杂志信息网-创作、查重、发刊有保障。

数学建模在生活中的应用论文答辩题及答案解析视频

发布时间:2024-07-07 09:46:28

数学建模在生活中的应用论文答辩题及答案解析视频

这个是线性规划问题,因为牵扯到多重目标,因此可以算是一个目标规划。至于解法,用对应的单纯型法就可以了,一般的运筹学或者建模课程上面都有讲述。说,一时半会说是说不清楚的,建议你参考百度文库

此题为交通运输类问题,可以视作优化类问题,而且本题重点在于目标的选取和目标函数的建立,而最优值的求解反而不是问题的重点(因为哪里会发生交通事故、持续时间、车流量等等都是不可控制的参数,本题几乎没有可决策变

其实,家庭中的其他生活用水一样可以用来冲洗马桶,比方说经过最后一次漂洗,衣服洗干净了,从洗衣机排出的水看上去还比较干净,直接流进下水管还真有点可惜。还有像洗完脸、洗过菜的水,如果能再次利用就好了。业余发明家吴汉平研制了一套生活用水回用装置,获得了国家专利。他将厨房的洗涤槽、卫生间的面盆和坐便器水箱连接到一个储水箱上。洗涤槽、面盆流出来的比较干净的水进入储水箱,供冲厕使用。 现在我来教你省水小秘方要用省水形马桶,般审型马桶加装2段式冲水配件。水箱底下浮饼拆下 即成无段式控制出水。 小便池自动冲水器冲水时间调短。 用米水、洗衣水、洗碗水及洗澡水等清水来浇花、洗车,及擦洗地板。清理地毯法由湿式或蒸汽式改成乾燥粉沫式。将除湿机收集的水,及纯水机、蒸馏水机等净水设备的废水回收再利用。 现在我说完了6项省水秘方,你是否想到比我更好的省水方法呢?你是否在省水呢?我想你应该在省水吧! 长期以来,人们普遍认为水是“取之不尽,用之不竭”的,不知道爱惜,而浪费挥霍。事实上,水资源日益紧缺,而我市的城市供水工作更是在严重缺水的边缘艰难度日,自来水来之不易。 人不可一日无水,水是生命之源,珍惜水就是珍惜自己的生命!在此,我们介绍一些日常生活中的节水常识: 刷牙 浪费:不间断放水,30秒,用水约6升。 节水:口杯接水,3口杯,用水0.6升。三口之家每日两次,每月可节水486升。 洗衣 浪费:洗衣机不间断地边注水边冲洗、排水的洗衣方式,每次需用水约165升。 节水:洗衣机采用洗涤—脱水—注水—脱水—注水—脱水方式洗涤,每次用水110升,每次可节水55升,每月洗4次,可节水220升。 另外,衣物集中洗涤,可减少洗衣次数;小件、少量衣物提倡手洗,可节约大量水;洗涤剂过量投放将浪费大量水。 洗浴 浪费:过长时间不间断放水冲淋,会浪费大量水。 盆浴时放水过多,以至溢出,或盆浴时一边打开水塞,一边注水,浪费将十分惊人。 节水:间断放水淋浴(比如脚踏式、感应式等)。搓洗时应及时关水。避免过长时间冲淋。 盆浴后的水可用于洗衣、洗车、冲洗厕所、拖地等。 炊事 浪费:水龙头大开,长时间冲洗。烧开水时间过长,水蒸汽大量蒸发。用自来水冲淋蔬菜、水果。 节水:炊具食具上的油污,先用纸擦除,再洗涤,可节水。 控制水龙头流量,改不间断冲洗为间断冲洗。 洗车 浪费:用水管冲洗,20分钟,用水约240升。 节水:用水桶盛水洗车,需3桶水,用水约30升。使用洗涤水、洗衣水洗车。使用节水喷雾水枪冲洗。利用机械自动洗车,洗车水处理循环使用。 节水小方法: 节约用水,利在当代,功在千秋,这是经过讨论同学们一起研究出一些生活节水小方法:   一、淘米水洗菜,再用清水清洗,不仅节约了水,还有效地清除了蔬菜上的残存农药;   二、洗衣水洗拖帕、帚地板、再冲厕所。第二道清洗衣物的洗衣水擦门窗及家具、洗鞋袜等;   三、大、小便后冲洗厕所,尽量不开大水管冲洗,而充分利用使用过的“脏水”;   四、夏天给室内外地面洒水降温,尽量不用清水,而用洗衣之后的洗衣水;   五、自行车、家用小轿车清洁时,不用水冲,改用湿布擦,太脏的地方,也宜用洗衣物过后的余水冲洗;   六、冲厕所:如果您使用节水型设备,每次可节水4一5kg;   七、家庭浇花,宜用淘米水、茶水、洗衣水等;   八、家庭洗涤手巾、小对象、瓜果等少量用水。宜用盆子盛水而不宜开水龙头放水冲洗;   九、洗地板:用拖把擦洗,可比用水龙头冲洗每次每户可节水200kg以上;   十、水龙头使用时间长有漏水现象,可用装青霉素的小药瓶的橡胶盖剪一个与原来一样的垫圈放进去,可以保证滴水不漏;   十一、将卫生间里水箱的浮球向下调整2厘米,每次冲洗可节省水近3kg;按家庭每天使用四次算,一年可节药水4380kg。   十二、洗菜:一盆一盆地洗,不要开着水龙头冲,一餐饭可节省50kg;   十三、淋浴:如果您关掉龙头擦香皂,洗一次澡可节水60kg;   十四、手洗衣服:如果用洗衣盆洗、清衣服则每次洗、清衣比开着水龙头节省水200kg;   十五、用洗衣机洗衣服:建议您满桶再洗,若分开两次洗,则多耗水120kg;   十六、洗车:用抹布擦洗比用水龙头冲洗,至少每次可节水400kg;

