杂志信息网-创作、查重、发刊有保障。

中心极限定理论文参考文献

发布时间:2024-07-07 12:57:09

中心极限定理论文参考文献

标题:彩票选号内容:概率统计的应用十分广泛,它几乎遍及所有学科领域.买彩票中奖机会的大小 就是一个典型的概率统计问题,无论是福利彩票还是体育彩票,开奖结果中的数字都是随机产生的,每次随机确定一个数字(一次试验)其结果具有一定的偶然性,不过在大量重复试验中,中奖号码会呈现出某些必然规律.针对彩票奖号可重复出现数字情况,用概率统计方法分析中奖号码规律.应用背景: 彩票开奖结果中的数字都是随机产生的,其每次结果具有一定的偶然性,但是在大量重复的开奖结果中,中奖号码会呈现出某些必然规律. 用概率统计方法对彩票奖号情况分析其规律.涉及知识点:知识点一:古典概率知识点二:大数定律知识点三:中心极限定理解题方法: 利用古典概率,大数定律,中心极限定理等结果分析彩票选号问题中的一些规律,从而导出一些指导性的策略.解题过程:第一步:1. 奖号中有重复数字的概率目前全国大多数地区体育彩票中奖号码是从0~9这十个数字中,可重复抽取七个数字依次排列组成. 对于这种确定中奖号码的方式 可计算有重复数字的概率. 由古典概率计算方法, 中奖号码中七个数字全部不同的概率为 那么, 七个数字中至少有两个数字相同的概率为策略一: 每注彩票七个数字中至少有两个相同.第二步: 利用大数定律确定各选取数字.大数定律:设 是n次独立重复试验中事件A发生的次数.p是事件A在每次试验中发生的概率,则对于任意给定的正数ε>0, 有 .这个定律说明:当重复试验很多次时,随机事件A发生的频率在它的概率附近摆动,若频率偏离概率,只要继续试验下去,频率就有向概率靠近的趋势.第三步:统计连续n期中奖号码,第i位上0~9各数字出现的次数,依次记为 .把较小的k个数之和记为 ,即 是出现次数较少的k个数字一共出现的次数.它们出现的频率为 ,对应的概率大约为k/10,则 一般偏大,由大数定律,第n+1期中奖号码第i 位上频率 应有向概率k/10靠近的趋势,因而第i 位上出现这k个数字之一的概率非常大.在第n+1期投注时,第i位(i=1,2,…,7)应首先考虑从这k个数字中挑选.第四步:理论上讲,彩票投注范围共有107 个不同号码,如果依上述方法,每个位置上确定k=5个备选数字,备选号码范围就缩小到57=78 125个不同号码.当然,可能第n+1期中奖号码的第i 位上没有出现备选取的5 个数字,由大数定律,往后的中奖号在第i 位上出现这5个数字之一的可能性更大(i=1,2,…,7).策略二:前n期中奖号在第i 位(i=1,2,…,7)上出现较少的数字,作为第n+1期第i 位上的备选数字.第五步: 利用中心极限定理确定投注号码数字和的范围.中心极限定理:设随机变量 ,相互独立,服从同一分布,且具有数学期望和方差: , ,(k=1,2,…,7)则当m充分大时,近似有 ,由标准正态分布密度函数的特征,易见中心极限定理的直观意义:当m充分大时,随机变量 在其数学期望mμ附近取值的概率较大.第六步:统计湖北省体育彩票中奖号数据(不包括2000年第46期以前的特别号码),得到各数字出现的次数和频率.除数字9外,各数字出现的频率有向靠近的趋势,为方便起见,不防设0~9各数字出现的概率均.记随机变量 为第k 次确定的数字,易见 相互独立,服从同一分布, 的数学期望和方差为 . (1)第七步:记 表示连续n期中奖号各位数字总和,由(1)式及独立性,可得 根据中心极限定理,当n充分大时,近似有: 那么,X7n的保证概率为的估计区间是 . (2)第八步:当n=1时,(2)式约为 [24, 39]. 若X7n的观察值靠近或大于(2)式的上限,则由中心极限定理X7(n+1)有靠近其数学期望(n+1)的趋势,那么,第n+1期的七个数字之和的估计区间的上、下限,应该分别小于区间[24, 39]的上、下限; 若X7n的观察值靠近或小于(2)式的下限,则相反.策略三:若连续n期中奖号的7n个数字之和X7n靠近(2)式的上(或下)限,就适当下(或上)调区间[24, 39]的上、下限,所得区间作为第n+1期投注号码的七个数字之和的范围.参考文献:吕盛鸽,概率统计在彩票选号中的应用,统计与决策进一步问题: 试用概率统计方法计算”乐透”型彩票各奖项的中奖概率.

