信息技术融合到小学数学教学中来,同时使教师拓展知识视野,改变传统的学科科学内容,使教材“活”起来。关键字:多媒体 数学 生活《数学课程标准》明确指出:“要重视从学生的生活实践经验中学习数学和理解数学”,指出“要重视从学生熟悉的生活情境和感兴趣的事情中提供观察和操作的机会,使他们感受到数学就在身边,感受到数学的趣味和作用,对数学产生亲切感。”这一要求揭示了数学与实际生活的关系。所以数学教学内容应力求从学生熟悉的生活情境出发设计数学问题,让学生真正体验数学与生活的关系,提高解决实际问题的能力。数学源于生活,应用于生活,新教学理念要求教师注重渗透生活中处处有数学的观念,鼓励学生学以致用。因此,结合运用多媒体教学,将信息技术融合到小学数学教学中来,充分运用各种信息资源,引入时代活水,使学生的学习内容更贴近生活和现代科技,同时也可以使教师拓展知识视野,改变传统的学科科学内容,使教材“活”起来。在课堂教学中,如何让生活走进数学课堂,实现“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”。我认为应从下面几方面着手:第一、运用多媒体技术让数学与生活紧密联系起来《数学课程标准》所提出“有价值”的数学应该与学生的现实生活密切联系的;应该充分考虑数学发展中人类的活动轨迹,贴近学生熟悉的现实生活。这样的数学课程对他们才有吸引力,才使他们产生兴趣,才有益于学生理解数学。才是“人人要学的数学”。传统的小学数学教学很大程度上把学生所学知识与实践能力及从生活中去发现数学的能力。生活是数学的归宿,也就是数学必须服务于生活,发展于生活。《数学课程标准》里提到实现“人人获得必须的数学”有多种途径,最基本的是从学生自己熟悉的生活背景中发现数学、掌握数学和运用数学,在此过程中体验数学与周围世界的联系,以及数学在社会生活中的作用和意义,感受成功,增进自信。在数学教学实践中,作为教师要善于从学生熟悉的生活情景和感兴趣的事物出发,充分运用多媒体教学,运用生活经验,让学生自主发现问题,给予观察、操作、实践探索的机会,使学生体会到数学就在身边,感受到数学的趣味和作用,这就要求我们把数学与生活紧密联系起来,不但要把生活引进课堂,而且让学生带着数学走进生活,去理解生活中的数学,去体会数学的价值。第二、利用多媒体创设生活情境,让学生在具体生动的生活情境中学习苏霍姆林斯基指出,教师在教学中如果不想方设法使学生产生情绪高昂和智力振奋的内心状态,而只是不动情感的脑力劳动,就会带来疲倦。因此,我们的教学应营造一种轻松愉快的情境,使学生乐此不疲地致力于学习内容。数学离不开生活,生活中处处有数学。在课堂教学中,以教材为蓝本,利用计算机教学软件的集直观性、多变性、知识性、趣味性于一体等特点,为学生提供生动逼真的教学情境,让学生在具体生动的生活情境中学习,从而激发学生学习数学的兴趣,充分调动学生学习的积极性和主动性,诱导学生积极思维,使其产生内在学习动机,并主动参与教学活动。心理研究表明:当学习内容和学生熟悉的生活背景越贴近,学生自觉接纳知识的程度就越高。从学生熟悉的生活背景、轻松和谐的课堂氛围入手,让学生置身于日常生活中来学习知识,让知识和日常生活交融。这样既激发了学生的求知欲,又让学生感到数学无处不在,体会到知识来源于生活,进而乐此不彼地学习。创设生活角色情境,就是让学生在学中体验生活角色的一种教学方法,对于活跃课堂气氛,提高学生学习兴趣,激发学生想象力、创造力、表现力都起着不可预估的作用。所以在日常教学中,应创设这样的情境,创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,使学生感觉到在课堂上学习就象在日常生活中遇到了数学问题一样,从而激发学生学习的兴趣,充分调动学生学习的积极性。如在“买文具”的教学中,可以运用多媒体创设这样的情境:售货员阿姨粗心地把笔记本标价牌上的小数点位置写错了,3.5元写成了0.35元,会造成什么后果? 利用这个情境,激活学生先前的生活经验,引导学生观察“橱窗”里陈列着的文具,让同桌互相说一说每一种文具的单价是几元几角几分。通过同伴之间的交流,促进每个学生去感受和理解每个文具标价牌上小数所表示的意义。又如教学“平移和旋转”,首先结合生活中具体的实例,如“缆车沿笔直的索道滑行、国旗沿着旗杆徐徐上升、直升飞机起飞时的螺旋桨运动、小风车迎风旋转等来感知平移和旋转现象。把抽象的相关的各种数学术语让学生迅速理解,既活跃了课堂气氛,又高效地完成了教学任务。第三、联系生活中的实际问题,运用多媒体教学,激起学生自主探究的欲望新课程强调人人学有价值的数学,人人学有用的数学。因此,数学学习必须加强与生活实际的联系,让学生感受到生活中处处有数学。数学只有回到生活中,才会显示其价值和魅力,学生只有回到生活中运用数学,才能真实地显现其数学学习水平。过去的数学教学往往比较重视解答现有的数学问题,即课本上已经经过处理的问题。学生只要按照学会的解题方法,一步一步去解决就可以了,不需要把所理解的数学问题内化到生活中去,解决现实中的各种问题。新课程标准更多地强调学生用数学的眼光从生活中捕捉数学问题,主动地运用数学知识分析生活中的现象,自主地解决生活中的实际问题。数学学习是与“现实”生活密切相关的,学生从现实中学习数学,再把学到的数学应用到现实中去,这样就可以通过自己的认知活动,实现数学观念的构建,促进知识结构的优化。因此,我们的数学教学应当注重理论联系实际,使问题生活化,尽可能地引入更多的具有真实意义的问题,使他们有更多的机会从周围熟悉的事物中学习和理解数学,并培养学生应用数学知识解决实际问题的能力。