杂志信息网-创作、查重、发刊有保障。

材料化学导论论文5000字怎么写

发布时间:2024-07-06 10:13:47

材料化学导论论文5000字怎么写

材料化学毕业论文其实也不是很难,志文网上有些资料,我的毕业论文选题是化学纤维方面的,材料化学毕业论文还需要一些实验的,还是选择一些带有实验数据的那种好些。

①、议论文的论点考点:第一,分清所议论的问题及针对这个问题作者所持的看法(即分清论题和论点)。第二,注意论点在文中的位置:(1)在文章的开头,这就是所谓开宗明义、开门见山的写法。(2)在文章结尾,就是所谓归纳全文,篇末点题,揭示中心的写法。这种写法在明确表达论点时大多有。所以,总之,因此,总而言之,归根结底等总结性的词语。第三、分清中心论点和分论点:分论一般位于段首或有标志性词语:首先、其次、第三等第四、要注意论点的表述形式:有时题目就是中心论点。一篇议论文只有一个中心论点。第五、通过论据来反推论点:论据是为证明论点服务的,分析论据可以看出它证明什么,肯定什么,支持什么,这就是论点。②、议论文的论据考点:论据是论点立足的根据,一般全为事实论据和道理论据。1、用事实作论据。事例必须真实可靠,有典型意义,能揭示事物本质并与论点有一定的逻辑联系。议论文中,对所举事例的叙述要简明扼要,突出与论点有直接关系的部分。明确论据时,不仅要知道文中哪些地方用了事实论据,还要会概括事实论据。概括时,要做到准确,必须依据论点将论据本质特点把握住,然后用确切的语言进行表述。 2、用作论据的言论,应有一定的权威性,直接引用时要原文照录,以真核对,不能断章取义;间接引用时不能曲解原意。③、议论文的结构、层次考点:结构有:并列式结构、对照式结构、层进式结构、总分式结构。此考点的基本形式:作者如何证明论点的?

高分子材料的制品属於最年轻的材料它不仅遍及各个工业领域,另外,(材料科学)里面的资料,让你找找自己的灵感

聚合物材料之一,一些论文3000 给你

材料化学导论论文5000字

材料科学技术是国民经济发展的重要支撑,是航天、航空、信息、国防等高新技术进步的基础。材料科学与工程学院培养从事金属、无机非金属、高分子材料的制备与加工和电子封装技术领域的高级研究和工程技术人才。材料科学与工程专业以材料学、化学、物理学为基础,系统学习材料科学与工程专业的基础理论和实验技能,并将其应用于材料的合成、制备、结构、性能、应用等方面研究的学科。该专业学生既掌握材料科学与工程领域的基本理论与技术,又具备无机非金属材料及其复合材料科学与工程领域的扎实基础,还具有较强的实践动手能力,从业的适应面广,能在材料科学与工程及其相关领域从事教学、科研、技术开发及管理工作。