摘要 本文针对于病人如何服用维生素药剂,这一实际问题将实际问题转化为数学模型,从实际情景中找出有用的条件,并进行简化,建立线性规划模型。对于问题一,病人除了要满足每天摄入的维生素A不超过18克,B不超过13克,D不超过24克和E至少12克之外,还要使得尽可能多的摄入维生素C。对此建立线性模型,并用lingo软件编程求解。最终求得甲种药剂5粒,乙种药剂4粒可得到最优解。摄入最多的维生素E33克。对于问题二,要求病人满足每天对药的需要,而且使得花费的钱最少。约束条件和问题一一样,只是目标函数发生变化。对于此问题,同样建立线性规划模型,用lingo软件求解。求得服用甲种药剂0粒,乙种药剂4粒,即可求得最优解,花的钱最少,为4元。 关键字:维生素药剂 线性规划 一、问题的提出某公司有两种维生素制剂,甲种每粒含维生素A和B各1克,D和E各4克,C5克,乙种每粒含维生素A3克B2克,D1克,E3克和C2克,某病人每天需摄入维生素A不超过18克,B不超过13克,D不超过24克和E至少12克,问(1)病人每天应服两种维生素各多少才能满足需要,而且尽可能摄入较多的维生素C?(2)甲种复合维生素每粒5元,乙种复合维生素每粒1元,选择怎样的服法此病人才能花最少的钱而又满足每天的需要,此时该病人摄入的维生素C是多少?二、问题的分析对于问题一,这个优化问题的目标是使在保证摄取维生素营养的前提下,尽可能较多的摄入维生素E。要做的决策是病人每天应该服用甲种和乙种维生素各多少粒。决策受到4个条件的限制,它们分别是:维生素A不超过18克,B不超过13克,D不超过24克和E至少12克。按照题目所给,将决策变量、目标函数和约束条件用数学符号及式子表示出来,即可得到相应的线性规划模型。对于问题二,这个问题的目标依然是在保证每天摄入必要的维生素营养的前提下,要使得病人每天花的钱最少。在此情况下,求出病人摄入维生素E的量。问题二和问题一类似,要做的决策是病人每天服用两种维生素各多少粒。决策同样受到4个条件的限制,它们分别是:维生素A不超过18克,B不超过13克,D不超过24克和E至少12克。按照题目所给,将决策变量、目标函数和约束条件用数学符号及式子表示出来,即可得到相应的线性规划模型。三、模型假设1、假设题目所给数据都正确且合理。2、假设甲乙两种药粒对病人无副作用,且不产生不良反应。 四、符号说明 :每天服用甲种维生素的粒数:每天服用乙种维生素的粒数:表示目标函数维生素C的量:表示目标函数花的钱 五、模型的建立与求解1问题一模型的建立与求解1基本模型(1)决策变量:设病人每天服用甲种维生素粒;服用乙种维生素粒。(2)目标函数:(3)约束条件:维生素A不超过18克 维生素B不超过13克 维生素D不超过24克 维生素E至少12克 非负约束和均不能为负值,即(4)线性模型为: S , 2模型的求解 用lingo求解,输入程序代码为: max=5*x1+2*x2; x1+3*x2<=18; x1+2*x2<=13; 4*x1+x2<=24; 4*x1+3*x2>=12; x1>=0; x2>=0; 运行结果为: Global optimal solution Objective value: 00000 Total solver iterations: 3Variable Value Reduced Cost X1 000000 000000 X2 000000 000000 Row Slack or Surplus Dual Price 1 00000 000000 2 000000 000000 3 000000 4285714 4 000000 142857 5 00000 000000 6 000000 000000 7 000000 000000上述结果表明,当=5;当=4时,模型取得最优解,=33。1基本模型(1)决策变量:设病人每天服用甲种维生素粒;服用乙种维生素粒。(2)目标函数:(3)约束条件:维生素A不超过18克 维生素B不超过13克 维生素D不超过24克 维生素E至少12克 非负约束和均不能为负值,即(4)线性模型为: S ,2模型的求解 用lingo求解,输入程序代码为: min=5*x1+x2; x1+3*x2<=18; x1+2*x2<=13; 4*x1+x2<=24; 4*x1+3*x2>=12; x1>=0; x2>=0; 运行结果为: Global optimal solution Objective value: 000000 Total solver iterations: 2Variable Value Reduced Cost X1 000000 1666667 X2 000000 000000 Row Slack or Surplus Dual Price 1 000000 -000000 2 000000 000000 3 000000 000000 4 00000 000000 5 000000 -3333333 6 000000 000000 7 000000 000000 六、模型评价分析与推广上面的输出中除了告诉我们问题的最优解和最优值以外,还有许多对分析有用的结果。本题巧妙的运用了线性规划模型使得复杂的问题变得简单。运用lingo软件,把复杂的数学求解问题简单化。从本题可以知道,在实际生活中的很多问题都可以转化为线性规划模型,进行求解,使问题变得简单。例如牛奶的生产计划,汽车的生产计划等等。七、参考文献 [1]韩中庚,数学建模方法及其应用,高等教育出版社,2009。[2]侯进军 ,数学建模方法及其应用,东南大学出版社,2012。[3]姜启源、谢金星、叶俊 ,数学模型,高等教育出版社,3。