张玉君

(中国国土资源航空物探遥感中心,北京)

摘要:本文用概率论的中心极限定理理解许多遥感数据近似服从正态分布的现象;用标准离差 σ作为异常主分量门限化的尺度;采用直方图的香农熵评价异常主分量的信息量;并采用偏度和峰度联合检验法对直方图做正态性检验。通过信息量计算和正态性检验评价了三种异常主分量的直方图。

关键词:中心极限定理;信息熵(香农熵,或平均信息量);标准正态分布;偏度;峰度。

引言

遥感信息的处理是以概率论、数理统计和多元统计分析为数学理论基础的,概率论的中心极限定理有助于理解遥感数据的许多现象[1]。我们在文[2]中提出了去干扰异常主分量门限化技术流程,异常强度等级是以异常主分量标准离差σ为尺度的,于是便思考以下问题:它与标准正态分布是否接近?当改进主分量分析时所得异常主分量的信息量增加多少?为此采用直方图的香农熵评价异常主分量的信息量,并采用偏度和峰度联合检验法对其直方图做正态性检验。通过信息量计算和正态性检验评价了三种异常主分量及其直方图。

1中心极限定理

在图像处理中经常使用概率密度分布曲线(简称直方图),于是便产牛两个问题:

(1)如何理解TM数据直方图在许多情况下接近正态分布?

(2)是否可以使用标准离差σ作为遥感异常切割的尺度?

在自然现象(以及社会现象)中,大量随机变量都服从或近似服从正态分布。作为极其重要自然现象的地质遥感学,其许多问题也都遵循正态分布规律。例如,某一地区某种地质体或地物各波段反射波谱、其两波段的比值、乃至整景ETM经主分量分析提取的异常主分量等,都近似地服从正态分布。因此概率论和数理统计中与正态随机变量相关的理论和概念在遥感蚀变信息提取中起着特别重要的作用。

首先应理解的是概率论的中心极限定理。该定理的直观解释为:若一个随机变量是由大量相互独立的随机因素的影响所造成,而每一个别因素在总影响中所起的作用都不很大,则这种随机变量通常都服从或近似服从正态分布。该定理还证明了,这些相互独立的随机因素可以是服从同一分布(即有相同的数学期望和方差),也可以是不服从同一分布(即有不同的数学期望和方差)。

中心极限定理可以帮助理解遥感数据的许多现象。例如,东天山尾亚杂岩体的形成取决于许多因素:入侵岩浆的成分、温度、压力、酸碱度、空间分布、后期剥蚀的物理化学条件等等,这些因素的变化是相互独立而随机的,每一因素的变化都起了一定但又不很大的作用,造成当今尾亚杂岩体的面貌;当然ETM所测到的尾亚杂岩体波谱特性还受卫星观测系统灵敏度、稳定性、温度、压力等诸多因素的影响,这些因素的变化也是相互独立而随机的。图1所示为尾亚杂岩体ETM各波段直方图,各波段直方图均近似服从正态分布,此图是用中心极限定理理解遥感现象的很好实例。在遥感蚀变信息提取方法研究中,经常涉及多元统计分析,而多元统计分析的主要理论都是建立在多元正态分布总体基础上的,所以在这一研究中对正态分布的理解具有特殊重要的意义。

图1东天山尾亚杂岩体ETM各波段直方图

2正态分布和σ的借用

正态分布

早在1795年德国数学家高斯就推导出偶然误差或然率曲线的函数表达式即高斯分布定律或正态分布[3],中心极限定理是数位数学家(Liapunov,Levy-Lindeberg,De Moivre-Laplace等)的进一步发展,为了简单明了现仅列出高斯分布:连续型随机变量X的概率密度为

张玉君地质勘查新方法研究论文集

式中σ称为标准误差。如果取k倍的标准误差,那么任一观测值的误差介于±κσ之间的或然率P为:

表1或然率与误差的关系

图2或然率p与k的关系图

结合我们的具体情况,如前所述,通过主分量分析(PCA)提取的羟基和铁染蚀变异常(OHA、FCA)主分量,往往具有正态分布的特点:

(1)只有一个中心,即众值;

(2)小偏离比大偏离出现的几会多;

(3)大小相等、符号相反的正负偏离的儿率接近,直方图近似对称于y轴;

(4)极大的正偏离和极小的负偏离的机率都很小,直方图向两端迅速衰减。

故而产生借用σ作为异常主分量门限化的尺度。

表2切割水平

σ的借用

TM数据处理以多元分析为基础,多元分析中对应于误差理论中称之为标准误差的σ,是标准离差(或标准偏差),其定义为:

张玉君地质勘查新方法研究论文集

既然TM数据及其线性处理结果一般均有近似正态分布的直方图(如图3所示,为13739景羟基主分量直方图),那么我们在做异常切割或数据切割时便可借用σ这个表征正态分布曲线的尺度。例如,主分量分析结果可以把均值(X)理解为代表区域背景,利用(X+kσ)确定异常下限和划分异常强度等级[4]。异常总面积可用(1-P)/2近似计算,其大小因景号而异。

图313739ms直方图对比

切割异常时有了这一尺度可以减少主观任意性,并使操作较为规范化,为此做切割水平表(表2),此表是按下式计算的:

L=σ*SF;或 L= H=L+1

式中 H、L分别为切割高、低门限值;k为倍数;σ为标准离差;SK为比例因子;σ和SK由主分量分析报告给出。

3香农(Shannon)信息量的应用

信息需要定量描述,信息含量的多少,称为信息量。1948年美国工程师给出了信息量的数学公式[1]。对于信息源的整体信息量,Shannon定义为各信息符号信息量的平均信息量(或称信息熵),用S(X)表示:

张玉君地质勘查新方法研究论文集

式中X为随机变量,它取有限个值X={x1,x2,…xn),其值称为信息符号,信息符号xi出现的概率为Pi,i=1,2,…,n。且Pi≥0,

现利用信息量公式来定量评价我们对于异常主分量直方图的改善。取13739景ETM+数据的子集13739ms(1620,5145,1200,820),括弧中前两个数为起始列行数,后两个数为子图13739ms的大小。对此子图像分别做了三种羟基异常主分量:①仅做大气径辐射校正及去干扰;②做大气径辐射校正及去干扰,又做了无损失拉伸;③做大气径辐射校正及去干扰,并限定异常主分量的输出动态范围为±4σ。此三种直方图示于图3中。从此图可以直观明显地看出,直方图的改善对于异常切割十分有利。首先将三种主分量分析的主要参数对比于下表(表3):

表3三种主分量分析的主要参数对比

将三种异常主分量的概率统计密度图(直方图)的数值输出于表4,然后计算其各自的香农信息量。子图13739ms的总像素数为1200×820=984000;干扰窗像素总数为131551;去干扰后参与主分量分析的像素数为852449。因为异常主分量直方图是以128为“0”点,左半边实为负异常值。由于我们仅对正异常感兴趣,故只计算直方图右半边(灰阶从128至255)的信息量。将(3)式写成可利用EL-5100C计算器进行循环计算的形式:

f(Ki,C)=Ki÷852449×ln(852449÷Ki)+C CTO C(4)

式中 Ki为具有灰阶i的像素数;Ki÷852449=Pi。

表413739ms三种羟基异常直方图数据(表中每一列的右侧数为灰阶值;左侧为像元数)

续表

续表

除了香农信息熵还计算了相对信息量 及信息剩余度(γ=1-η)。现将计算结果列人表5:

表5三种异常主分量概率统计密度图信息量计算

由表5可见三种主分量分析所获异常主分量中正值的平均信息量(信息熵)和相对信息量依次增加,而信息剩余度依次递减。这说明第三种异常主分量所含信息量最大,最有利于异常门限化。

3直方图的正态性检验

如前所述,及在[4]中我们曾写过,结合我们的具体情况,部分或整景ETM通过主分量分析(PCA)提取的羟基和铁染蚀变异常(OHA、FCA)主分量,往往具有正态分布的特点。