生物医用高分子材料摘要:简述了对功能高分子材料的认识,功能高分子材料的特征和功能高分子材料的分类,接着重点写生物医用高分子的发展前景和趋势,对生物医用功能高分子的认识和其重要性的认识。关键词:功能高分子材料,生物医用高分子材料。功能高分子材料功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50%所谓功能性高分子材料,一般是指具有某种特别的功能或者是能在某种特殊环境下使用的高分子材料,但这是相对于一般用途的通用高分子材料而言。这一定义只是一个概括,不一定很确切,较多的人认为所谓功能性高分子材料是指具有物质能量和信息的传递、转换和贮存作用的高分子材料及其复合材料。如有光电、热电、压电、声电、化学转换等功能的一些高分子化合物。可以看出,这是一类范围相当大、用途相当广、品种相当多,而又是在生活、生产活动中经常遇见的一类高分子材料。 功能高分子材料按照功能特性通常可分成以下几类:(1)分离材料和化学功能材料;(2)电磁功能高分子材料;(3)光功能高分子材料;(4)生物医用高分子材料。 功能高分子材料是高分子学科中的一个重要分支,它的重要性在于所包含的每一类高分子都具有特殊的功能。随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。 一般归纳起来医用高分子材料应符合下列要求: 1、化学稳定性好,在人体接触部分不能发生影响而变化; 2、组织相容性好,在人体内不发生炎症和排异反应; 3、不会致癌变; 4、耐生物老化,在人体内材料长期性能无变化; 5、耐煮沸,灭菌、药液消毒等处理方法; 6、材料来源广、易于加工成型。 经多年研究,能较好符合上述要求的高分子化合物主要有两大类,一类是有机硅化合物,第二类是有机氟化物,最主要的两种产品是硅橡胶和聚四氟乙烯,例如美国GE公司开发了一批主要是有机硅方面的用于医学领域的功能高分子化合物。 生物医用高分子材料的现状和发展趋势生物医用高分子材料是以医用为目的,用于和活体组织接触,具有诊断、治疗或替换机体中组织、器官或增进其功能的高分子材料,即biomedical polymeric materials , 生物医用高分子材料是在高分子材料科学不断向医学和生命科学渗透,高分子材料广泛应用于医学领域的过程中,逐渐发展起来的一类生物材料,它已形成一门介于现代医学和高分子科学之间的边缘科学。在功能高分子材料领域, 生物医用高分子材料可谓异军突起, 目前已成为发展最快的一个重要分支。生物医用高分子材料的发展经历了三个阶段,第一阶段始于1937 年,其特点是所用高分子材料都是已有的现成材料, 如用丙烯酸甲酯制造义齿的牙床。第二阶段始于1953 年, 其标志是医用级有机硅橡胶的出现, 随后又发展了聚羟基乙酸酯缝合线以及四种聚(醚- 氨) 酯心血管材料, 从此进入了以分子工程研究为基础的发展时期。该阶段的特点是在分子水平上对合成高分子的组成、配方和工艺进行优化设计, 有目的地开发所需要的高分子材料。目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段。其特点是这种材料一般由活体组织和人工材料有机结合而成, 在分子设计上以促进周围组织细胞生长为预想功能, 其关键在于诱使配合基和组织细胞表面的特殊位点发生作用以提高组织细胞的分裂和生长速度在国外,生物医用高分子材料研究已有50多年的历史,早在1947 年美国已发表了展望性论文。 随后,美国、日本、欧洲等工业发达国家不断有文章报道,有些并已在临床上得到应用。 我国研究历史较短,上世纪70年代开始进行人工器官的研制,并有部分器官进入临床应用。1980 年成立了中国生物医疗工程学会,并于1982 年又成立了中国医学工程学会人工脏器及生物材料专业委员会,使得生物医学器材获得进一步发展 生物医用高分子材料作为一门边缘科学,融合了高分子化学和物理、高分子材料工艺学、药理学、病理学、解剖学和临床医学等方面的知识,还涉及许多工程学问题。生物医用高分子材料的发展,对于战胜危害人类的疾病,保障人民身体健康,探索人类生命奥秘具有重大意义。1 生物医用高分子材料的基本要求及生物相容性对于生物医用高分子材料来说,除了要有医疗功能外,还必须强调安全性,即不仅要治病,而且对人体健康无害。 当然,对生物医用高分子材料的要求也不是一律不变的,可因其使用环境或功能的不同而异,如外用医疗材料与肌体接触时间短,要求可稍低,而与血液直接接触,或体内使用的材料则要求较高。2 生物医用高分子材料的种类及发展生物医用高分子材料按性质可分为非降解和可生物降解两大类。非生物降解的生物医用高分子包括:聚乙烯、聚丙烯、聚丙烯酸酯、芳香聚酯、聚硅氧烷、聚甲醛等,其在生理环境中能长期保持稳定,不发生降解、交联或物理磨损等,并具有良好的力学性能。可生物降解的生物医用高分子材料则包括胶原、脂肪族聚酯、聚氨基酸、聚己内酯等,这些材料能在生理环境中发生结构性破坏,且降解产物能通过正常的新陈代谢被基体吸收或排出体外。非降解和可生物降解生物医用高分子材料在生物医学领域各具有自己独特的发展地位,然而,随着生物医学和材料科学的发展,人们对生物医用高分子材料提出了更高的要求,可生物降解生物医用高分子材料越来越得到人们的亲睐。因此,在这里主要讨论可生物降解医用高分子材料的种类。根据来源来划分,可生物降解医用高分子材料可分为天然可生物降解和合成可生物降解两大类。3 生物医用高分子材料的应用及展望生物技术将是21世纪最有前途的技术, 生物医用高分子材料将在其中扮演重要角色, 其性能将不断提高, 应用领域也将进一步拓宽。生物医用高分子材料应用主要有以下几个方面:(1)与血液接触的高分子材料。与血液接触的高分子材料是指用来制造人工血管、人工心脏血囊、人工心瓣膜、人工肺等的生物医用材料, 要求这种材料要有良好的抗凝血性、抗细菌粘附性, 即在材料表面不产生血栓、不引起血小板变形, 不发生以生物材料为中心的感染。此外, 还要求它具有与人体血管相似的弹性和延展性以及良好的耐疲劳性等。(2)组织工程用高分子材料。组织工程学是近十年来新兴的一门交叉学科,它是应用工程学和生命科学的原理和方法来了解正常和病理的哺乳类组织的结构- 功能关系, 以及研制生物代用品以恢复、维持或改善其功能的一门科学。