数学建模在生活中的应用论文答辩问题及答案解析视频

摘要 本文针对于病人如何服用维生素药剂,这一实际问题将实际问题转化为数学模型,从实际情景中找出有用的条件,并进行简化,建立线性规划模型。对于问题一,病人除了要满足每天摄入的维生素A不超过18克,B不超过13克,D不超过24克和E至少12克之外,还要使得尽可能多的摄入维生素C。对此建立线性模型,并用lingo软件编程求解。最终求得甲种药剂5粒,乙种药剂4粒可得到最优解。摄入最多的维生素E33克。对于问题二,要求病人满足每天对药的需要,而且使得花费的钱最少。约束条件和问题一一样,只是目标函数发生变化。对于此问题,同样建立线性规划模型,用lingo软件求解。求得服用甲种药剂0粒,乙种药剂4粒,即可求得最优解,花的钱最少,为4元。 关键字:维生素药剂 线性规划 一、问题的提出某公司有两种维生素制剂,甲种每粒含维生素A和B各1克,D和E各4克,C5克,乙种每粒含维生素A3克B2克,D1克,E3克和C2克,某病人每天需摄入维生素A不超过18克,B不超过13克,D不超过24克和E至少12克,问(1)病人每天应服两种维生素各多少才能满足需要,而且尽可能摄入较多的维生素C?(2)甲种复合维生素每粒5元,乙种复合维生素每粒1元,选择怎样的服法此病人才能花最少的钱而又满足每天的需要,此时该病人摄入的维生素C是多少?二、问题的分析对于问题一,这个优化问题的目标是使在保证摄取维生素营养的前提下,尽可能较多的摄入维生素E。要做的决策是病人每天应该服用甲种和乙种维生素各多少粒。决策受到4个条件的限制,它们分别是:维生素A不超过18克,B不超过13克,D不超过24克和E至少12克。按照题目所给,将决策变量、目标函数和约束条件用数学符号及式子表示出来,即可得到相应的线性规划模型。对于问题二,这个问题的目标依然是在保证每天摄入必要的维生素营养的前提下,要使得病人每天花的钱最少。在此情况下,求出病人摄入维生素E的量。问题二和问题一类似,要做的决策是病人每天服用两种维生素各多少粒。决策同样受到4个条件的限制,它们分别是:维生素A不超过18克,B不超过13克,D不超过24克和E至少12克。按照题目所给,将决策变量、目标函数和约束条件用数学符号及式子表示出来,即可得到相应的线性规划模型。三、模型假设1、假设题目所给数据都正确且合理。2、假设甲乙两种药粒对病人无副作用,且不产生不良反应。 四、符号说明 :每天服用甲种维生素的粒数:每天服用乙种维生素的粒数:表示目标函数维生素C的量:表示目标函数花的钱 五、模型的建立与求解1问题一模型的建立与求解1基本模型(1)决策变量:设病人每天服用甲种维生素粒;服用乙种维生素粒。(2)目标函数:(3)约束条件:维生素A不超过18克 维生素B不超过13克 维生素D不超过24克 维生素E至少12克 非负约束和均不能为负值,即(4)线性模型为: S , 2模型的求解 用lingo求解,输入程序代码为: max=5*x1+2*x2; x1+3*x2<=18; x1+2*x2<=13; 4*x1+x2<=24; 4*x1+3*x2>=12; x1>=0; x2>=0; 运行结果为: Global optimal solution Objective value: 00000 Total solver iterations: 3Variable Value Reduced Cost X1 000000 000000 X2 000000 000000 Row Slack or Surplus Dual Price 1 00000 000000 2 000000 000000 3 000000 4285714 4 000000 142857 5 00000 000000 6 000000 000000 7 000000 000000上述结果表明,当=5;当=4时,模型取得最优解,=33。1基本模型(1)决策变量:设病人每天服用甲种维生素粒;服用乙种维生素粒。(2)目标函数:(3)约束条件:维生素A不超过18克 维生素B不超过13克 维生素D不超过24克 维生素E至少12克 非负约束和均不能为负值,即(4)线性模型为: S ,2模型的求解 用lingo求解,输入程序代码为: min=5*x1+x2; x1+3*x2<=18; x1+2*x2<=13; 4*x1+x2<=24; 4*x1+3*x2>=12; x1>=0; x2>=0; 运行结果为: Global optimal solution Objective value: 000000 Total solver iterations: 2Variable Value Reduced Cost X1 000000 1666667 X2 000000 000000 Row Slack or Surplus Dual Price 1 000000 -000000 2 000000 000000 3 000000 000000 4 00000 000000 5 000000 -3333333 6 000000 000000 7 000000 000000 六、模型评价分析与推广上面的输出中除了告诉我们问题的最优解和最优值以外,还有许多对分析有用的结果。本题巧妙的运用了线性规划模型使得复杂的问题变得简单。运用lingo软件,把复杂的数学求解问题简单化。从本题可以知道,在实际生活中的很多问题都可以转化为线性规划模型,进行求解,使问题变得简单。例如牛奶的生产计划,汽车的生产计划等等。七、参考文献 [1]韩中庚,数学建模方法及其应用,高等教育出版社,2009。[2]侯进军 ,数学建模方法及其应用,东南大学出版社,2012。[3]姜启源、谢金星、叶俊 ,数学模型,高等教育出版社,3。

