杂志信息网-创作、查重、发刊有保障。

植物生理学综述性论文题目大全高中

发布时间:2024-07-05 16:34:30

植物生理学综述性论文题目大全高中

植物生理学(plant physiology)是研究植物生命活动规律的学科。其主要任务是研究和阐明植物在各种环境条件下进行生命活动的规律和机理,并将这些研究成果应用于生产实际,为农业生产服务。与农业的关系:对矿质营养的研究,奠定了化肥生产基础,提供了无土栽培新方法,并对合理施肥、提高作物产量做出了贡献;对光合作用的研究为农业生产上间作套种、多熟栽培、合理密植、矮秆化和高光效育种等提供了理论依据;对植物激素的研究,推动了生长调节剂和除草剂的人工合成及应用,使作物生长发育进入了化学调控时代;春化作用和光周期现象的发现及研究,对栽培、引种、育种有中药指导作用;组织培养技术的发展,实现了“细胞全能性”预言,为发展花药育种、原生质体培养、细胞杂交融合、基因导入等育种新方法提供了基础,为快速繁殖、脱除病毒和植物性药物的工业化生产提供了可靠途径。

顶端优势:植物的顶芽优先生长而侧芽受抑制的现象 植物生长物质:是指一些调节植物生 在个体发育中,由一个或一种细胞增殖产生的后代

植物生理学名词解释(全) - 一、绪论 植物生理学是研究植物生命活动规律与细胞环境相互关系的科学, 在细胞结构 与功能的基础上研究植物环境刺激

一、名词 光合速率;植物在单位时间、单位叶面积吸收CO2或释放O2的数量。 光呼吸;植物的绿色细胞依赖光照,吸收O2和放出CO2的过程,又称为乙醇酸氧化途径(C2循环)。 短日植物;指昼夜周期中日照长度短于某一个临界值时,才开花的植物。 光形态建成;光控制植物生长、发育和分化的过程。 植物抗逆性;植物对各种不利的环境因子都具有一定的抵抗或忍耐能力,这种能力称为抗逆性,简称抗性。 渗透作用;水分从水势高的系统通过半透膜向水势低的系统移动的现象。 植物休眠;指由植物内因或环境因素所引起的植物体或植物器官生长暂时停顿现象。 离子拮抗;在单盐溶液中若加入少量其他金属的盐类单盐毒害现象就会减弱或消除,离子间的这种作用叫离子颉抗。发生在不同族金属离子之间。 生理中性盐;有一类盐如硝酸铵,根系对铵根离子和硝酸根离子的吸收速率基本相同,土壤溶液的PH基本不发生变化,这类盐则称为“生理中性盐” 抗氰呼吸;在氰化物存在下,某些植物呼吸不受抑制,这种呼吸途径称为抗氰呼吸。 植物激素;指植物体内合成的,可以移动的,对植物生长发育产生显著作用的微量(1µmol/L以下)的有机物。 胁迫;任何一种使植物内部产生有害变化或潜在有害变化的环境因子,称为胁迫 光周期现象;植物通过感受昼夜长短变化而控制开花的现象称为光周期现象 细胞全能性;细胞全能性是指植物每个有核细胞都具备母体的全套基因,在适宜的条件下,每个核细胞都可以形成一个完整的植株。 长日植物;指昼夜周期中日照长度大于某一个临界值时,才开花的植物。 植物衰老;衰老是植物生命周期的最后阶段,是成熟细胞、组织、器官或整个生物体自然终止生命活动的一系列过程。 光能利用率;指植物光合作用所累积的有机物所含的能量,占照射在单位地面上的日光能量的比率。 光合色素;即叶绿体色素,主要有3类;叶绿体,类胡萝卜素和藻胆素。高等植物叶绿体含有前两种,藻胆素仅存在于藻类 伤流;从受伤或折断的植物茎基部伤口溢出液体的现象。 种子生活力;指种子能够萌发的潜在能力或种胚具有的生命力。没有生活力的种子是死亡的种子,不能萌发。 吸胀作用;因吸涨力的存在而吸收水分子的作用称~。 单盐毒害;将植物培养在单一盐溶液中(即溶液中只含有一种金属离子),不久植株就会呈现不正常状态,最终死亡,这种现象称为单盐毒害 生理酸性盐;植物对同一种盐的正,负离子的吸收量不同,如,供给硫酸铵时,根系对铵根离子的吸收远远大于对硫酸根离子的吸收,并伴随着根细胞向外释放氢离子,以达到电荷平衡,结果会使土壤溶液PH降低,这种盐称为“生理酸性盐” 呼吸商;植物组织在一定时间内,放出二氧化碳的量与吸收氧气的量的比值叫做呼吸商,又称呼吸系数(RQ)。 呼吸跃变;当果实成熟到一定时期,其呼吸速率突然增高,然后又迅速下降的现象称之为呼吸跃变现象。 代谢源;代谢源指能够制造并运输出同化物的组织,器官或部位。如绿色植物的功能叶,种子萌发期间的胚乳或子叶,春季萌发时二年或多年生植物的块根,块茎,种子等 春化作用;低温诱导花原基形成的作用称为春化作用 细胞分化;是来自同一合子或遗传上同质的细胞,转变为形态上、机能上、化学构成上异质的细胞的过程。 生理碱性盐;供给硝酸钠或硝酸钙时,根系对硝酸根离子的吸收多于对钠离子或钙离子的吸收,而且大多数伴随着根系对氢离子的吸收和氢氧根离子的释放,结果使土壤溶液PH升高,这类盐称为“生理碱性盐” 植物组织培养;是指在无菌条件下,将离体的植物器官、组织、细胞以及原生质体,在人工控制的培养基上培养,使其生长和分化的技术。 代谢库;代谢库指消耗或贮藏同化物的组织,器官或部位,例如,植物的幼叶,根,茎,花,果实,发育的种子等。 根压;靠根系的生理活动,使液流由根部上升的压力称根压 希尔反应;离体的叶绿体加到具有氢受体(A)的水溶液中,光照后即发生水的分解而放 光出氧气2H2O+2A───→2AH2+O2 叶绿体荧光现象;叶绿素溶液在透射光下成绿色而在反射光下呈红色这种现象称为荧光现象,也就是从第一单线态到基态所发射的红光二、简述简述同化物的分配特点?按源库单位分配:通常把在同化物供求上有对应关系的源与库合称为源-库单位 。如:玉米果穗和棒三叶。优先分配生长中心:营养生长是茎叶,生殖生长是果实和种子。就近分配:一个库的同化物主要靠它附近的源叶来供应。同侧运输:指同一方位的叶制造的同化物主要供给相同方位器官。植物缺素症哪些元素嫩叶易缺,哪些老叶易缺,为什么?植物抗氰呼吸的生理意义有哪些?1)放热效应。 2)促进果实成熟。呼吸跃变主要是抗氰呼吸速率增强。 3)增强抗病力。 4)代谢协同调控。主要电子传递途径(细胞色素途径)受阻,可走抗氰呼吸途径,以保证EMP-TCA循环、PPP能正常运转。简述赤霉素在生产上应用?1 促进茎的伸长生长A促进整株生长,离体器官作用不大。B促进节间的伸长,不是节数的增加C无高浓度抑制2 促进抽苔开花3 打破休眠 A促进马铃薯块茎发芽 B促进需光、需低温种子发芽 C打破大麦休眠,加速酿酒过程。4 促进雄花分化5 其它效应养分的调运、促进植物座果和单性结实、延缓叶片衰老、促进细胞的分裂和分化。细胞质壁分离及复原在植物生理学上有何意义?质壁分离及质壁分离复原现象解释或判断如下几个问题: 1)判断细胞是否存活; 2)测定细胞的渗透势(发生初始质壁分离时测定); 3)观察物质透过原生质层的难易度(质壁分离现象)如何理解“有收无收在于水”这句话?生理需水 是细胞质的主要成分。70-90% 是代谢过程中的重要反应物质。如水解、脱氢反应,光合作用。 水分是各种生化反应的基本介质(溶剂)。 水分能保持植物的固有姿态。(就像吹气气球)细胞的分裂、伸长需要足够的水。生态需水1 水是植物体温的调节器2 水对可见光的通透性3 水对植物生存环境的调节。植物抗病机制有哪些?(1)氧化酶活性增强(2)侵染组织局部发生坏死(3)产生病原菌抑制物(4)植物形态结构屏障(5)寄主细胞壁强化叶绿素分子具有哪些化学性质?