细胞大规模培养技术的日臻成熟和生物相容性材料的开发与研究, 使得创造由活细胞和生物相容性材料组成的人造生物组织或器官成为可能。(3)药用高分子材料。与低分子药物相比,药用高分子具有低毒、高效、缓释、长效、可定点释放等优点。根据药用高分子结构与制剂的形式, 药用高分子可分为三类: 具有药理活性的高分子药物,它们本身具有药理作用,断链后即失去药性, 是真正意义上的高分子药物。低分子药物的高分子化。低分子药物在体内新陈代谢速度快, 半衰期短, 体内浓度降低快, 从而影响疗效, 故需大剂量频繁进药, 而过高的药剂浓度又会加重副作用, 此外, 低分子药物也缺乏进入人体部位的选择性。将低分子药物与高分子结合的方法有吸附、共聚、嵌段和接枝等。C药用高分子微胶囊,即将细微的药粒用高分子膜包覆起来形成微小的胶囊,其作用有:延缓、控制释放药物, 提高疗效; 掩蔽药物的毒性、刺激性和苦味等不良性质, 减小对人体的刺激; 使药物与空气隔离, 防止药物在存放过程中的氧化、吸潮等不良反应, 增加贮存的稳定性。(4)医药包装用高分子材料。用于药物包装的高分子材料正逐年增加,包装药物的高分子材料大体上可分为软、硬两种类型。硬型材料如聚酯、聚苯乙烯、聚碳酸酯等, 由于其强度高、透明性好、尺寸稳定、气密性好,常用来代替玻璃容器和金属容器, 制造饮片和胶囊等固体制剂的包装。新型聚酯聚萘二甲酸乙二醇酯除具有优异的力学性能及阻隔性能外, 还有较强的耐紫外线性, 可用于口服液、糖浆等的热封装。软型材料如聚乙烯、聚丙烯、聚偏氯乙烯及乙烯- 醋酸乙烯共聚物等, 常加工成复合薄膜, 主要用来包装固体冲剂、片剂等药物。而半硬质聚氯乙烯片材则被用作片剂、胶囊的铝塑泡罩包装的泡罩材料。至于药膏、洗剂、酊剂等外用药液的包装, 则用耐腐蚀性极强且综合性能优良的聚四氟乙烯来担任。(5)隐形眼镜是最常见的眼科用高分子材料制品。对这类材料的基本要求是: ①具有优良的光学性质, 折光率与角膜相接近;②良好的润湿性和透氧性; ③生物惰性, 即耐降解且不与接触面发生化学反应; ④有一定的力学强度, 易于精加工及抗污渍沉淀等。常用的隐形眼镜材料有聚甲基丙烯酸β-羟乙酯, 聚甲基丙烯酸β- 羟乙酯- N - 乙烯吡咯烷酮, 聚甲基丙烯酸β- 羟乙酯- 甲基丙烯酸戊酯, 聚甲基丙烯酸甘油酯- N - 乙烯吡咯烷酮等。浙江工业大学的邬润德等研究的聚钛硅氧烷化合物, 由于在聚合体系中加入了钛烷氧化物交联剂,使材料的致密性增加, 减少了固化收缩, 制备了一种优良的隐形眼镜材料。此外, 发生病变的角膜和晶状体也可用人工角膜和人工晶状体替代。人工角膜可用硅橡胶、聚甲基丙烯酸酯类或聚酯等薄膜制备。人工晶状体的主体材料可用聚甲基丙烯酸酯类, 其起固定作用的附加爪状细枝可用甲基丙烯酸甲酯和甲基丙烯酸丁酯的共聚物或甲基丙烯酸环己酯和甲基丙烯酸丁酯的共聚物等。(6)医用粘合剂与缝合线。生物医用粘合剂是指将组织粘合起来的组织粘合剂, 它们除了应具备一般软组织植入物所应有的条件外, 还应满足下列要求: ①在活体能承受的条件下固化, 使组织粘合; ②能迅速聚合而没有过量的热和毒副产物产生; ③在创伤愈合时粘合剂可被吸收而不干扰正常的愈合过程。常用的粘合剂有α- 氰基丙烯酸烷基酯类, 甲基丙烯酸甲酯- 苯乙烯共聚物及亚甲基丙二酸甲基烯丙基酯等。手术用缝合线可分为非吸收型和可吸收型两大类。非吸收类包括天然纤维(如蚕丝、木棉、麻及马毛等) 和合成纤维(如PET、PA、PP、PE 单丝、PTFE 及PU 等) 。可吸收类包括天然高分子材料(如羊肠线、骨胶原、纤维蛋白等) 和合成高分子材料(如聚乙烯醇、聚羟乙基丁酸酯、聚乳酸、聚氨基酸及聚羟基乙酸等) 。其中, 由聚乳酸和聚羟基乙酸或两者的共聚物制成的缝合线因性能优越而倍受关注。这种缝合线强度可靠, 对创口缝合能力强, 又可生物降解而被肌体吸收, 是一种理想的医用缝合线。(7)医疗器件用高分子材料。高分子材料制的医疗器件有一次性医疗用品 (注射器、输液器、检查器具、护理用具、麻醉及手术室用具等) 、血袋、尿袋及矫形材料等。一次性医疗用品多采用常见高分子材料如聚丙烯和聚4-甲基- 1 - 戊烯制造。血袋一般由软PVC 或LDPE 制成。由PU 制的绷带固化速度快, 质轻层薄, 不易使皮肤发炎, 可取代传统的固定材料———石膏用于骨折固定。硅橡胶、聚酯、聚四氟乙烯、聚酸酐及聚乙烯醇等都是性能良好的矫形材料,已广泛用于假肢制造及整形外科等领域。医用高分子材料的发展方向主要包括:(1)可生物降解医用高分子材料因其具有良好的生物降解性和生物相容性而受到高度重视, 无论是作为缓释药物还是作为促进组织生长的骨架材料, 都将得到巨大的发展。(2) 1906 年En rililich 首次提出药物选择性地分布于病变部位以降低其对正常组织的毒副作用, 使病变组织的药物浓度增大, 从而提高药物利用率这一靶向给药的概念。此后一个世纪以来, 靶向药物的载体材料一直吸引了医药工作者的兴趣。其中高分子纳米粒子以其特有的优点是近年来国内外一个极为重要的研究热点。(3)任何一种材料都是通过其表面与环境介质相接触的, 因此材料的开发与应用必然涉及其表面问题的研究。一般高分子材料的表面对外界响应性较弱, 但有些高分子表面的结构形态会因外界条件(如pH、温度、应力、光及电场等) 的改变在极短时间内发生相应的变化, 从而造成表面性质的改变, 此乃智能高分子表面。因此设计这类智能表面将是生物医用高分子材料发展的一个重要方面。(4)随着科学的发展,由高分子材料制成的人工脏器正在从体外使用型向内植型发展,为满足医用功能性、生物相容性的要求,把酶和生物细胞固定在合成高分子材料上,从而制成各种脏器,将使生物医用高分子材料发展前景越来越广阔。(5)通常,在组织工程的应用中,高分子材料支架要负载上生长因子,以促进组织在生物体内的再生,另一方面,把特殊的粘附因子,如粘连蛋白结合到支架上,可使聚合物表面能够促进对某种细胞的粘附,而排斥其它种类的细胞,即支架对细胞进行有选择的粘附。为了使生长因子和粘附因子能够结合到可降解高分子材料上,就需要对材料进行表面改性,而有时表面改性很困难, 因此,可利用与天然聚合物杂化的方法来达到上述目的, 同时由于这些材料有良好的机械性能,又可以弥补天然聚合物强度不高、稳定性差的缺点。可见,生物杂化材料在这方面的表现是相当突出的, 必将成为医用生物高分子材料发展的一个主要趋势。 给我分吧,我找得苦。