不能紧张,一定要口齿清晰!!!

这个是线性规划问题,因为牵扯到多重目标,因此可以算是一个目标规划。至于解法,用对应的单纯型法就可以了,一般的运筹学或者建模课程上面都有讲述。说,一时半会说是说不清楚的,建议你参考百度文库

这道题是线性规划的题目吧,你等会下,我在算现在解答您的疑问首先,就第一问而言,设服用甲x粒,乙y粒则A:x+3y B:x+2y C:5x+2y D:4x+y E:4x+3y 又因为A<=18 B<=13 D<=1 E>=12 所以可以把上述式子带入画出ABDE的二维坐标系 根据线性规划画(时间问题就不发图了) 然后求出C函数的最大值为

数学建模在生活中的应用论文题目大全及答案解析视频

了解一下基本的数学模型,多看看历年的论文,着重分析几篇即可

制定销售计划制定生产最优计划预测股票趋势预测数据曲线预测人口数量如果你再动点运筹学就更好了

数学建模在生活中的应用论文答辩题及答案解析

摘要随着科学技术的迅速发展,数学建模这个词会越来越多的出现在现代人的生产、工作和社会活动中。众所周知,建立数学模型是沟通摆在面前的实际问题与数学工具之间的一座必不可少的桥梁。本文就是运用了数学建模的有关知识解决了部分生活与生产问题。例如,本文中的第一类是解决自来水供应问题,第二类是数学专业学生选课问题,第三类是饮料厂的生产与检修计划问题,这些都是根据数学建模的知识解决的问题。不仅使问题得到了解决,还进一步优化了数学模型,使数学建模问题变得可实用性!关键词: 数学建模 Lingo软件 模型正文 第一类:自来水供应问题:齐齐哈尔市梅里斯区华丰大街周围共4个居民区:园丁一号,政府六号,华丰一号,英雄一号。这四个居民区的自来水供应分别由A、B、C三个自来水公司供应,四个居民区每天需要得到保证的基本生活用水量分别为30,70,10,10千吨,但由于水源紧张,三个自来水公司每天最多只能分别提供50,60,50千吨自来水。由于管道输送等问题,自来水公司从水库向各个居民区送水所需付出的饮水管理费不同(见表1),其他管理费用都是450元/千吨。根据公司规定,各居民区用户按照统一标准900元/千吨收费。此外,四个居民区都向公司申请了额外用水,分别为每天50,70,20,40千吨。该公司应如何分配用水,才能获利最多?饮水管理费(元/千吨) 园丁一号 政府六号 华丰一号 英雄一号A 160 130 220 170B 140 130 190 150C 190 200 230 /(注意:C自来水公司与丁之间没有输水管道)模型建立:决策变量为A、B、C三个自来水公司(i=1,2,3)分别向园丁一号,政府六号,华丰一号,英雄一号四个居民区(j=1,2,3,4)的供水量。设水库i向j区的日供水量为x(ij),由题知x34=MinZ=160*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190*x31+200*x32+230*x33;约束条件:x11+x12+x13+x14=50; x21+x22+x23+x24=60; x31+x32+x33=50; x11+x21+x31<=80; x1+x21+x31>=30; x12+x22+x32<=140; x12+x22+x32>=70; x13+x23+x33<=30; x13+x23+x33>=10; x14+x24<=50;x14+x24>=10; x(ij)>=0; 用lingo软件求解:Min=160*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190*x31+200*x32+230*x33;x11+x12+x13+x14=50; x21+x22+x23+x24=60;x31+x32+x33=50; x11+x21+x31<=80; x11+x21+x31>=30; x12+x22+x32<=140;x12+x22+x32>=70;x13+x23+x33<=30; x13+x23+x33>=10;x14+x24<=50;x14+x24>=10;x34=0;x11>=0;x12>=0;x13>=0;x14>=0;x21>=0;x22>=0;x23>=0;x24>=0;x31>=0;x32>=0;x33>=0;运行结果:Global optimal solution found at iteration: 14 Objective value: 00Variable Value Reduced Cost X11 000000 00000 X12 00000 000000 X13 000000 00000 X14 000000 00000 X21 000000 00000 X22 00000 000000 X23 000000 00000 X24 00000 000000 X31 00000 000000 X32 000000 00000 X33 00000 000000 X34 000000 000000 Row Slack or Surplus Dual Price 1 00 -000000 2 000000 -0000 3 000000 -0000 4 000000 -0000 5 00000 000000 6 00000 000000 7 00000 000000 8 00000 000000 9 00000 000000 10 000000 -00000 11 00000 000000 12 000000 -00000 13 000000 000000 14 000000 000000 15 00000 000000 16 000000 000000 17 000000 000000 18 000000 000000 19 00000 000000 20 000000 000000 21 00000 000000 22 00000 000000 23 000000 000000 24 00000 000000灵敏度分析:Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X11 