性质 1)不容于水。 2)叶绿素a:蓝绿色,叶绿素b :黄绿色。 3)叶绿素是叶绿酸的酯,能发生皂化反应。叶绿酸是双羧酸,一个羧基被甲醇酯化,另一个被叶绿醇(植醇)酯化。 4)叶绿素分子含有由4个吡咯环围绕Mg组成一个Mg卟啉环的“头部”(亲水、位于光合膜外表)和一个叶绿醇酯化尾巴(亲脂、插入光合膜内部)。 5)镁原子和卟啉环上共轭双键易被光激发引起电子得失。 6)Mg易被H,Cu,Zn所置换。(叶片保绿方法根系吸收有矿质元素特点?1与水相对的2选择吸收3单盐毒害和离子拮抗简述植物呼吸作用的生理意义?1为生命活动提供能量:植物生理活动需能量ATP,热能供提高体温、幼苗生长、开花传粉、受精。2为重要有机物合成提供原料(物质代谢中心):酮戊二酸、苹果酸、磷酸甘油醛为糖类、脂类、氨基酸、蛋白质、核酸、色素激素、维生素等细胞结构物质、生理活性物质及次生代谢物质的原料。3为代谢活动提供还原力:NADH硝酸还原、NADPH脂肪蛋白质合成。4增强植物抗病能力:生物氧化分解有毒物质伤口呼吸木质化、木栓化阻止病菌侵染(坏死斑)绿原酸、咖啡酸等杀菌物质产生种子萌发吸水三个阶段?动力是什么?急剧吸水阶段,滞缓吸水阶段,重新迅速吸水阶段。急剧吸水阶段:就是种子的吸胀阶段,干种子接触水分后,进行急剧吸水,吸水的动力是衬质势,种子水势小于环境,当种子吸水饱和后,急剧吸水停止。滞缓吸水阶段:种子吸水达到饱和后,吸水过程停止,种子水势等于环境,重新迅速吸水阶段:在滞缓吸水阶段胚生长的基础上,胚根突破种皮,胚的生长速度加快,种子又开始迅速吸水,吸水的动力主要是渗透势,水势低于环境。植物细胞水势由哪些组分构成?Ψw=ψ π +ψp(+ψm)ψπ—渗透势或溶质势:由于溶质的作用使细胞水势降低的值。 (<0) ψp —压力势:细胞壁对原生质体产生压力引起的水势变化值。在多数情况下压力势为正值,因为壁压增大水势(大于纯水,>0)。水势有时为零,有时为负值。ψm —衬质势:由于原生质中的亲水物质束缚水使细胞水势降低的值。(<0)光合电子传递体质体醌特点如何?质体醌PQ: 膜上可以移动。 不与蛋白质结合。 电子和质子传递体。亲脂性植物衰老四种类型?(1)整体衰老:整个植株同时衰老,例如,一生或季节性的植物,随生长季的结束,整体几乎同时衰老。(2)地上部衰老:植物只好随生长季结束而死亡,例如,多年生草本植物。(3)脱落衰老:由于气候因子导致的叶片季节性衰老,如北方的濶叶树。(4)渐近衰老:大多数多年生木本植物,较老的器官和组织衰老退化,并被新生组织或器官,随着时间的推移,植株的衰老逐渐加深。如何确定植物必需矿物质元素?不可缺少性:缺乏该元素时不能完成生活史。不可替代性:有专一缺乏症,加入其它元素不能恢复。直接功能性:缺素症状是由元素直接作用,并不是通过影响土壤、微生物等的间接作用。试验的原理(TTC;MDA)(1) TTC氧化态无色,被氢还原成不溶性TTF红色。(2) TTC溶液浸泡种子使之渗入种胚细胞内(3) 如种胚具有生命力,则种胚呼吸变红(4) 如种胚死亡,便不能染色(5) 根据种胚染色的部位或染色的深浅程度来鉴定种子的生活力简述植物组织中丙二醛(MDA)含量测定原理(1) 植物衰老、逆境下,膜脂过氧化,MDA是其产物之一。(2) MDA作为膜脂过氧化指标,表示膜脂过氧化程度,和抗逆性强弱。(3) 丙二醛与硫代巴比妥酸反应生成有色三甲基复合物。(4) 测三甲基复合物吸光度值。(5) 代入关系式可得丙二醛含量三、论述 试论光周期理论在引种上的应用光周期随着季节维度的变化而变化。了解所引品种的光周期特性:长日、短日、日中性。了解引种地和原产地的光周期差异。了解引种的目的:为了获得繁殖器官还是营养器官。引种原则:以收获籽粒、果实。短日植物:由南向北引种,引早熟品种。由北向南,引晚熟品种。长日植物:由南向北引种,引晚熟品种。由北向南,引早熟品种试论碳三,碳四植物在二氧化碳同化上的区别碳三a) 羧化阶段:RuBp+CO2RubiscoPGAb) 还原阶段:PGA酶 GAPc) 再生阶段:GAP经过一系列转变重新形成RuBp碳四(1) 叶肉细胞中C2O在PEPC的作用下与PEP反应生成四碳二羧酸(2) 四碳二羧酸通过胞间连丝进入维管束鞘细胞(3) 四碳二羧酸在维管束鞘细胞中脱下C2O(参加卡尔文循环)形成三碳化合物(丙酮酸)(4) 丙酮酸重新回到叶肉细胞中形成PEP 试论光呼吸生理功能 防止强光对光合器官的破坏,补充NADP+的不足。 消除乙醇酸的毒害作用 维持C3途径的低水平运转, CO2不足时放出CO2。 参与N代谢过程。丝氨酸、甘氨酸、谷氨酸 试论植物生长素的生理作用促进生长 (茎伸长;维管束分化) A双重效应(高浓度抑制低促进) B不同器官对IAA敏感性:根>芽>茎 C离体器官效应明显,对整株效果不明显。(组织培养)促进不定根的形成对养分调运的作用单性结实(辣椒、番茄柑橘)引起顶端优势其它效应促进开花(黄瓜雌花、凤梨开花)保花保果疏花疏果向光性、向重力性 试论植物组织培养在生产上的应用 培育新品种 (1)进行单倍体育种,提高杂种优势用花粉或花药等单倍体加倍培养出二倍体植株,这种植株的等位基因是纯合的,aa,bb,不会是aA,Bb,用来做为杂交育种的亲本,可使杂交后代整齐,可大大提高杂种优势。 (2)进行原生质体融合,克服远缘杂交的不亲和性:在杂交育种中,亲缘关系较远的植物杂交,可获得较大的杂种优势,但于远缘不亲和性,很难杂交,用原生质体融合的方法,就可克服这种不亲和性。(3)诱变育种:在组织培养过程中,外植体脱离母体易发生突变。因此,可通过组织培养,人为的诱发基因突变,如用化学药剂、辐射、超声波等。 (4)基因工程育种:组织培养是基因工程育种必不可它的一步。 基因工程育种的步骤:分离目的基因;组装载体;将目的基因转入目的植物的原生质体、细胞、组织中。其方法是利用载体或基因枪;用组织培养的方法,将导入基因的原生质体、细胞或组织培养成植株。 快速无性繁殖植物: 通过组织培养可大量的无性繁殖药用植物、观赏植物、园艺植物、珍贵木本植物,克服有性繁殖的困难。 获得无病毒植株,连续用植物的茎尖进行组织培养,如用马铃薯茎尖进行脱毒培养,培养出无毒植株,可防止退化,有花植物中茎尖生长点病毒最少,一代一代的培养,最后可获得无病毒植株。 保存和运输种质资源:将珍贵的种质资源用组织培养的方法保存起来,置于低温中贮存或运输,可节省大量人才和物质。 利用组织培养生产药物,如某些药用植物根尖,可合成药物,就用培养根尖的方法进行工厂化生产。 生产体细胞胚,用于人工种子生产。将植物组织培养中产生的体细胞胚包裹在含有养分的胶体囊内(即人工种子, artificial seed),可像种子一样直接播种到大田用于生产。天然种子中的胚是合子胚,而人工种子发芽中的胚是体细胞膈,胚乳和种皮是人工的。已有胡萝卜、苜蓿、棉花、玉米、水稻、橡胶等几十种植物的人工也已试种成功。 用于植物生长发育机制研究:细胞分裂的控制、生长和分化的控制。 试论根系吸收矿质元素特点,主要过程特点;1与水相对的2选择吸收3单盐毒害和离子拮抗过程;1离子吸附在根部细胞表面2离子进入根部内部3离子进入导管或管胞具体过程: 表面交换吸附(Cl---HCO3,H---K)——离子进入根皮层(质外体、共质体途径)——进入中柱——进入导管或管胞。