聚合物材料之一,一些论文3000 给你

材料导论论文5000字怎么写

上网上找几篇类似的,组合一下就OK了。

议论虽有立论、驳论两种方式,但两者不是完全分开的。驳和立是辨证的统一。在立论性的文章中,有时也要批驳错误论点;在驳论性的文章中,一般也要在批驳错误论点的同时,阐明正确的观点。因此,立论和驳论在议论文中常常是结合起来使用的。直接驳和间接驳的差别①如果直接以论点出发,那就算是直接驳论②如果通过各种论据来反驳论点的算间接驳论③如果从始至终都通过论点论据来论证中心的,就是典型的驳论文,如鲁迅先生的《友邦惊诧论》就是典型的驳论文章。总之,写驳论性的文章,还应注意以下几点:①要对准靶子。写驳论性的文章,首先要摆出对方的谬论或反动观点,树起靶子。怎样树起靶子呢?通常有两种方式。一是概述。即用概括的语言,将所批驳的敌论复述一下。并且还要强调出敌论的弊端。概述时,可适当引用一些原词句,但要有重点,倾向性要鲜明。二是摘引。即把反面材料的关键部分或有关部分,摘录下来,然后对准靶子,进行驳斥。可以引用一些较为典型的事例,和古典名句。更加强有力的证明自己的观点。②要抓住要害。鲁迅说:“正对‘论敌’之要害,仅以一击给予致命的重伤。”对谬论,一定要抓住其反动本质,深入地进行揭露和批判。③要注意分寸。对于敌人的反革命谬论和人民内部存在的错误思想,必须加以区别。对敌人,要无情揭露,痛加批驳,给以致命打击;对于人民内部的错误思想,就要本着“团结——批评——团结”的原则,决不可相提并论。