0000 0 0 X12 0000 0 0 X13 0000 0 0 X14 0000 0 0 X21 0000 0 0 X22 0000 0 0 X23 0000 0 0 X24 0000 0 0 X31 0000 0 0 X32 0000 0 0 X33 0000 0 0 Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease 2 00000 0 0 3 00000 0 0 4 00000 0 0 5 00000 0 0 6 00000 0 0 7 0000 0 0 8 00000 0 0 9 00000 0 0 10 00000 0 0 11 00000 0 0 12 00000 0 0 14 0 0 0 15 0 0 0 16 0 1084396E+17 1084396E+17 17 0 1084396E+17 1084396E+17 18 0 0 0 19 0 0 0 20 0 0 0 21 0 0 0 22 0 0 0 23 0 0 0 24 0 0 0 第二类:数学专业学生选课问题 学校规定,数学专业的学生毕业时必须至少学习过两门数学课、一门计算机课、一门运筹学课。这些课程的编号、名称、所属类别要求如下表:课程编号 课程名称 所属类别 先修课要求1 微积分 数学 2 数学结构 数学;计算机 计算机编程3 解析几何 数学 4 计算机模拟 计算机;运筹学 计算机编程5 计算机编程 计算机 6 数学实验 运筹学;计算机 微积分;线性代数模型的建立与求解:用xi=1表示选课表中的六门课程(xi=0表示不选,i=1,2…,6)。问题的目标为选课的课程数最少,即:min=x1+x2+x3+x4+x5+x6;约束条件为:x1+x2+x3>=2;x2+x4+x5+x6>=1;x4+x6>=1;x4+x2-2*x5<=0;x6-x1<=0;@bin(x1); @bin(x2); @bin(x3); @bin(x4); @bin(x5); @bin(x6);运行结果:Global optimal solution found at iteration: 0 Objective value: 000000Variable Value Reduced Cost X1 000000 000000 X2 000000 000000 X3 000000 000000 X4 000000 000000 X5 000000 000000 X6 000000 000000 Row Slack or Surplus Dual Price 1 000000 -000000 2 000000 000000 3 000000 000000 4 000000 000000 5 000000 000000 6 000000 000000第三类:饮料厂的生产与检修计划 某饮料厂生产一种饮料用以满足市场需要。该厂销售科根据市场预测,已经确定了未来四周该饮料的需求量。计划科根据本厂实际情况给出了未来四周的生产能力和生产成本,如下图。每周当饮料满足需求后有剩余时,要支出存贮费,为每周每千箱饮料2千元。如果工厂必须在未来四周的某一周中安排一次设备检修,检修将占用当周15千箱的生产能力,但会使检修以后每周的生产能力提高5千箱,则检修应该放在哪一周,在满足每周市场需求的条件下,使四周的总费用(生产成本与存贮费)最小?周次 需求量(千箱) 生产能力(千箱) 成本(千元/千箱)1 15 30 02 25 40 13 35 45 44 25 20 5合计 100 135 模型建立:未来四周饮料的生产量分别记作x1,x2,x3,x4;记第1,2,3周末的库存量分别为y1,y2,y3;用wt=1表示检修安排在第t周(t=1,2,3,4)。输入形式:min=0*x1+1*x2+4*x3+5*x4+2*(y1+y2+y3);x1-y1=15;x2+y1-y2=25;x3+y2-y3=35;x4+y3=25;x1+15*w1<=30;x2+15*w2-5*w1<=40;x3+15*w3-5*w2-5*w1<=45;x4+15*w4-5*(w1+w2+w3)<=20;w1+w2+w3+w4=1;x1>=0;x2>=0;x3>=0;x4>=0;y1>=0;y2>=0;y3>=0;@bin(w1);@bin(w2);@bin(w3);@bin(w4);运行结果:Global optimal solution found at iteration: 0 Objective value: 0000Variable Value Reduced Cost X1 00000 000000 X2 00000 000000 X3 00000 000000 X4 00000 000000 Y1 000000 000000 Y2 00000 000000 Y3 000000 1000000 W1 000000 -5000000 W2 000000 500000 W3 000000 000000 W4 000000 000000 Row Slack or Surplus Dual Price 1 0000 -000000 2 000000 -000000 3 000000 -200000 4 000000 -400000 5 000000 -500000 6 000000 000000 7 000000 1000000 8 00000 000000 9 000000 000000 10 000000 000000 11 00000 000000 12 00000 000000 13 00000 000000 14 00000 000000 15 000000 000000 16 00000 000000 17 000000 000000参考文献【1】 杨启帆,边馥萍。数学建模。浙江大学出版社,1990【2】 谭永基,数学模型,复旦大学出版社,1997【3】 姜启源,数学模型(第二版)。高等教育出版社,1993【4】 姜启源,数学模型(第三版)。高等教育出版社2003