植物生理学综述性论文题目大全

水在植物体内的重要生理作用有以下几点:一、水是原生质的主要成分。原生质的含水量一般在80%~90%,这些水使原生质呈溶胶状态,从而保证了新陈代谢旺盛地进行,例如根尖、茎尖就是这样。如果含水量减少,原生质会由溶胶状态变成凝胶状态,生命活动就大大减弱,例如休眠的种子就是这样。如果细胞失水过多,就可能引起原生质破坏而招致细胞死亡。二、水是新陈代谢过程的反应物质。在光合作用、呼吸作用、有机物的合成和分解的过程中,都必须有水分子参与。三、水是植物对物质吸收和运输的溶剂。一般说来,植物不能直接吸收固态的无机物和有机物,这些物质只有溶解在水中才能被植物吸收。同样,各种物质在植物体内的运输也必须溶解于水中才能进行。四、水能保持植物体的固有状态。细胞含有大量水分,能够维持细胞的紧张度(即膨胀),使植物体的枝叶挺立,便于充分接受光照和交换气体,同时也使花朵开放,有利于传粉。五、水能维持植物体的正常体温。水具有很高的汽化热和比热,又有较高的导热性,因此水在植物体内的不断流动和叶面蒸腾,能够顺利地散发叶片所吸收的热量,保证植物体即使在炎夏强烈的光照下,也不致被阳光灼伤。

植物生理学(plant physiology)是研究植物生命活动规律的学科。其主要任务是研究和阐明植物在各种环境条件下进行生命活动的规律和机理,并将这些研究成果应用于生产实际,为农业生产服务。与农业的关系:对矿质营养的研究,奠定了化肥生产基础,提供了无土栽培新方法,并对合理施肥、提高作物产量做出了贡献;对光合作用的研究为农业生产上间作套种、多熟栽培、合理密植、矮秆化和高光效育种等提供了理论依据;对植物激素的研究,推动了生长调节剂和除草剂的人工合成及应用,使作物生长发育进入了化学调控时代;春化作用和光周期现象的发现及研究,对栽培、引种、育种有中药指导作用;组织培养技术的发展,实现了“细胞全能性”预言,为发展花药育种、原生质体培养、细胞杂交融合、基因导入等育种新方法提供了基础,为快速繁殖、脱除病毒和植物性药物的工业化生产提供了可靠途径。

植物生理学名词解释(全) - 一、绪论 植物生理学是研究植物生命活动规律与细胞环境相互关系的科学, 在细胞结构 与功能的基础上研究植物环境刺激

名词解释 植物生理学:是研究植物生命活动规律揭示植物生命现象本质的学科。 生长:是指增加细胞数目和扩大细胞体积而导致植物体积和重量的不可逆增加。 发育:是指细胞不断分化,形成新组织、新器官,即形态建成,具体表现为种子萌发,根、茎、叶生长,开花、结实、衰老死亡等过程。 细胞信号转导:是指细胞偶联各种刺激信号(包括各种内外源刺激信号)与其引起的特定生理效应之间的一系列分子反应机制。 诱导酶:又叫适应酶。指植物体内本来不含有,但在特定外来物质的诱导下可以生成的酶。 三重反应:是指乙稀可抑制茎的伸长生长;促进其横向生长(加粗);上胚轴失去负向重力性生长。 植物激素:是指一些在植物体内合成,并从产生之处运往作用部位,对生长发育起调控作用的微量有机物。 植物生长调节剂:指一些具有植物激素活性的人工合成物质。 光周期现象:指植物对白天和黑夜的相对长度的反应,与一些植物的开花有关。 光周期诱导:是指植物只需要一定时间适宜的光周期处理,以后即使处于不适宜的光周期下仍然可开花,这种现象成为光周期诱导。 水势:同温同压同一系统下水溶液的化学势与纯水的化学势之差,除以水的偏摩尔体积所得的商。把纯水的水势定义为零,溶液的水势值则是负值。 抗氰呼吸:指在氰化物存在的情况下,某些植物呼吸不受抑制,这种呼吸成为抗氰呼吸。 呼吸骤变:当果实成熟到一定程度时,呼吸速率首先是降低,然后突然升高,最后又下降的现象。此时果实便进入完全成熟。这个呼吸高峰,便称为渗透调节。 平衡溶液:几种盐类按一定比例和浓度配制的不使植物发生单盐毒害的溶液。这种配制的溶液是使其中各种盐类的阳离子之间表现它们的拮抗作用。 单盐毒害:如果将植物培养在只含一种金属离子的溶液中,即使这种离子是植物生长发育所必需的,(如钾离子,而且在培养液中的浓度很低,)植物也不能正常生活,不久即受害而死。