这个太专业了。请去专业论坛询问

材料化学导论论文5000字开头

生物医用高分子材料摘要:简述了对功能高分子材料的认识,功能高分子材料的特征和功能高分子材料的分类,接着重点写生物医用高分子的发展前景和趋势,对生物医用功能高分子的认识和其重要性的认识。关键词:功能高分子材料,生物医用高分子材料。功能高分子材料功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50%所谓功能性高分子材料,一般是指具有某种特别的功能或者是能在某种特殊环境下使用的高分子材料,但这是相对于一般用途的通用高分子材料而言。这一定义只是一个概括,不一定很确切,较多的人认为所谓功能性高分子材料是指具有物质能量和信息的传递、转换和贮存作用的高分子材料及其复合材料。如有光电、热电、压电、声电、化学转换等功能的一些高分子化合物。可以看出,这是一类范围相当大、用途相当广、品种相当多,而又是在生活、生产活动中经常遇见的一类高分子材料。 功能高分子材料按照功能特性通常可分成以下几类:(1)分离材料和化学功能材料;(2)电磁功能高分子材料;(3)光功能高分子材料;(4)生物医用高分子材料。 功能高分子材料是高分子学科中的一个重要分支,它的重要性在于所包含的每一类高分子都具有特殊的功能。随着时代的发展,在医学领域中越来越迫切地需要开发出能应用于医疗的各种新型材料,经多年的研究已发现有多种高分子化合物可以符合医用要求,我们也把它归属于功能性高分子材料。 一般归纳起来医用高分子材料应符合下列要求: 1、化学稳定性好,在人体接触部分不能发生影响而变化; 2、组织相容性好,在人体内不发生炎症和排异反应; 3、不会致癌变; 4、耐生物老化,在人体内材料长期性能无变化; 5、耐煮沸,灭菌、药液消毒等处理方法; 6、材料来源广、易于加工成型。 经多年研究,能较好符合上述要求的高分子化合物主要有两大类,一类是有机硅化合物,第二类是有机氟化物,最主要的两种产品是硅橡胶和聚四氟乙烯,例如美国GE公司开发了一批主要是有机硅方面的用于医学领域的功能高分子化合物。 生物医用高分子材料的现状和发展趋势生物医用高分子材料是以医用为目的,用于和活体组织接触,具有诊断、治疗或替换机体中组织、器官或增进其功能的高分子材料,即biomedical polymeric materials , 生物医用高分子材料是在高分子材料科学不断向医学和生命科学渗透,高分子材料广泛应用于医学领域的过程中,逐渐发展起来的一类生物材料,它已形成一门介于现代医学和高分子科学之间的边缘科学。在功能高分子材料领域, 生物医用高分子材料可谓异军突起, 目前已成为发展最快的一个重要分支。生物医用高分子材料的发展经历了三个阶段,第一阶段始于1937 年,其特点是所用高分子材料都是已有的现成材料, 如用丙烯酸甲酯制造义齿的牙床。第二阶段始于1953 年, 其标志是医用级有机硅橡胶的出现, 随后又发展了聚羟基乙酸酯缝合线以及四种聚(醚- 氨) 酯心血管材料, 从此进入了以分子工程研究为基础的发展时期。该阶段的特点是在分子水平上对合成高分子的组成、配方和工艺进行优化设计, 有目的地开发所需要的高分子材料。目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段。其特点是这种材料一般由活体组织和人工材料有机结合而成, 在分子设计上以促进周围组织细胞生长为预想功能, 其关键在于诱使配合基和组织细胞表面的特殊位点发生作用以提高组织细胞的分裂和生长速度在国外,生物医用高分子材料研究已有50多年的历史,早在1947 年美国已发表了展望性论文。 随后,美国、日本、欧洲等工业发达国家不断有文章报道,有些并已在临床上得到应用。 我国研究历史较短,上世纪70年代开始进行人工器官的研制,并有部分器官进入临床应用。1980 年成立了中国生物医疗工程学会,并于1982 年又成立了中国医学工程学会人工脏器及生物材料专业委员会,使得生物医学器材获得进一步发展 生物医用高分子材料作为一门边缘科学,融合了高分子化学和物理、高分子材料工艺学、药理学、病理学、解剖学和临床医学等方面的知识,还涉及许多工程学问题。生物医用高分子材料的发展,对于战胜危害人类的疾病,保障人民身体健康,探索人类生命奥秘具有重大意义。