摘要 本文针对于病人如何服用维生素药剂,这一实际问题将实际问题转化为数学模型,从实际情景中找出有用的条件,并进行简化,建立线性规划模型。对于问题一,病人除了要满足每天摄入的维生素A不超过18克,B不超过13克,D不超过24克和E至少12克之外,还要使得尽可能多的摄入维生素C。对此建立线性模型,并用lingo软件编程求解。最终求得甲种药剂5粒,乙种药剂4粒可得到最优解。摄入最多的维生素E33克。对于问题二,要求病人满足每天对药的需要,而且使得花费的钱最少。约束条件和问题一一样,只是目标函数发生变化。对于此问题,同样建立线性规划模型,用lingo软件求解。求得服用甲种药剂0粒,乙种药剂4粒,即可求得最优解,花的钱最少,为4元。 关键字:维生素药剂 线性规划 一、问题的提出某公司有两种维生素制剂,甲种每粒含维生素A和B各1克,D和E各4克,C5克,乙种每粒含维生素A3克B2克,D1克,E3克和C2克,某病人每天需摄入维生素A不超过18克,B不超过13克,D不超过24克和E至少12克,问(1)病人每天应服两种维生素各多少才能满足需要,而且尽可能摄入较多的维生素C?(2)甲种复合维生素每粒5元,乙种复合维生素每粒1元,选择怎样的服法此病人才能花最少的钱而又满足每天的需要,此时该病人摄入的维生素C是多少?二、问题的分析对于问题一,这个优化问题的目标是使在保证摄取维生素营养的前提下,尽可能较多的摄入维生素E。要做的决策是病人每天应该服用甲种和乙种维生素各多少粒。决策受到4个条件的限制,它们分别是:维生素A不超过18克,B不超过13克,D不超过24克和E至少12克。按照题目所给,将决策变量、目标函数和约束条件用数学符号及式子表示出来,即可得到相应的线性规划模型。对于问题二,这个问题的目标依然是在保证每天摄入必要的维生素营养的前提下,要使得病人每天花的钱最少。在此情况下,求出病人摄入维生素E的量。问题二和问题一类似,要做的决策是病人每天服用两种维生素各多少粒。决策同样受到4个条件的限制,它们分别是:维生素A不超过18克,B不超过13克,D不超过24克和E至少12克。按照题目所给,将决策变量、目标函数和约束条件用数学符号及式子表示出来,即可得到相应的线性规划模型。三、模型假设1、假设题目所给数据都正确且合理。2、假设甲乙两种药粒对病人无副作用,且不产生不良反应。 四、符号说明 :每天服用甲种维生素的粒数:每天服用乙种维生素的粒数:表示目标函数维生素C的量:表示目标函数花的钱 五、模型的建立与求解1问题一模型的建立与求解1基本模型(1)决策变量:设病人每天服用甲种维生素粒;服用乙种维生素粒。(2)目标函数:(3)约束条件:维生素A不超过18克 维生素B不超过13克 维生素D不超过24克 维生素E至少12克 非负约束和均不能为负值,即(4)线性模型为: S , 2模型的求解 用lingo求解,输入程序代码为: max=5*x1+2*x2; x1+3*x2<=18; x1+2*x2<=13; 4*x1+x2<=24; 4*x1+3*x2>=12; x1>=0; x2>=0; 运行结果为: Global optimal solution Objective value: 00000 Total solver iterations: 3Variable Value Reduced Cost X1 000000 000000 X2 000000 000000 Row Slack or Surplus Dual Price 1 00000 000000 2 000000 000000 3 000000 4285714 4 000000 142857 5 00000 000000 6 000000 000000 7 000000 000000上述结果表明,当=5;当=4时,模型取得最优解,=33。1基本模型(1)决策变量:设病人每天服用甲种维生素粒;服用乙种维生素粒。(2)目标函数:(3)约束条件:维生素A不超过18克 维生素B不超过13克 维生素D不超过24克 维生素E至少12克 非负约束和均不能为负值,即(4)线性模型为: S ,2模型的求解 用lingo求解,输入程序代码为: min=5*x1+x2; x1+3*x2<=18; x1+2*x2<=13; 4*x1+x2<=24; 4*x1+3*x2>=12; x1>=0; x2>=0; 运行结果为: Global optimal solution Objective value: 000000 Total solver iterations: 2Variable Value Reduced Cost X1 000000 1666667 X2 000000 000000 Row Slack or Surplus Dual Price 1 000000 -000000 2 000000 000000 3 000000 000000 4 00000 000000 5 000000 -3333333 6 000000 000000 7 000000 000000 六、模型评价分析与推广上面的输出中除了告诉我们问题的最优解和最优值以外,还有许多对分析有用的结果。本题巧妙的运用了线性规划模型使得复杂的问题变得简单。运用lingo软件,把复杂的数学求解问题简单化。从本题可以知道,在实际生活中的很多问题都可以转化为线性规划模型,进行求解,使问题变得简单。例如牛奶的生产计划,汽车的生产计划等等。七、参考文献 [1]韩中庚,数学建模方法及其应用,高等教育出版社,2009。[2]侯进军 ,数学建模方法及其应用,东南大学出版社,2012。[3]姜启源、谢金星、叶俊 ,数学模型,高等教育出版社,3。