现试用偏度和峰度联合检验法[5],对13739ms子集的羟基异常主分量概率统计密度图(直方图)做正态性检验。

该方法的主要理论依据是正态分布密度曲线是对称的、且陡缓适中。因此,被检验的数据若来自正态总体,则其经验分布密度(直方图)就不能偏斜太多,也不能陡缓过分。为此数理统计提出两个数字特征,一个是描述分布密度曲线的偏度γ1;另一个是描述分布密度曲线的陡缓程度的峰度γ2。由概率论[6、7]得知,偏度γ1与峰度γ2可表示为:

张玉君地质勘查新方法研究论文集

式中 Eξ为随机变量ξ的数学期望(均值);E(ξ-Eξ)2为ξ的方差,记为Dξ,称 为ζ的标准差(根方差),即Dζ=E(ξ-Eξ)2。

根据矩估计法,可得样本偏度和峰度的下述表达式:

张玉君地质勘查新方法研究论文集

对于正态分布N(μ,σ2),γ1=0,γ2=3,因此,当原假设或零假设(根据实际问题要求所提出的一个关于随机变量的一种论断,称为统计假设)H0为真时,对于用样本值(x1,x2……,xn)算出的观测值bs与bK应该分别接近0与3。

分别对13739ms子集的前述三种羟基异常主分量概率密度分布经PCI统计出它们的标准差S相应为:;;。利用EL-5100C计算器按下述循环式计算出μ3和μ4:

右半边 f(AB)=(A-128)3×B÷852449 STO C,C+D STO D,C×(A-128)+E STO E(9)

左半边 f(AB)=(128-A)3×B÷852449 STO C,C+D STO D,C×(128-A)+E STO E(10)

式中 A为羟基异常主分景的灰阶值;B为具有该灰阶的像元数;最终的C为μ3;最终的E为μ4。

于是求出三种羟基异常主分量概率密度分布的偏度bs与峰度bk,列入表6中:

表6三种羟基异常主分量概率密度分布的偏度bs与峰度bk计算结果

从表6可以看出,用偏度和峰度联合检验法对13739ms子集的三种羟基异常主分量直方图所做正态性检验效果,以第三种(做大气径辐射校正及去干扰,并限定异常主分量的输出动态范围为±4σ)处理所获羟基异常主分量直方图最接近正态分布,其偏度bs为,峰度bk为。

5结论

以甲马——驱龙火山-沉积盆地铜多金属矿田为例(13739ms),展示了平均信息量(信息熵)计算结果及用偏度和峰度联合检验法对13739ms子集的三种羟基异常主分量直方图所做正态性检验效果。以第三种(做大气径辐射校正及去干扰,并限定异常主分量的输出动态范围为±4σ)处理所获羟基异常主分量所含信息量最大,且其直方图最接近正态分布,其偏度bs为,峰度bk为。此研究的主要意义在于,改进了用于找矿信息提取的主要方法——主分量分析的效果,并提供利用σ作为异常分层尺度的依据。

参考文献

[1]袁志发,周静芋.多元统计分析.科学出版社,2003

[2]张玉君,杨建民,陈薇.ETM+(TM)蚀变遥感异常提取方法研究与应用——地质依据和波谱前提[J].国土资源遥感,2002,(4):30~36

[3]冯师颜.误差理论与实验数据处理,1964

[4]张玉君,曾朝铭,陈薇.ETM.(TM)蚀变遥感异常提取方法研究与应用—方法选择和技术流程[J].国土资源遥感,2003,(2):44~49

[5]庄楚强,吴亚森.应用数理统计基础.华南理工大学出版社,2002

[6]周概容.概率论与数理统计,1984.

[7]盛驺,谢式千,潘承毅.概率论与数理统计,1995.

Study on the Methodology for the Abstraction of The Alteration Anomalies from the ETM+(TM)Data and Its Application—The Calculation of Information Content&Examination of The Normality for The Anomalous Principal Component Histograms

Zhang Yu jun

(China Aero-Geophysical Survey and Remote Sensing Center for Land and Resources,Beijing 100083,China)

Abstract: The central limiting theory of the probability helps understanding of the near standard distribution of the remote sensing data in many standard deviation σ was used for threshoding of the anomalous principal Shannon entropy evaluated the information content of the anomalous principal distribution normality of the anomalous principal component histogram was examined by calculation of the deviation degree and the peak different anomalous principal componenthistograms were compared too by these calculations.