植物生理学综述性论文题目大全初中

也可以去中国生命科学论坛看看,应该有不少东西

植物生物学名解释大全这个的话就比较困难了,一般性很难知道这些全部的东西

一、名词 光合速率;植物在单位时间、单位叶面积吸收CO2或释放O2的数量。 光呼吸;植物的绿色细胞依赖光照,吸收O2和放出CO2的过程,又称为乙醇酸氧化途径(C2循环)。 短日植物;指昼夜周期中日照长度短于某一个临界值时,才开花的植物。 光形态建成;光控制植物生长、发育和分化的过程。 植物抗逆性;植物对各种不利的环境因子都具有一定的抵抗或忍耐能力,这种能力称为抗逆性,简称抗性。 渗透作用;水分从水势高的系统通过半透膜向水势低的系统移动的现象。 植物休眠;指由植物内因或环境因素所引起的植物体或植物器官生长暂时停顿现象。 离子拮抗;在单盐溶液中若加入少量其他金属的盐类单盐毒害现象就会减弱或消除,离子间的这种作用叫离子颉抗。发生在不同族金属离子之间。 生理中性盐;有一类盐如硝酸铵,根系对铵根离子和硝酸根离子的吸收速率基本相同,土壤溶液的PH基本不发生变化,这类盐则称为“生理中性盐” 抗氰呼吸;在氰化物存在下,某些植物呼吸不受抑制,这种呼吸途径称为抗氰呼吸。 植物激素;指植物体内合成的,可以移动的,对植物生长发育产生显著作用的微量(1µmol/L以下)的有机物。 胁迫;任何一种使植物内部产生有害变化或潜在有害变化的环境因子,称为胁迫 光周期现象;植物通过感受昼夜长短变化而控制开花的现象称为光周期现象 细胞全能性;细胞全能性是指植物每个有核细胞都具备母体的全套基因,在适宜的条件下,每个核细胞都可以形成一个完整的植株。 长日植物;指昼夜周期中日照长度大于某一个临界值时,才开花的植物。 植物衰老;衰老是植物生命周期的最后阶段,是成熟细胞、组织、器官或整个生物体自然终止生命活动的一系列过程。 光能利用率;指植物光合作用所累积的有机物所含的能量,占照射在单位地面上的日光能量的比率。 光合色素;即叶绿体色素,主要有3类;叶绿体,类胡萝卜素和藻胆素。高等植物叶绿体含有前两种,藻胆素仅存在于藻类 伤流;从受伤或折断的植物茎基部伤口溢出液体的现象。 种子生活力;指种子能够萌发的潜在能力或种胚具有的生命力。没有生活力的种子是死亡的种子,不能萌发。 吸胀作用;因吸涨力的存在而吸收水分子的作用称~。 单盐毒害;将植物培养在单一盐溶液中(即溶液中只含有一种金属离子),不久植株就会呈现不正常状态,最终死亡,这种现象称为单盐毒害 生理酸性盐;植物对同一种盐的正,负离子的吸收量不同,如,供给硫酸铵时,根系对铵根离子的吸收远远大于对硫酸根离子的吸收,并伴随着根细胞向外释放氢离子,以达到电荷平衡,结果会使土壤溶液PH降低,这种盐称为“生理酸性盐” 呼吸商;植物组织在一定时间内,放出二氧化碳的量与吸收氧气的量的比值叫做呼吸商,又称呼吸系数(RQ)。 呼吸跃变;当果实成熟到一定时期,其呼吸速率突然增高,然后又迅速下降的现象称之为呼吸跃变现象。 代谢源;代谢源指能够制造并运输出同化物的组织,器官或部位。如绿色植物的功能叶,种子萌发期间的胚乳或子叶,春季萌发时二年或多年生植物的块根,块茎,种子等 春化作用;低温诱导花原基形成的作用称为春化作用 细胞分化;是来自同一合子或遗传上同质的细胞,转变为形态上、机能上、化学构成上异质的细胞的过程。 生理碱性盐;供给硝酸钠或硝酸钙时,根系对硝酸根离子的吸收多于对钠离子或钙离子的吸收,而且大多数伴随着根系对氢离子的吸收和氢氧根离子的释放,结果使土壤溶液PH升高,这类盐称为“生理碱性盐” 植物组织培养;是指在无菌条件下,将离体的植物器官、组织、细胞以及原生质体,在人工控制的培养基上培养,使其生长和分化的技术。 代谢库;代谢库指消耗或贮藏同化物的组织,器官或部位,例如,植物的幼叶,根,茎,花,果实,发育的种子等。 根压;靠根系的生理活动,使液流由根部上升的压力称根压 希尔反应;离体的叶绿体加到具有氢受体(A)的水溶液中,光照后即发生水的分解而放 光出氧气2H2O+2A───→2AH2+O2 叶绿体荧光现象;叶绿素溶液在透射光下成绿色而在反射光下呈红色这种现象称为荧光现象,也就是从第一单线态到基态所发射的红光二、简述简述同化物的分配特点?按源库单位分配:通常把在同化物供求上有对应关系的源与库合称为源-库单位 。如:玉米果穗和棒三叶。优先分配生长中心:营养生长是茎叶,生殖生长是果实和种子。就近分配:一个库的同化物主要靠它附近的源叶来供应。同侧运输:指同一方位的叶制造的同化物主要供给相同方位器官。植物缺素症哪些元素嫩叶易缺,哪些老叶易缺,为什么?植物抗氰呼吸的生理意义有哪些?1)放热效应。 2)促进果实成熟。呼吸跃变主要是抗氰呼吸速率增强。 3)增强抗病力。 4)代谢协同调控。主要电子传递途径(细胞色素途径)受阻,可走抗氰呼吸途径,以保证EMP-TCA循环、PPP能正常运转。简述赤霉素在生产上应用?1 促进茎的伸长生长A促进整株生长,离体器官作用不大。B促进节间的伸长,不是节数的增加C无高浓度抑制2 促进抽苔开花3 打破休眠 A促进马铃薯块茎发芽 B促进需光、需低温种子发芽 C打破大麦休眠,加速酿酒过程。4 促进雄花分化5 其它效应养分的调运、促进植物座果和单性结实、延缓叶片衰老、促进细胞的分裂和分化。细胞质壁分离及复原在植物生理学上有何意义?质壁分离及质壁分离复原现象解释或判断如下几个问题: 1)判断细胞是否存活; 2)测定细胞的渗透势(发生初始质壁分离时测定); 3)观察物质透过原生质层的难易度(质壁分离现象)如何理解“有收无收在于水”这句话?生理需水 是细胞质的主要成分。70-90% 是代谢过程中的重要反应物质。如水解、脱氢反应,光合作用。 水分是各种生化反应的基本介质(溶剂)。 水分能保持植物的固有姿态。(就像吹气气球)细胞的分裂、伸长需要足够的水。生态需水1 水是植物体温的调节器2 水对可见光的通透性3 水对植物生存环境的调节。植物抗病机制有哪些?(1)氧化酶活性增强(2)侵染组织局部发生坏死(3)产生病原菌抑制物(4)植物形态结构屏障(5)寄主细胞壁强化叶绿素分子具有哪些化学性质?性质 1)不容于水。 2)叶绿素a:蓝绿色,叶绿素b :黄绿色。 3)叶绿素是叶绿酸的酯,能发生皂化反应。叶绿酸是双羧酸,一个羧基被甲醇酯化,另一个被叶绿醇(植醇)酯化。 4)叶绿素分子含有由4个吡咯环围绕Mg组成一个Mg卟啉环的“头部”(亲水、位于光合膜外表)和一个叶绿醇酯化尾巴(亲脂、插入光合膜内部)。 5)镁原子和卟啉环上共轭双键易被光激发引起电子得失。 6)Mg易被H,Cu,Zn所置换。(叶片保绿方法根系吸收有矿质元素特点?1与水相对的2选择吸收3单盐毒害和离子拮抗简述植物呼吸作用的生理意义?1为生命活动提供能量:植物生理活动需能量ATP,热能供提高体温、幼苗生长、开花传粉、受精。