这个是线性规划问题,因为牵扯到多重目标,因此可以算是一个目标规划。至于解法,用对应的单纯型法就可以了,一般的运筹学或者建模课程上面都有讲述。说,一时半会说是说不清楚的,建议你参考百度文库

这道题是线性规划的题目吧,你等会下,我在算现在解答您的疑问首先,就第一问而言,设服用甲x粒,乙y粒则A:x+3y B:x+2y C:5x+2y D:4x+y E:4x+3y 又因为A<=18 B<=13 D<=1 E>=12 所以可以把上述式子带入画出ABDE的二维坐标系 根据线性规划画(时间问题就不发图了) 然后求出C函数的最大值为

数学建模在生活中的应用论文5000字高中答案及解析视频

摘要随着科学技术的迅速发展,数学建模这个词会越来越多的出现在现代人的生产、工作和社会活动中。众所周知,建立数学模型是沟通摆在面前的实际问题与数学工具之间的一座必不可少的桥梁。本文就是运用了数学建模的有关知识解决了部分生活与生产问题。例如,本文中的第一类是解决自来水供应问题,第二类是数学专业学生选课问题,第三类是饮料厂的生产与检修计划问题,这些都是根据数学建模的知识解决的问题。不仅使问题得到了解决,还进一步优化了数学模型,使数学建模问题变得可实用性!关键词: 数学建模 Lingo软件 模型正文 第一类:自来水供应问题:齐齐哈尔市梅里斯区华丰大街周围共4个居民区:园丁一号,政府六号,华丰一号,英雄一号。这四个居民区的自来水供应分别由A、B、C三个自来水公司供应,四个居民区每天需要得到保证的基本生活用水量分别为30,70,10,10千吨,但由于水源紧张,三个自来水公司每天最多只能分别提供50,60,50千吨自来水。由于管道输送等问题,自来水公司从水库向各个居民区送水所需付出的饮水管理费不同(见表1),其他管理费用都是450元/千吨。根据公司规定,各居民区用户按照统一标准900元/千吨收费。此外,四个居民区都向公司申请了额外用水,分别为每天50,70,20,40千吨。该公司应如何分配用水,才能获利最多?饮水管理费(元/千吨) 园丁一号 政府六号 华丰一号 英雄一号A 160 130 220 170B 140 130 190 150C 190 200 230 /(注意:C自来水公司与丁之间没有输水管道)模型建立:决策变量为A、B、C三个自来水公司(i=1,2,3)分别向园丁一号,政府六号,华丰一号,英雄一号四个居民区(j=1,2,3,4)的供水量。设水库i向j区的日供水量为x(ij),由题知x34=MinZ=160*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190*x31+200*x32+230*x33;约束条件:x11+x12+x13+x14=50; x21+x22+x23+x24=60; x31+x32+x33=50; x11+x21+x31<=80; x1+x21+x31>=30; x12+x22+x32<=140; x12+x22+x32>=70; x13+x23+x33<=30; x13+x23+x33>=10; x14+x24<=50;x14+x24>=10; x(ij)>=0; 用lingo软件求解:Min=160*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190*x31+200*x32+230*x33;x11+x12+x13+x14=50; x21+x22+x23+x24=60;x31+x32+x33=50; x11+x21+x31<=80; x11+x21+x31>=30; x12+x22+x32<=140;x12+x22+x32>=70;x13+x23+x33<=30; x13+x23+x33>=10;x14+x24<=50;x14+x24>=10;x34=0;x11>=0;x12>=0;x13>=0;x14>=0;x21>=0;x22>=0;x23>=0;x24>=0;x31>=0;x32>=0;x33>=0;运行结果:Global optimal solution found at iteration: 14 Objective value: 00Variable Value Reduced Cost X11 000000 00000 X12 00000 000000 X13 000000 00000 X14 000000 00000 X21 000000 00000 X22 00000 000000 X23 000000 00000 X24 00000 000000 X31 00000 000000 X32 000000 00000 X33 00000 000000 X34 000000 000000 Row Slack or Surplus Dual Price 1 00 -000000 2 000000 -0000 3 000000 -0000 4 000000 -0000 5 00000 000000 6 00000 000000 7 00000 000000 8 00000 000000 9 00000 000000 10 000000 -00000 11 00000 000000 12 000000 -00000 13 000000 000000 14 000000 000000 15 00000 000000 16 000000 000000 17 000000 000000 18 000000 000000 19 00000 000000 20 000000 000000 21 00000 000000 22 00000 000000 23 000000 000000 24 00000 000000灵敏度分析:Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X11 0000 0 0 X12 0000 0 0 X13 0000 0 0 X14 0000 0 0 X21 0000 0 0 X22 0000 0 0 X23 0000 0 0 X24 0000 0 0 