比如:“买文具”、“整理书”、“铺地面”、“统计”等。这些都是生活中的数学问题,初步学会运用数学的思维方式去观察、分析、解决日常生活中的问题;形成勇于探索、勇于创新的科学精神;获得适应未来社会生活和进一步发展所必需的重要数学事实和必要的应用技能。使学生在学习数学的同时体会到学有用的数学、生活中的数学。又如:生活中处处都要用到估算,要求学生估算一下卧室的面积是多少,估算一下学校操场的长和宽各是多少,鼓励学生节约用电,让学生估算一下如果一个学生一个月节约五度电,那么十个同学一个月节约几度电?全校同学呢。在教学中引导学生寻找生活中的数学问题,既可以积累知识,让学生通过如此切身的问题感受到数学的价值所在,更是培养学生探索意识和应用意识的最佳途径。而且这样也是把枯燥的知识变成了学生感兴趣的活生生的题目,使学生积极主动地投入到学习生活中,让学生发现数学就在自己身边,从而提高学生用数学思想来看待问题的能力。四、运用多媒体教学使学生获得广泛的实践活动经验为了使学生在学习数学知识的同时,能初步接触和逐渐掌握课堂中所学到的数学知识,不断增强数学意识,就必须在数学教学过程中加强实践活动,使学生有更多的机会接触生活和生产实践中的数学问题,认识现实中的问题和数学问题之间的联系和区别。让学生通过动手操作学习数学,自己主动地发现一些数学问题的解题方法或得出有关结论,教师要运用多媒体教学创设一定的情境引导并参与到学生的动手操作中去。例如:三年级下册教材除了安排了“森林旅游”、“旅游中的数学”、和“体育中的数学”3个较大的实践活动个,还在正文或练习中提供了如下的实践活动:到商店调查3种商品的价格,并做好记录;找找生活中的小数,并与同伴说说;调查自己家两个月水电费开支情况,并记录下来,通过分析数据把你的感受与同伴说一说;收集一些对称图形、图案和照片在班里展览等。让学生经历以上一系列的观察、操作、制作、调查、推理等实践活动,在合作与交流的过程中,获得良好的情感体验;获得并积累更多的数学活动的初步经验,能够运用所学知识和方法解决简单问题;感受数学在日常生活中的作用。这样让学生养成留心观察周围事物,有意识地用数学的观点去认识周围事物的习惯,并自觉把所学习的知识与现实中的事物建立联系。总之,现代教育技术呼唤着数学课堂的生命活力,恰当地选准多媒体与数学课堂教学的最佳结合点,适时适量的运用多媒体,不仅能充分调动学生的积极性,激发学生的求知欲,活跃学生的思维,拓展学生的想象力,而且能让学生通过信息技术,感受到数学与实际紧密联系。让生活与数学教学相衔接,让学生从生活中寻找数学素材,感受生活中处处有数学,教学中教师应结合生活实际,抓住典型事例,教给思考方法,让学生真正体会到数学学习的趣味性和实用性,使学生发现生活数学,喜欢数学,这样教学既便于教师的组织教学,也利于学生的操作探索。也只有做到数学与生活结合起来,才能彻底贯彻这一点,让数学学习真正地“活”起来,努力构建生活数学体系。 参考文献:《数学课程标准》

数学的文化价值 一、数学是哲学思考的重要基础   数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。   (一)数学——-根源于实践   数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业革命,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。   数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。   其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。   其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。   但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的独立性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。   总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。   (二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗?   事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。   数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是独立的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现 数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。   有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。   就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都采取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思主义经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。

相关百科