2为重要有机物合成提供原料(物质代谢中心):酮戊二酸、苹果酸、磷酸甘油醛为糖类、脂类、氨基酸、蛋白质、核酸、色素激素、维生素等细胞结构物质、生理活性物质及次生代谢物质的原料。3为代谢活动提供还原力:NADH硝酸还原、NADPH脂肪蛋白质合成。4增强植物抗病能力:生物氧化分解有毒物质伤口呼吸木质化、木栓化阻止病菌侵染(坏死斑)绿原酸、咖啡酸等杀菌物质产生种子萌发吸水三个阶段?动力是什么?急剧吸水阶段,滞缓吸水阶段,重新迅速吸水阶段。急剧吸水阶段:就是种子的吸胀阶段,干种子接触水分后,进行急剧吸水,吸水的动力是衬质势,种子水势小于环境,当种子吸水饱和后,急剧吸水停止。滞缓吸水阶段:种子吸水达到饱和后,吸水过程停止,种子水势等于环境,重新迅速吸水阶段:在滞缓吸水阶段胚生长的基础上,胚根突破种皮,胚的生长速度加快,种子又开始迅速吸水,吸水的动力主要是渗透势,水势低于环境。植物细胞水势由哪些组分构成?Ψw=ψ π +ψp(+ψm)ψπ—渗透势或溶质势:由于溶质的作用使细胞水势降低的值。 (<0) ψp —压力势:细胞壁对原生质体产生压力引起的水势变化值。在多数情况下压力势为正值,因为壁压增大水势(大于纯水,>0)。水势有时为零,有时为负值。ψm —衬质势:由于原生质中的亲水物质束缚水使细胞水势降低的值。(<0)光合电子传递体质体醌特点如何?质体醌PQ: 膜上可以移动。 不与蛋白质结合。 电子和质子传递体。亲脂性植物衰老四种类型?(1)整体衰老:整个植株同时衰老,例如,一生或季节性的植物,随生长季的结束,整体几乎同时衰老。(2)地上部衰老:植物只好随生长季结束而死亡,例如,多年生草本植物。(3)脱落衰老:由于气候因子导致的叶片季节性衰老,如北方的濶叶树。(4)渐近衰老:大多数多年生木本植物,较老的器官和组织衰老退化,并被新生组织或器官,随着时间的推移,植株的衰老逐渐加深。如何确定植物必需矿物质元素?不可缺少性:缺乏该元素时不能完成生活史。不可替代性:有专一缺乏症,加入其它元素不能恢复。直接功能性:缺素症状是由元素直接作用,并不是通过影响土壤、微生物等的间接作用。试验的原理(TTC;MDA)(1) TTC氧化态无色,被氢还原成不溶性TTF红色。(2) TTC溶液浸泡种子使之渗入种胚细胞内(3) 如种胚具有生命力,则种胚呼吸变红(4) 如种胚死亡,便不能染色(5) 根据种胚染色的部位或染色的深浅程度来鉴定种子的生活力简述植物组织中丙二醛(MDA)含量测定原理(1) 植物衰老、逆境下,膜脂过氧化,MDA是其产物之一。(2) MDA作为膜脂过氧化指标,表示膜脂过氧化程度,和抗逆性强弱。(3) 丙二醛与硫代巴比妥酸反应生成有色三甲基复合物。(4) 测三甲基复合物吸光度值。(5) 代入关系式可得丙二醛含量三、论述 试论光周期理论在引种上的应用光周期随着季节维度的变化而变化。了解所引品种的光周期特性:长日、短日、日中性。了解引种地和原产地的光周期差异。了解引种的目的:为了获得繁殖器官还是营养器官。引种原则:以收获籽粒、果实。短日植物:由南向北引种,引早熟品种。由北向南,引晚熟品种。长日植物:由南向北引种,引晚熟品种。由北向南,引早熟品种试论碳三,碳四植物在二氧化碳同化上的区别碳三a) 羧化阶段:RuBp+CO2RubiscoPGAb) 还原阶段:PGA酶 GAPc) 再生阶段:GAP经过一系列转变重新形成RuBp碳四(1) 叶肉细胞中C2O在PEPC的作用下与PEP反应生成四碳二羧酸(2) 四碳二羧酸通过胞间连丝进入维管束鞘细胞(3) 四碳二羧酸在维管束鞘细胞中脱下C2O(参加卡尔文循环)形成三碳化合物(丙酮酸)(4) 丙酮酸重新回到叶肉细胞中形成PEP 试论光呼吸生理功能 防止强光对光合器官的破坏,补充NADP+的不足。 消除乙醇酸的毒害作用 维持C3途径的低水平运转, CO2不足时放出CO2。 参与N代谢过程。丝氨酸、甘氨酸、谷氨酸 试论植物生长素的生理作用促进生长 (茎伸长;维管束分化) A双重效应(高浓度抑制低促进) B不同器官对IAA敏感性:根>芽>茎 C离体器官效应明显,对整株效果不明显。(组织培养)促进不定根的形成对养分调运的作用单性结实(辣椒、番茄柑橘)引起顶端优势其它效应促进开花(黄瓜雌花、凤梨开花)保花保果疏花疏果向光性、向重力性 试论植物组织培养在生产上的应用 培育新品种 (1)进行单倍体育种,提高杂种优势用花粉或花药等单倍体加倍培养出二倍体植株,这种植株的等位基因是纯合的,aa,bb,不会是aA,Bb,用来做为杂交育种的亲本,可使杂交后代整齐,可大大提高杂种优势。 (2)进行原生质体融合,克服远缘杂交的不亲和性:在杂交育种中,亲缘关系较远的植物杂交,可获得较大的杂种优势,但于远缘不亲和性,很难杂交,用原生质体融合的方法,就可克服这种不亲和性。(3)诱变育种:在组织培养过程中,外植体脱离母体易发生突变。因此,可通过组织培养,人为的诱发基因突变,如用化学药剂、辐射、超声波等。 (4)基因工程育种:组织培养是基因工程育种必不可它的一步。 基因工程育种的步骤:分离目的基因;组装载体;将目的基因转入目的植物的原生质体、细胞、组织中。其方法是利用载体或基因枪;用组织培养的方法,将导入基因的原生质体、细胞或组织培养成植株。 快速无性繁殖植物: 通过组织培养可大量的无性繁殖药用植物、观赏植物、园艺植物、珍贵木本植物,克服有性繁殖的困难。 获得无病毒植株,连续用植物的茎尖进行组织培养,如用马铃薯茎尖进行脱毒培养,培养出无毒植株,可防止退化,有花植物中茎尖生长点病毒最少,一代一代的培养,最后可获得无病毒植株。 保存和运输种质资源:将珍贵的种质资源用组织培养的方法保存起来,置于低温中贮存或运输,可节省大量人才和物质。 利用组织培养生产药物,如某些药用植物根尖,可合成药物,就用培养根尖的方法进行工厂化生产。 生产体细胞胚,用于人工种子生产。将植物组织培养中产生的体细胞胚包裹在含有养分的胶体囊内(即人工种子, artificial seed),可像种子一样直接播种到大田用于生产。天然种子中的胚是合子胚,而人工种子发芽中的胚是体细胞膈,胚乳和种皮是人工的。已有胡萝卜、苜蓿、棉花、玉米、水稻、橡胶等几十种植物的人工也已试种成功。 用于植物生长发育机制研究:细胞分裂的控制、生长和分化的控制。 试论根系吸收矿质元素特点,主要过程特点;1与水相对的2选择吸收3单盐毒害和离子拮抗过程;1离子吸附在根部细胞表面2离子进入根部内部3离子进入导管或管胞具体过程: 表面交换吸附(Cl---HCO3,H---K)——离子进入根皮层(质外体、共质体途径)——进入中柱——进入导管或管胞。