Key words: Central limiting theory;Standard normal distribution;Information entropy(Mean information content);Degree of deviation;Degree of peak;Quantitative measure of anomaly slicing;Thresholding.

中心极限定理有着有趣的历史。这个定理的第一版被法国数学家棣莫弗发现,他在1733年发表的卓越论文中使用正态分布去估计大量抛掷硬币出现正面次数的分布。这个超越时代的成果险些被历史遗忘,所幸著名法国数学家拉普拉斯在1812年发表的巨著Théorie Analytique des Probabilités中拯救了这个默默无名的理论.拉普拉斯扩展了棣莫弗的理论,指出二项分布可用正态分布逼近。但同棣莫弗一样,拉普拉斯的发现在当时并未引起很大反响。直到十九世纪末中心极限定理的重要性才被世人所知。1901年,俄国数学家里雅普诺夫用更普通的随机变量定义中心极限定理并在数学上进行了精确的证明。如今,中心极限定理被认为是(非正式地)概率论中的首席定理。

中心极限定理本科毕业论文

样本均值的抽样分布是所有的样本均值形成的分布,即μ的概率分布。样本均值的抽样分布在形状上却是对称的。随着样本量n的增大,不论原来的总体是否服从正态分布,样本均值的抽样分布都将趋于正态分布,其分布的数学期望为总体均值μ,方差为总体方差的1/n。这就是中心极限定理(central limit theorem)。 有张PDF挡 有详细的计算公式 但是我不知道怎么传上来参考资料:

上面的51毕业论文是仿51论文做的是假的网站

规划决不是空谈就能实现的,任何一份成功的职业,无不是经过无数的努力和汗水的积累,在开始时假如能够获得一个强有力的推动 ,能够让你迅速突颖而出。作为开始学习技术的初学者,不能盲目听信所谓“XXX万人才缺口”、“挑战年薪10万”、“高薪就业保证”等宣 传口号。

极限的论文的参考文献

建筑专业论文的参考文献

导语:作中征引过的文献须在文中注明出处,并列于文后参考文献中。是我带来的建筑专业论文的参考文献,欢迎大家阅读参考。

[1]顾晓鲁等.地基与基础(第二版)。

[2].吕斌.海上风电场降低成本前景分析[J].上海电力.2007.(4):429-437

[3]施晓春.徐日庆.俞建霖.筒型基础间接及试验研究.杭州应用工程技术学院学报.(10):39~40

[4]何炎平.谭家华.筒型基础的.发展历史和典型用途.中国海洋平台.(6):10~14

[5]袁晓铭.曹振中.孙锐等.汶川级地震特征初步研究.岩石力学与工程学报.2009

[6]王成华.孙冬梅.横向受荷桩的p-y曲线研究与应用述评.中国港湾建设.