X31 0000 0 0 X32 0000 0 0 X33 0000 0 0 Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease 2 00000 0 0 3 00000 0 0 4 00000 0 0 5 00000 0 0 6 00000 0 0 7 0000 0 0 8 00000 0 0 9 00000 0 0 10 00000 0 0 11 00000 0 0 12 00000 0 0 14 0 0 0 15 0 0 0 16 0 1084396E+17 1084396E+17 17 0 1084396E+17 1084396E+17 18 0 0 0 19 0 0 0 20 0 0 0 21 0 0 0 22 0 0 0 23 0 0 0 24 0 0 0 第二类:数学专业学生选课问题 学校规定,数学专业的学生毕业时必须至少学习过两门数学课、一门计算机课、一门运筹学课。这些课程的编号、名称、所属类别要求如下表:课程编号 课程名称 所属类别 先修课要求1 微积分 数学 2 数学结构 数学;计算机 计算机编程3 解析几何 数学 4 计算机模拟 计算机;运筹学 计算机编程5 计算机编程 计算机 6 数学实验 运筹学;计算机 微积分;线性代数模型的建立与求解:用xi=1表示选课表中的六门课程(xi=0表示不选,i=1,2…,6)。问题的目标为选课的课程数最少,即:min=x1+x2+x3+x4+x5+x6;约束条件为:x1+x2+x3>=2;x2+x4+x5+x6>=1;x4+x6>=1;x4+x2-2*x5<=0;x6-x1<=0;@bin(x1); @bin(x2); @bin(x3); @bin(x4); @bin(x5); @bin(x6);运行结果:Global optimal solution found at iteration: 0 Objective value: 000000Variable Value Reduced Cost X1 000000 000000 X2 000000 000000 X3 000000 000000 X4 000000 000000 X5 000000 000000 X6 000000 000000 Row Slack or Surplus Dual Price 1 000000 -000000 2 000000 000000 3 000000 000000 4 000000 000000 5 000000 000000 6 000000 000000第三类:饮料厂的生产与检修计划 某饮料厂生产一种饮料用以满足市场需要。该厂销售科根据市场预测,已经确定了未来四周该饮料的需求量。计划科根据本厂实际情况给出了未来四周的生产能力和生产成本,如下图。每周当饮料满足需求后有剩余时,要支出存贮费,为每周每千箱饮料2千元。如果工厂必须在未来四周的某一周中安排一次设备检修,检修将占用当周15千箱的生产能力,但会使检修以后每周的生产能力提高5千箱,则检修应该放在哪一周,在满足每周市场需求的条件下,使四周的总费用(生产成本与存贮费)最小?周次 需求量(千箱) 生产能力(千箱) 成本(千元/千箱)1 15 30 02 25 40 13 35 45 44 25 20 5合计 100 135 模型建立:未来四周饮料的生产量分别记作x1,x2,x3,x4;记第1,2,3周末的库存量分别为y1,y2,y3;用wt=1表示检修安排在第t周(t=1,2,3,4)。输入形式:min=0*x1+1*x2+4*x3+5*x4+2*(y1+y2+y3);x1-y1=15;x2+y1-y2=25;x3+y2-y3=35;x4+y3=25;x1+15*w1<=30;x2+15*w2-5*w1<=40;x3+15*w3-5*w2-5*w1<=45;x4+15*w4-5*(w1+w2+w3)<=20;w1+w2+w3+w4=1;x1>=0;x2>=0;x3>=0;x4>=0;y1>=0;y2>=0;y3>=0;@bin(w1);@bin(w2);@bin(w3);@bin(w4);运行结果:Global optimal solution found at iteration: 0 Objective value: 0000Variable Value Reduced Cost X1 00000 000000 X2 00000 000000 X3 00000 000000 X4 00000 000000 Y1 000000 000000 Y2 00000 000000 Y3 000000 1000000 W1 000000 -5000000 W2 000000 500000 W3 000000 000000 W4 000000 000000 Row Slack or Surplus Dual Price 1 0000 -000000 2 000000 -000000 3 000000 -200000 4 000000 -400000 5 000000 -500000 6 000000 000000 7 000000 1000000 8 00000 000000 9 000000 000000 10 000000 000000 11 00000 000000 12 00000 000000 13 00000 000000 14 00000 000000 15 000000 000000 16 00000 000000 17 000000 000000参考文献【1】 杨启帆,边馥萍。数学建模。浙江大学出版社,1990【2】 谭永基,数学模型,复旦大学出版社,1997【3】 姜启源,数学模型(第二版)。高等教育出版社,1993【4】 姜启源,数学模型(第三版)。高等教育出版社2003

有呀,汉斯的应用数学进展这本刊上的文献就是呀,你有时间可以去看看呐

我们老师给我们的一篇数学建模的论文,让我们自己学习。既然你要,那我就给你吧!已经发到你的邮箱了。希望给你点帮助。GOOD LUCK!

相关百科