植物生理学名词解释(全) - 一、绪论 植物生理学是研究植物生命活动规律与细胞环境相互关系的科学, 在细胞结构 与功能的基础上研究植物环境刺激

植物生理学综述性论文范文大全

也可以去中国生命科学论坛看看,应该有不少东西

植物生理学(plant physiology)是研究植物生命活动规律的学科。其主要任务是研究和阐明植物在各种环境条件下进行生命活动的规律和机理,并将这些研究成果应用于生产实际,为农业生产服务。与农业的关系:对矿质营养的研究,奠定了化肥生产基础,提供了无土栽培新方法,并对合理施肥、提高作物产量做出了贡献;对光合作用的研究为农业生产上间作套种、多熟栽培、合理密植、矮秆化和高光效育种等提供了理论依据;对植物激素的研究,推动了生长调节剂和除草剂的人工合成及应用,使作物生长发育进入了化学调控时代;春化作用和光周期现象的发现及研究,对栽培、引种、育种有中药指导作用;组织培养技术的发展,实现了“细胞全能性”预言,为发展花药育种、原生质体培养、细胞杂交融合、基因导入等育种新方法提供了基础,为快速繁殖、脱除病毒和植物性药物的工业化生产提供了可靠途径。

这个我建议你最好翻翻plant physiology,planta等最新杂志,看看也就知道人家当前都些什么了或者去生物谷的相应板块上看看,可能有你需要的。

-/这里有最权威的报道和论文

植物生理学综述性论文题目大全及答案

回答 植物生理学(plant physiology)是研究植物生命活动规律的生物学分支学科。 意义植物生理学是植物学的一部分。但它同时也可看作普通生理学的一个分支。植物的基本组成物质如蛋白质、糖、脂肪和核酸以及它们的代谢都与其他生物(动物、微生物)大同小异。但是,植物本身又有一些独特的地方,如:①能利用太阳能 ,用来自空气中的 CO2和土壤中的水及矿物质合成有机物,因而是现代地球上几乎一切有机物的原初生产者。②植物扎根在土中营固定式生活,趋利避害的余地很小,必须能适应当地环境条件并演化出对不良环境的耐性与抗性。③植物的生长没有定限,虽然部分组织或细胞死亡,仍可以再生或更新,不断地生长。④植物的体细胞具全能性,在适宜的条件下,一个体细胞经过生长和分化,就可成为一棵完整的植株。因此植物生理学在实践上、理论上都具有重要的意义。 提问 第二道题 回答 请详细说明你的问题 提问 回答 请详细说明南您的问题 提问 联系,请举例说明。 回答 植物生理学与园林植物生产实践以及和人类生活有何密切说实在的没有什么特别紧密的联系,只体现在植物的种植和养护中。但是在养护学中对于不同的种植要求和不同的种植情况有特定的养护方法和药剂配方,病虫害也一样,生理是帮助你判断植物病虫害的。 更多6条 

名词解释 植物生理学:是研究植物生命活动规律揭示植物生命现象本质的学科。 生长:是指增加细胞数目和扩大细胞体积而导致植物体积和重量的不可逆增加。 发育:是指细胞不断分化,形成新组织、新器官,即形态建成,具体表现为种子萌发,根、茎、叶生长,开花、结实、衰老死亡等过程。 细胞信号转导:是指细胞偶联各种刺激信号(包括各种内外源刺激信号)与其引起的特定生理效应之间的一系列分子反应机制。 诱导酶:又叫适应酶。指植物体内本来不含有,但在特定外来物质的诱导下可以生成的酶。 三重反应:是指乙稀可抑制茎的伸长生长;促进其横向生长(加粗);上胚轴失去负向重力性生长。 植物激素:是指一些在植物体内合成,并从产生之处运往作用部位,对生长发育起调控作用的微量有机物。 植物生长调节剂:指一些具有植物激素活性的人工合成物质。 光周期现象:指植物对白天和黑夜的相对长度的反应,与一些植物的开花有关。 光周期诱导:是指植物只需要一定时间适宜的光周期处理,以后即使处于不适宜的光周期下仍然可开花,这种现象成为光周期诱导。 水势:同温同压同一系统下水溶液的化学势与纯水的化学势之差,除以水的偏摩尔体积所得的商。把纯水的水势定义为零,溶液的水势值则是负值。 抗氰呼吸:指在氰化物存在的情况下,某些植物呼吸不受抑制,这种呼吸成为抗氰呼吸。 呼吸骤变:当果实成熟到一定程度时,呼吸速率首先是降低,然后突然升高,最后又下降的现象。此时果实便进入完全成熟。这个呼吸高峰,便称为渗透调节。 平衡溶液:几种盐类按一定比例和浓度配制的不使植物发生单盐毒害的溶液。这种配制的溶液是使其中各种盐类的阳离子之间表现它们的拮抗作用。 单盐毒害:如果将植物培养在只含一种金属离子的溶液中,即使这种离子是植物生长发育所必需的,(如钾离子,而且在培养液中的浓度很低,)植物也不能正常生活,不久即受害而死。