[7]林华国.贾兆宏.张立丽.砂土液化判刑方法研究.岩土工程技术.(2).89~93

[8]李芳.作为海上风机基础的筒型基础土体液化研究.硕士学位论文.天津大学.2010

[9]林峰.黄润秋.边坡稳定性极限平衡条分法的探讨.地质灾害与环境保护.1997.(4).9~13

[10]沈玉光.海上风电筒型基础风机结构体系动力响应分析.硕士学位论文.天津大学.2012

[11]陈有顺.场地的地震效应及砂土地基的液化.高原地震.(1).35~39

[12]任金刚.王玉芳.饱和砂土地震液化研究方法概述.海河水利.2006(3):51~53

[13]李敬梅.地震作用下坝基土体液化的判别及有限元分析.硕士学位论文.天津大学.2004

[14]王大伟.赵艳.初始地应力场分析方法探讨.水电站设计.(4).38~41

[1]高珊珊.基于三维激光扫描仪的点云配准[D].南京:南京理工大学,2008

[2]李宝瑞.地面三维激光扫描技术在古建筑测绘中的应用研究[D].西安:长安大学,2012

[3]刘洋.基于编码结构光的三维扫描仪原型系统研发[D].杭州:浙江大学,2005

[4]杨永.古建筑数字化保护关键技术研究[D].开封:河南大学,2010

[5]林源.古建筑测绘学[M].北京:中国建筑工业出版社,2003

[6]王其亨.古建筑测绘[M].北京:中国建筑工业出版社,2006

[7]沙黛诺.古建筑测绘方法和技术的适用性和可靠性[D].天津:天津大学,2009

[8]毛方儒,王磊.三维激光扫描测量技术[J].宇航计测技术,2005,25(2):1-6

[9]代世威.地面三维激光点云数据质量分析与评价[D].西安:长安大学,2013

[10]刘涛.三维激光扫描技术及其误差分析[J].工业工程与技术,2014,(1):40-43

[11]李刚.基于逆向工程的自由曲面重构技术研究[D].济南:山东大学,2009

关于论文中参考文献的问题: 1】文末所写的参考文献均应在文中直接引用.正文中没有直接引用但研究过程中参考的不必写上并编号. 2】所引用的参考文献最好是原话,也可转述及归纳. 3】论文中所需要涉及的一些如欧几里得的《几何原本》、康托尔的“集合论”等一些原论文出处可以不标出,因为这些成果众所周知.

关于极限的论文参考文献

关于论文中参考文献的问题: 1】文末所写的参考文献均应在文中直接引用.正文中没有直接引用但研究过程中参考的不必写上并编号. 2】所引用的参考文献最好是原话,也可转述及归纳. 3】论文中所需要涉及的一些如欧几里得的《几何原本》、康托尔的“集合论”等一些原论文出处可以不标出,因为这些成果众所周知.

船舶与海洋工程结构极限强度分析论文

船舶的总体结构状态时一个非常复杂的过程。下面是我收集整理的船舶与海洋工程结构极限强度分析论文,希望对您有所帮助!

摘要: 当轮船受到外部冲击载荷时,轮船整体结构就会变形,当这个变形达到最大极限状态,这时的极限状态叫做极限弯矩。轮船整体构架承受全部抗击的最强能力是极限强度。本文对船舶结构极限强度。进行了分析和研究,提出了有限元分析方法进行强度和极限分析。

关键字: 极限强度,船舶,结构,船舶与海洋工程

随着科学技术的不断进步,轮船结构以及轮船使用的材料都有很大的进步。船体的整体结构和材料成为当今社会研究的主要对象。随着计算机技术的日益成熟,船体整体结构和承受的。屈服力都可以采用软件仿真来快速精确的计算。

1.引言

船体的整体结构和承受的能力是保证轮船安全的重要保障,它关系到轮船是否安全出航和安全返航。随着先进的设计技术的进步,计算机相关设计软件已经可以。设计整体结构和仿真测试船体的整体结构。分析船体结构和整体强度是一个复杂的非线性过程,必须进行合理的划分,采用好的分析方法才能得出精确的数值。新材料的不断出现使船体材料耗费变的越来越经济合理,同时船体结构屈服强度也变的越来越理想。

在分析船舶整体结构变形和极限强度的时候,我们所研究的绝大多数问题都是属于线性的微弱形变问题。在微弱整体的结构中,位移和应变可以被线性化,等效于正比关系。但是,在实际中,不规则物体所受的应力和应变都不是线性的,常见的有悬臂梁的弯曲,U形梁的变形等等。

2.总体结构状态

船舶的总体结构状态时一个非常复杂的过程。总体结构的崩溃在过去几年是一个非常普遍的现象,它是船体结构所受冲击超过了材料本身的极限,这时候支撑梁不能够支撑船体整体结构。以上情况不足为奇,在飞机和潜艇外体上也经常出现类似情况。目前,中国的船体分析技术的研究还处于起步阶段,与国外发达国家。先进水平仍有很大的差距。为了进一步研究分析,我国投入资金和人力,在实际工程中,建立一个比较完善的船体分析系统,包括原动机转速控制系统,同步船体结构系统,轮船控制系统管理相关技术的研究,实验研究了一系列模拟各种恶劣的条件下,容易控制船体结构的一些关键技术,并做了可行性分析。船舶具有非常重要的作用,特别是对船体分。析屈服强度的分析,轮船安全可谓海军舰艇的生命线。动力和结构形成一个整体轮船系统,为船体结构极限强度分析的发展。指明了方向。

3.极限强度分析法

如何分析船舶结构的极限强度是一个复杂而且非常有意义的过程。分析这种复杂的船体结构没有一种比较准确的分析方法。在分析极限强度的时候,我们通常采用复杂问题简单化,采用线性和非线性结合的方法,有限元和边界元分析相结合的方法。