1 生物医用高分子材料的基本要求及生物相容性对于生物医用高分子材料来说,除了要有医疗功能外,还必须强调安全性,即不仅要治病,而且对人体健康无害。 当然,对生物医用高分子材料的要求也不是一律不变的,可因其使用环境或功能的不同而异,如外用医疗材料与肌体接触时间短,要求可稍低,而与血液直接接触,或体内使用的材料则要求较高。2 生物医用高分子材料的种类及发展生物医用高分子材料按性质可分为非降解和可生物降解两大类。非生物降解的生物医用高分子包括:聚乙烯、聚丙烯、聚丙烯酸酯、芳香聚酯、聚硅氧烷、聚甲醛等,其在生理环境中能长期保持稳定,不发生降解、交联或物理磨损等,并具有良好的力学性能。可生物降解的生物医用高分子材料则包括胶原、脂肪族聚酯、聚氨基酸、聚己内酯等,这些材料能在生理环境中发生结构性破坏,且降解产物能通过正常的新陈代谢被基体吸收或排出体外。非降解和可生物降解生物医用高分子材料在生物医学领域各具有自己独特的发展地位,然而,随着生物医学和材料科学的发展,人们对生物医用高分子材料提出了更高的要求,可生物降解生物医用高分子材料越来越得到人们的亲睐。因此,在这里主要讨论可生物降解医用高分子材料的种类。根据来源来划分,可生物降解医用高分子材料可分为天然可生物降解和合成可生物降解两大类。3 生物医用高分子材料的应用及展望生物技术将是21世纪最有前途的技术, 生物医用高分子材料将在其中扮演重要角色, 其性能将不断提高, 应用领域也将进一步拓宽。生物医用高分子材料应用主要有以下几个方面:(1)与血液接触的高分子材料。与血液接触的高分子材料是指用来制造人工血管、人工心脏血囊、人工心瓣膜、人工肺等的生物医用材料, 要求这种材料要有良好的抗凝血性、抗细菌粘附性, 即在材料表面不产生血栓、不引起血小板变形, 不发生以生物材料为中心的感染。此外, 还要求它具有与人体血管相似的弹性和延展性以及良好的耐疲劳性等。(2)组织工程用高分子材料。组织工程学是近十年来新兴的一门交叉学科,它是应用工程学和生命科学的原理和方法来了解正常和病理的哺乳类组织的结构- 功能关系, 以及研制生物代用品以恢复、维持或改善其功能的一门科学。细胞大规模培养技术的日臻成熟和生物相容性材料的开发与研究, 使得创造由活细胞和生物相容性材料组成的人造生物组织或器官成为可能。(3)药用高分子材料。与低分子药物相比,药用高分子具有低毒、高效、缓释、长效、可定点释放等优点。根据药用高分子结构与制剂的形式, 药用高分子可分为三类: 具有药理活性的高分子药物,它们本身具有药理作用,断链后即失去药性, 是真正意义上的高分子药物。低分子药物的高分子化。低分子药物在体内新陈代谢速度快, 半衰期短, 体内浓度降低快, 从而影响疗效, 故需大剂量频繁进药, 而过高的药剂浓度又会加重副作用, 此外, 低分子药物也缺乏进入人体部位的选择性。将低分子药物与高分子结合的方法有吸附、共聚、嵌段和接枝等。C药用高分子微胶囊,即将细微的药粒用高分子膜包覆起来形成微小的胶囊,其作用有:延缓、控制释放药物, 提高疗效; 掩蔽药物的毒性、刺激性和苦味等不良性质, 减小对人体的刺激; 使药物与空气隔离, 防止药物在存放过程中的氧化、吸潮等不良反应, 增加贮存的稳定性。(4)医药包装用高分子材料。用于药物包装的高分子材料正逐年增加,包装药物的高分子材料大体上可分为软、硬两种类型。硬型材料如聚酯、聚苯乙烯、聚碳酸酯等, 由于其强度高、透明性好、尺寸稳定、气密性好,常用来代替玻璃容器和金属容器, 制造饮片和胶囊等固体制剂的包装。新型聚酯聚萘二甲酸乙二醇酯除具有优异的力学性能及阻隔性能外, 还有较强的耐紫外线性, 可用于口服液、糖浆等的热封装。软型材料如聚乙烯、聚丙烯、聚偏氯乙烯及乙烯- 醋酸乙烯共聚物等, 常加工成复合薄膜, 主要用来包装固体冲剂、片剂等药物。而半硬质聚氯乙烯片材则被用作片剂、胶囊的铝塑泡罩包装的泡罩材料。至于药膏、洗剂、酊剂等外用药液的包装, 则用耐腐蚀性极强且综合性能优良的聚四氟乙烯来担任。(5)隐形眼镜是最常见的眼科用高分子材料制品。对这类材料的基本要求是: ①具有优良的光学性质, 折光率与角膜相接近;②良好的润湿性和透氧性; ③生物惰性, 即耐降解且不与接触面发生化学反应; ④有一定的力学强度, 易于精加工及抗污渍沉淀等。