一、名词 光合速率;植物在单位时间、单位叶面积吸收CO2或释放O2的数量。 光呼吸;植物的绿色细胞依赖光照,吸收O2和放出CO2的过程,又称为乙醇酸氧化途径(C2循环)。 短日植物;指昼夜周期中日照长度短于某一个临界值时,才开花的植物。 光形态建成;光控制植物生长、发育和分化的过程。 植物抗逆性;植物对各种不利的环境因子都具有一定的抵抗或忍耐能力,这种能力称为抗逆性,简称抗性。 渗透作用;水分从水势高的系统通过半透膜向水势低的系统移动的现象。 植物休眠;指由植物内因或环境因素所引起的植物体或植物器官生长暂时停顿现象。 离子拮抗;在单盐溶液中若加入少量其他金属的盐类单盐毒害现象就会减弱或消除,离子间的这种作用叫离子颉抗。发生在不同族金属离子之间。 生理中性盐;有一类盐如硝酸铵,根系对铵根离子和硝酸根离子的吸收速率基本相同,土壤溶液的PH基本不发生变化,这类盐则称为“生理中性盐” 抗氰呼吸;在氰化物存在下,某些植物呼吸不受抑制,这种呼吸途径称为抗氰呼吸。 植物激素;指植物体内合成的,可以移动的,对植物生长发育产生显著作用的微量(1µmol/L以下)的有机物。 胁迫;任何一种使植物内部产生有害变化或潜在有害变化的环境因子,称为胁迫 光周期现象;植物通过感受昼夜长短变化而控制开花的现象称为光周期现象 细胞全能性;细胞全能性是指植物每个有核细胞都具备母体的全套基因,在适宜的条件下,每个核细胞都可以形成一个完整的植株。 长日植物;指昼夜周期中日照长度大于某一个临界值时,才开花的植物。 植物衰老;衰老是植物生命周期的最后阶段,是成熟细胞、组织、器官或整个生物体自然终止生命活动的一系列过程。 光能利用率;指植物光合作用所累积的有机物所含的能量,占照射在单位地面上的日光能量的比率。 光合色素;即叶绿体色素,主要有3类;叶绿体,类胡萝卜素和藻胆素。高等植物叶绿体含有前两种,藻胆素仅存在于藻类 伤流;从受伤或折断的植物茎基部伤口溢出液体的现象。 种子生活力;指种子能够萌发的潜在能力或种胚具有的生命力。没有生活力的种子是死亡的种子,不能萌发。 吸胀作用;因吸涨力的存在而吸收水分子的作用称~。 单盐毒害;将植物培养在单一盐溶液中(即溶液中只含有一种金属离子),不久植株就会呈现不正常状态,最终死亡,这种现象称为单盐毒害 生理酸性盐;植物对同一种盐的正,负离子的吸收量不同,如,供给硫酸铵时,根系对铵根离子的吸收远远大于对硫酸根离子的吸收,并伴随着根细胞向外释放氢离子,以达到电荷平衡,结果会使土壤溶液PH降低,这种盐称为“生理酸性盐” 呼吸商;植物组织在一定时间内,放出二氧化碳的量与吸收氧气的量的比值叫做呼吸商,又称呼吸系数(RQ)。 呼吸跃变;当果实成熟到一定时期,其呼吸速率突然增高,然后又迅速下降的现象称之为呼吸跃变现象。 代谢源;代谢源指能够制造并运输出同化物的组织,器官或部位。如绿色植物的功能叶,种子萌发期间的胚乳或子叶,春季萌发时二年或多年生植物的块根,块茎,种子等 春化作用;低温诱导花原基形成的作用称为春化作用 细胞分化;是来自同一合子或遗传上同质的细胞,转变为形态上、机能上、化学构成上异质的细胞的过程。 生理碱性盐;供给硝酸钠或硝酸钙时,根系对硝酸根离子的吸收多于对钠离子或钙离子的吸收,而且大多数伴随着根系对氢离子的吸收和氢氧根离子的释放,结果使土壤溶液PH升高,这类盐称为“生理碱性盐” 植物组织培养;是指在无菌条件下,将离体的植物器官、组织、细胞以及原生质体,在人工控制的培养基上培养,使其生长和分化的技术。 代谢库;代谢库指消耗或贮藏同化物的组织,器官或部位,例如,植物的幼叶,根,茎,花,果实,发育的种子等。 根压;靠根系的生理活动,使液流由根部上升的压力称根压 希尔反应;离体的叶绿体加到具有氢受体(A)的水溶液中,光照后即发生水的分解而放 光出氧气2H2O+2A───→2AH2+O2 叶绿体荧光现象;叶绿素溶液在透射光下成绿色而在反射光下呈红色这种现象称为荧光现象,也就是从第一单线态到基态所发射的红光二、简述简述同化物的分配特点?按源库单位分配:通常把在同化物供求上有对应关系的源与库合称为源-库单位 。如:玉米果穗和棒三叶。优先分配生长中心:营养生长是茎叶,生殖生长是果实和种子。就近分配:一个库的同化物主要靠它附近的源叶来供应。同侧运输:指同一方位的叶制造的同化物主要供给相同方位器官。植物缺素症哪些元素嫩叶易缺,哪些老叶易缺,为什么?植物抗氰呼吸的生理意义有哪些?1)放热效应。 2)促进果实成熟。呼吸跃变主要是抗氰呼吸速率增强。 3)增强抗病力。 4)代谢协同调控。主要电子传递途径(细胞色素途径)受阻,可走抗氰呼吸途径,以保证EMP-TCA循环、PPP能正常运转。简述赤霉素在生产上应用?1 促进茎的伸长生长A促进整株生长,离体器官作用不大。B促进节间的伸长,不是节数的增加C无高浓度抑制2 促进抽苔开花3 打破休眠 A促进马铃薯块茎发芽 B促进需光、需低温种子发芽 C打破大麦休眠,加速酿酒过程。4 促进雄花分化5 其它效应养分的调运、促进植物座果和单性结实、延缓叶片衰老、促进细胞的分裂和分化。细胞质壁分离及复原在植物生理学上有何意义?质壁分离及质壁分离复原现象解释或判断如下几个问题: 1)判断细胞是否存活; 2)测定细胞的渗透势(发生初始质壁分离时测定); 3)观察物质透过原生质层的难易度(质壁分离现象)如何理解“有收无收在于水”这句话?生理需水 是细胞质的主要成分。70-90% 是代谢过程中的重要反应物质。如水解、脱氢反应,光合作用。 水分是各种生化反应的基本介质(溶剂)。 水分能保持植物的固有姿态。(就像吹气气球)细胞的分裂、伸长需要足够的水。生态需水1 水是植物体温的调节器2 水对可见光的通透性3 水对植物生存环境的调节。植物抗病机制有哪些?(1)氧化酶活性增强(2)侵染组织局部发生坏死(3)产生病原菌抑制物(4)植物形态结构屏障(5)寄主细胞壁强化叶绿素分子具有哪些化学性质?性质 1)不容于水。 2)叶绿素a:蓝绿色,叶绿素b :黄绿色。 3)叶绿素是叶绿酸的酯,能发生皂化反应。叶绿酸是双羧酸,一个羧基被甲醇酯化,另一个被叶绿醇(植醇)酯化。 4)叶绿素分子含有由4个吡咯环围绕Mg组成一个Mg卟啉环的“头部”(亲水、位于光合膜外表)和一个叶绿醇酯化尾巴(亲脂、插入光合膜内部)。 5)镁原子和卟啉环上共轭双键易被光激发引起电子得失。 6)Mg易被H,Cu,Zn所置换。(叶片保绿方法根系吸收有矿质元素特点?1与水相对的2选择吸收3单盐毒害和离子拮抗简述植物呼吸作用的生理意义?1为生命活动提供能量:植物生理活动需能量ATP,热能供提高体温、幼苗生长、开花传粉、受精。