逐步破坏分析法

上世纪末,美国物理学家的在基于对悬臂梁、加筋板在轴向压缩载荷作用下结构失效问题的研究成果中提出了逐步破坏的分析方法。船体结构破坏不是一个迅速变化的过程,是一个一步一步的程序,同时也不会一下子超过屈服极限,随着应力的增大逐渐的增大的逐渐破坏。在进行破坏分析的时候,首先建立屈服应力和位移的曲线关系。

非线性分析法

分线性分析方法必须。对船体分析采用模块化分析,必须充分考虑如何进行分段,分段之后逐个段进行非线性分析。在这个工程中,一个段的结构有自己的不同,针对不同结构进行线性化分析和非线性化分析。每个分段包含一个骨架间距内的所有主要构件,选择或者利用发生崩溃概率最大的情况进行分析的原则,对所承受的分段骨架进行全面的分析和仿真。这种分析方法需要对每一段进行模型建立,然后一个模型模型的分析。船体总体结构的弯曲和抗屈服能力不同导致分析结果不同。

有限元分析法

有限元分析方法是结构分析的简单方法,它能把复杂问题简单化,分析整体结构的节点和网格。在进行有限元分析的时候,通常对船体结构进行网格划分,然后进行网格施加约束,在均匀网格上施加可变的。激励,观察整体结构的响应。采用这种方法能模拟船体的边界条件和整体约束。有限元分析方法综合考虑。船体的形状和材料的'不同,通过不同载荷的约束,我们可以分析出结构极限(包括最大应力,最大屈服极限)。最近几年,有限元分析方法被应用在船舶整体分析和部分结构分析的案例非常多。这种分析方法有两个个缺点。一是。不能很好的模拟真实环境,不能考虑周围环境对整体结构形变的影响。第二对于结构复杂的构件,有限元分析方法对于复杂的结构不太实用,设置相关算法时间太长,不能在有效的时间完成任务。这种分析方法的优点有以下几个方面:

(1)对船体建模方式直观明了。在分析结构的时候可以采用线性划分和非线性划分网格。采用相关软件完全可以分析所有动态结构的模型和仿真。利用有限元分析模块的可视化建模窗口,动态结构的框图和模型可迅速地建立和仿真研究。用户需要选择元件库(对应的子模块程序模块)中选出比较合适的模块,然后并改变需要的形式,拖放到新建的建模窗口,鼠标点击或者画线连接都可以搭建非常可观的结构模型。他的标准库拥有的模块远远大于一百五十多种,可用于搭建和仿真各种不同的、种类变化的动态结构。模块包。括输入信号源子模块、动力学元件子模块、代数函数和非线性函数子模块、数据显示子模块模块等。模块可以被设定为触发端口和使能的端口,能用于模拟大模型结构中存在条件作用的子模型的行为。

(2)可以构建动态结构模型。可动结构的模型可以修改并进行仿真。有限元分析还可以作为一种图形化的、数字的仿真工具,用于对动态结构模型建立和操作改变规律的研究制定。

(3) 模块元件与用户代码的增添和定制。已有模块的图标都可以被用户修改,对话框的重新设定。用户完全可以把自己编写的C代码、FORTRAN代码、Ada代码直接植入模型中,此外模块库和库函数都。是可定制的,扩展以包容用户自定义的结构环节模块。。

(4)设计船舶结构模型的快速、准确。他拥有优秀的积分和微分算法,这样给非线性结构仿真带来了极大的方便,同时也带来了相对较高的计算精度。可以选择比较先进的常微分方程求解器和偏微分方程求解器,还可用于求解力学刚性的和非刚性的结构,还可以求解具有事件触发的逻辑结构,求解或不连续状态变量的结构和具有代数环和参数环的结构。软件的求解器可以确保连续结构或离散结构的仿真高速、准确的进行。

(5)复杂结构可以分层次地表达。根据个人需要,若干子结构可以由各种模块组织。按照自顶向下(从元器件到结构)或自底向上(从实现的每一个细节到整体结构)的方式搭建整个结构模型。这种分级建模能力能够使得代码丰富的、体积庞大的、结构非常复杂的模型可以简便易于行动的构建。结构子模型的层次数量和子子模块的分层次数量完全取决于所搭建的结构,软件本身不会限制到搭建的模型。有限元还提供了模型和子。模块结构浏览的功能。这样更加方便了大型复杂结构结构的操作。