常用的隐形眼镜材料有聚甲基丙烯酸β-羟乙酯, 聚甲基丙烯酸β- 羟乙酯- N - 乙烯吡咯烷酮, 聚甲基丙烯酸β- 羟乙酯- 甲基丙烯酸戊酯, 聚甲基丙烯酸甘油酯- N - 乙烯吡咯烷酮等。浙江工业大学的邬润德等研究的聚钛硅氧烷化合物, 由于在聚合体系中加入了钛烷氧化物交联剂,使材料的致密性增加, 减少了固化收缩, 制备了一种优良的隐形眼镜材料。此外, 发生病变的角膜和晶状体也可用人工角膜和人工晶状体替代。人工角膜可用硅橡胶、聚甲基丙烯酸酯类或聚酯等薄膜制备。人工晶状体的主体材料可用聚甲基丙烯酸酯类, 其起固定作用的附加爪状细枝可用甲基丙烯酸甲酯和甲基丙烯酸丁酯的共聚物或甲基丙烯酸环己酯和甲基丙烯酸丁酯的共聚物等。(6)医用粘合剂与缝合线。生物医用粘合剂是指将组织粘合起来的组织粘合剂, 它们除了应具备一般软组织植入物所应有的条件外, 还应满足下列要求: ①在活体能承受的条件下固化, 使组织粘合; ②能迅速聚合而没有过量的热和毒副产物产生; ③在创伤愈合时粘合剂可被吸收而不干扰正常的愈合过程。常用的粘合剂有α- 氰基丙烯酸烷基酯类, 甲基丙烯酸甲酯- 苯乙烯共聚物及亚甲基丙二酸甲基烯丙基酯等。手术用缝合线可分为非吸收型和可吸收型两大类。非吸收类包括天然纤维(如蚕丝、木棉、麻及马毛等) 和合成纤维(如PET、PA、PP、PE 单丝、PTFE 及PU 等) 。可吸收类包括天然高分子材料(如羊肠线、骨胶原、纤维蛋白等) 和合成高分子材料(如聚乙烯醇、聚羟乙基丁酸酯、聚乳酸、聚氨基酸及聚羟基乙酸等) 。其中, 由聚乳酸和聚羟基乙酸或两者的共聚物制成的缝合线因性能优越而倍受关注。这种缝合线强度可靠, 对创口缝合能力强, 又可生物降解而被肌体吸收, 是一种理想的医用缝合线。(7)医疗器件用高分子材料。高分子材料制的医疗器件有一次性医疗用品 (注射器、输液器、检查器具、护理用具、麻醉及手术室用具等) 、血袋、尿袋及矫形材料等。一次性医疗用品多采用常见高分子材料如聚丙烯和聚4-甲基- 1 - 戊烯制造。血袋一般由软PVC 或LDPE 制成。由PU 制的绷带固化速度快, 质轻层薄, 不易使皮肤发炎, 可取代传统的固定材料———石膏用于骨折固定。硅橡胶、聚酯、聚四氟乙烯、聚酸酐及聚乙烯醇等都是性能良好的矫形材料,已广泛用于假肢制造及整形外科等领域。医用高分子材料的发展方向主要包括:(1)可生物降解医用高分子材料因其具有良好的生物降解性和生物相容性而受到高度重视, 无论是作为缓释药物还是作为促进组织生长的骨架材料, 都将得到巨大的发展。(2) 1906 年En rililich 首次提出药物选择性地分布于病变部位以降低其对正常组织的毒副作用, 使病变组织的药物浓度增大, 从而提高药物利用率这一靶向给药的概念。此后一个世纪以来, 靶向药物的载体材料一直吸引了医药工作者的兴趣。其中高分子纳米粒子以其特有的优点是近年来国内外一个极为重要的研究热点。(3)任何一种材料都是通过其表面与环境介质相接触的, 因此材料的开发与应用必然涉及其表面问题的研究。一般高分子材料的表面对外界响应性较弱, 但有些高分子表面的结构形态会因外界条件(如pH、温度、应力、光及电场等) 的改变在极短时间内发生相应的变化, 从而造成表面性质的改变, 此乃智能高分子表面。因此设计这类智能表面将是生物医用高分子材料发展的一个重要方面。(4)随着科学的发展,由高分子材料制成的人工脏器正在从体外使用型向内植型发展,为满足医用功能性、生物相容性的要求,把酶和生物细胞固定在合成高分子材料上,从而制成各种脏器,将使生物医用高分子材料发展前景越来越广阔。(5)通常,在组织工程的应用中,高分子材料支架要负载上生长因子,以促进组织在生物体内的再生,另一方面,把特殊的粘附因子,如粘连蛋白结合到支架上,可使聚合物表面能够促进对某种细胞的粘附,而排斥其它种类的细胞,即支架对细胞进行有选择的粘附。为了使生长因子和粘附因子能够结合到可降解高分子材料上,就需要对材料进行表面改性,而有时表面改性很困难, 因此,可利用与天然聚合物杂化的方法来达到上述目的, 同时由于这些材料有良好的机械性能,又可以弥补天然聚合物强度不高、稳定性差的缺点。可见,生物杂化材料在这方面的表现是相当突出的, 必将成为医用生物高分子材料发展的一个主要趋势。 给我分吧,我找得苦。