2为重要有机物合成提供原料(物质代谢中心):酮戊二酸、苹果酸、磷酸甘油醛为糖类、脂类、氨基酸、蛋白质、核酸、色素激素、维生素等细胞结构物质、生理活性物质及次生代谢物质的原料。3为代谢活动提供还原力:NADH硝酸还原、NADPH脂肪蛋白质合成。4增强植物抗病能力:生物氧化分解有毒物质伤口呼吸木质化、木栓化阻止病菌侵染(坏死斑)绿原酸、咖啡酸等杀菌物质产生种子萌发吸水三个阶段?动力是什么?急剧吸水阶段,滞缓吸水阶段,重新迅速吸水阶段。急剧吸水阶段:就是种子的吸胀阶段,干种子接触水分后,进行急剧吸水,吸水的动力是衬质势,种子水势小于环境,当种子吸水饱和后,急剧吸水停止。滞缓吸水阶段:种子吸水达到饱和后,吸水过程停止,种子水势等于环境,重新迅速吸水阶段:在滞缓吸水阶段胚生长的基础上,胚根突破种皮,胚的生长速度加快,种子又开始迅速吸水,吸水的动力主要是渗透势,水势低于环境。植物细胞水势由哪些组分构成?Ψw=ψ π +ψp(+ψm)ψπ—渗透势或溶质势:由于溶质的作用使细胞水势降低的值。 (<0) ψp —压力势:细胞壁对原生质体产生压力引起的水势变化值。在多数情况下压力势为正值,因为壁压增大水势(大于纯水,>0)。水势有时为零,有时为负值。ψm —衬质势:由于原生质中的亲水物质束缚水使细胞水势降低的值。(<0)光合电子传递体质体醌特点如何?质体醌PQ: 膜上可以移动。 不与蛋白质结合。 电子和质子传递体。亲脂性植物衰老四种类型?(1)整体衰老:整个植株同时衰老,例如,一生或季节性的植物,随生长季的结束,整体几乎同时衰老。(2)地上部衰老:植物只好随生长季结束而死亡,例如,多年生草本植物。(3)脱落衰老:由于气候因子导致的叶片季节性衰老,如北方的濶叶树。(4)渐近衰老:大多数多年生木本植物,较老的器官和组织衰老退化,并被新生组织或器官,随着时间的推移,植株的衰老逐渐加深。如何确定植物必需矿物质元素?不可缺少性:缺乏该元素时不能完成生活史。不可替代性:有专一缺乏症,加入其它元素不能恢复。直接功能性:缺素症状是由元素直接作用,并不是通过影响土壤、微生物等的间接作用。试验的原理(TTC;MDA)(1) TTC氧化态无色,被氢还原成不溶性TTF红色。(2) TTC溶液浸泡种子使之渗入种胚细胞内(3) 如种胚具有生命力,则种胚呼吸变红(4) 如种胚死亡,便不能染色(5) 根据种胚染色的部位或染色的深浅程度来鉴定种子的生活力简述植物组织中丙二醛(MDA)含量测定原理(1) 植物衰老、逆境下,膜脂过氧化,MDA是其产物之一。(2) MDA作为膜脂过氧化指标,表示膜脂过氧化程度,和抗逆性强弱。(3) 丙二醛与硫代巴比妥酸反应生成有色三甲基复合物。(4) 测三甲基复合物吸光度值。(5) 代入关系式可得丙二醛含量三、论述 试论光周期理论在引种上的应用光周期随着季节维度的变化而变化。了解所引品种的光周期特性:长日、短日、日中性。了解引种地和原产地的光周期差异。了解引种的目的:为了获得繁殖器官还是营养器官。引种原则:以收获籽粒、果实。短日植物:由南向北引种,引早熟品种。由北向南,引晚熟品种。长日植物:由南向北引种,引晚熟品种。由北向南,引早熟品种试论碳三,碳四植物在二氧化碳同化上的区别碳三a) 羧化阶段:RuBp+CO2RubiscoPGAb) 还原阶段:PGA酶 GAPc) 再生阶段:GAP经过一系列转变重新形成RuBp碳四(1) 叶肉细胞中C2O在PEPC的作用下与PEP反应生成四碳二羧酸(2) 四碳二羧酸通过胞间连丝进入维管束鞘细胞(3) 四碳二羧酸在维管束鞘细胞中脱下C2O(参加卡尔文循环)形成三碳化合物(丙酮酸)(4) 丙酮酸重新回到叶肉细胞中形成PEP 试论光呼吸生理功能 防止强光对光合器官的破坏,补充NADP+的不足。 消除乙醇酸的毒害作用 维持C3途径的低水平运转, CO2不足时放出CO2。 参与N代谢过程。丝氨酸、甘氨酸、谷氨酸 试论植物生长素的生理作用促进生长 (茎伸长;维管束分化) A双重效应(高浓度抑制低促进) B不同器官对IAA敏感性:根>芽>茎 C离体器官效应明显,对整株效果不明显。(组织培养)促进不定根的形成对养分调运的作用单性结实(辣椒、番茄柑橘)引起顶端优势其它效应促进开花(黄瓜雌花、凤梨开花)保花保果疏花疏果向光性、向重力性 试论植物组织培养在生产上的应用 培育新品种 (1)进行单倍体育种,提高杂种优势用花粉或花药等单倍体加倍培养出二倍体植株,这种植株的等位基因是纯合的,aa,bb,不会是aA,Bb,用来做为杂交育种的亲本,可使杂交后代整齐,可大大提高杂种优势。 (2)进行原生质体融合,克服远缘杂交的不亲和性:在杂交育种中,亲缘关系较远的植物杂交,可获得较大的杂种优势,但于远缘不亲和性,很难杂交,用原生质体融合的方法,就可克服这种不亲和性。(3)诱变育种:在组织培养过程中,外植体脱离母体易发生突变。因此,可通过组织培养,人为的诱发基因突变,如用化学药剂、辐射、超声波等。 (4)基因工程育种:组织培养是基因工程育种必不可它的一步。 基因工程育种的步骤:分离目的基因;组装载体;将目的基因转入目的植物的原生质体、细胞、组织中。其方法是利用载体或基因枪;用组织培养的方法,将导入基因的原生质体、细胞或组织培养成植株。 快速无性繁殖植物: 通过组织培养可大量的无性繁殖药用植物、观赏植物、园艺植物、珍贵木本植物,克服有性繁殖的困难。 获得无病毒植株,连续用植物的茎尖进行组织培养,如用马铃薯茎尖进行脱毒培养,培养出无毒植株,可防止退化,有花植物中茎尖生长点病毒最少,一代一代的培养,最后可获得无病毒植株。 保存和运输种质资源:将珍贵的种质资源用组织培养的方法保存起来,置于低温中贮存或运输,可节省大量人才和物质。 利用组织培养生产药物,如某些药用植物根尖,可合成药物,就用培养根尖的方法进行工厂化生产。 生产体细胞胚,用于人工种子生产。将植物组织培养中产生的体细胞胚包裹在含有养分的胶体囊内(即人工种子, artificial seed),可像种子一样直接播种到大田用于生产。天然种子中的胚是合子胚,而人工种子发芽中的胚是体细胞膈,胚乳和种皮是人工的。已有胡萝卜、苜蓿、棉花、玉米、水稻、橡胶等几十种植物的人工也已试种成功。 用于植物生长发育机制研究:细胞分裂的控制、生长和分化的控制。 试论根系吸收矿质元素特点,主要过程特点;1与水相对的2选择吸收3单盐毒害和离子拮抗过程;1离子吸附在根部细胞表面2离子进入根部内部3离子进入导管或管胞具体过程: 表面交换吸附(Cl---HCO3,H---K)——离子进入根皮层(质外体、共质体途径)——进入中柱——进入导管或管胞。

植物生理学名词解释(全) - 一、绪论 植物生理学是研究植物生命活动规律与细胞环境相互关系的科学, 在细胞结构 与功能的基础上研究植物环境刺激

相关百科