(6) 仿真分析的交互式。该软件显示的示波器可以图形显示和动画的形式显示出来,数据也可以动作的形式显示,What-if分析运行中可调整参数模型进行,监视仿真结果能够在仿真运算进行时。可帮助用户不同的算法可以快速评估,进行参数优化这种交互式的特征。

由于有限元模块是全部融合于有限元,一次在有限元模块下所有的计算的结果都完全可保存到有限元软的工作空间中,因而就能使用有限元所具有的众多分析、可视化及工具箱工具操作数据。

4.船舶在军事上的发展状况

在军事上的应用:在上世纪90年代,以美国为首的国家海军大力发展海军轮船性能优化,整体结构和性能得到优化。于93年提出了水面舰艇先进机械项目计划(提前海洋表面计划ASMP)。

美国的目的是建立一个国家的最先进的舰艇推进系统,能够实现远程作战和抗高撞击的能力。美国海军采用先进的智能设备,同时采用电气控制和机械控制系统。在同一时间满足指定的性能,在分析极限强度上加大了投资,军用船舶的其他方面投资也有显着的减少。随着ASMP计划进一步研究,权力一体化“和”模块化“的方法来研究船舶电力发电、运输、转化、分配。利用共享设置海军的推进装置用电、日常的用电。各种武器装备输电发电和配电系统构成的综合电力系统,美国海军相当重视电力在船舰上的应用。

我国海军在研究这方面也不逊色,国内有先进设计理论和分析方法。对船舶承载能力和撞击能力做过实验分析。

5.总结

本文介绍了船舶结构极限分析的三种不同的方法,并进行了对比分析,最后得出结论:有限元分析方法耗时比较长,但是能够很高的分析和仿真船舶结构极限。

参考文献

[1]祁恩荣,彭兴宁.破损船体非对称弯曲极限强度分析首届船舶与海洋工程结构力学学术讨论会论文集,江西九江:

[2]徐向东,崔维成等.箱型粱极限承载能力试验与理论研究.船舶力学,2000,4(5):36-43

[3]朱胜昌,陈庆强.大型集装箱船总纵强度计算方法研究.船舶力学,2001,5(2):34--42

[4]郭昌捷,唐翰岫,周炳焕.受损船体极限强度分析与可靠性评估.中国造船,1998(4):49—56

毕业论文未定式极限

是指如果当x→x0(或者x→∞)时,两个函数f(x)与g(x)都趋于零或者趋于无穷大,那么极限lim[f(x)/g(x)](x→x0或者x→∞)可能存在,也可能不存在,通常把这种极限称为未定式,也称未定型。未定式通常用洛必达法则求解。如果当x→x0(或者x→∞)时,两个函数f(x)与g(x)都趋于零或者趋于无穷大,那么极限lim[f(x)/g(x)](x→x0或者x→∞)可能存在,也可能不存在,通常把这种极限称为未定式或者未定型,分别用0/0和∞/∞来表示。对于这类极限,不能直接用商的极限等于极限的商来求,通常用洛必达法则(或译作罗必塔法则;L'HôpitalRule)来求解。

当x->0时,lim(x→0)ln(x+1)->x,所以就很容易得出答案是1,也就是用到了等价无穷小的概念。

0/0未定式求极限可用洛必达法则

当x→0时,lim ln(x+1)/x = lim 1/(x+1) = 1

lim(x→0)ln(x+1)除以x

=lim(x→0)ln(x+1)^(1/x)

=ln lim(x→0)(x+1)^(1/x)

=lne

=1

扩展资料:

一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。但这并不意味着N是由ε唯一确定的:(比如若n>N使|xn-a|<ε成立,那么显然n>N+1、n>2N等也使|xn-a|<ε成立)。重要的是N的存在性,而不在于其值的大小。

“当n>N时,均有不等式|xn-a|<ε成立”意味着:所有下标大于N的都落在(a-ε,a+ε)内;而在(a-ε,a+ε)之外,数列{xn} 中的项至多只有N个(有限个)。换句话说,如果存在某 ε0>0,使数列{xn} 中有无穷多个项落在(a-ε0,a+ε0) 之外,则{xn} 一定不以a为极限。

参考资料来源:百度百科-极限

相关百科