聚合物材料之一,一些论文3000 给你

半导体材料论文5000字怎么写

脚后跟读萨嘎施工此外空间站德国 微十第个毫的 微时第厘毫第万 微十第毫厘微第毫微毫微 丝素大会受到第微毫分毫万微 十第时毫微万个 受到 受到考察一是地方 ]调查撒地哦佛'死敌恢复形成开户行法

高分子材料的制品属於最年轻的材料它不仅遍及各个工业领域,另外,(材料科学)里面的资料,让你找找自己的灵感

新型半导体材料的研究和突破,常常导致新的技术革命和新兴产业的发展。以氮化镓为代表的第三代半导体材料,是继第一代半导体材料(以硅基半导体为代表)和第二代半导体材料(以砷化镓和磷化铟为代表)之后,在近10年发展起来的新型宽带半导体材料。 以氮化镓(GaN)为代表的第三代半导体材料,内、外量子效率高,具有高发光效率、高热导率、耐高温、抗辐射、耐酸碱、高强度和高硬度等特性,是世界上目前最先进的半导体材料。它的研究开发,不仅会带来IT行业数字化存储技术的革命,也将彻底改变人类传统照明的历史。 氮化镓材料可制成高效蓝、绿光发光二极管LED和激光二极管LD(又称激光器),并可延伸到白光LED,用高效率蓝绿光发光二极管制作的超大屏幕全色显示,可用于室内室外各种场合的动态信息显示,使超大型、全平面、高清晰、无辐射、低功耗、真彩色大屏幕在显示领域占有更大的比重。高效率白光发光二极管作为新型高效节能固体光源,使用寿命超过10万小时,可比白炽灯节电5-10倍,达到了节约资源、减少环境污染的双重目的。蓝光半导体激光器用于制作下一代DVD,可比现在的CD光盘提高存储密度20倍以上。另一方面,氮化镓材料宽带隙的特点也保证了它在高温、大功率以及紫外光探测器等半导体器件方面的应用前景,它具有高可靠性、高效率、快速响应、长寿命、全固体化、体积小等优点,在宇宙飞船、火箭羽烟探测、大气探测、火灾等领域内也将发挥重大作用。

相关百科