杂志信息网-创作、查重、发刊有保障。

表观遗传学的研究进展论文

发布时间:2024-07-06 19:22:50

表观遗传学的研究进展论文

后成遗传学,也叫表观遗传学(epigenetics),简单来说,就是研究在传统的DNA序列之外的遗传信息.传统的遗传学认为生命的遗传信息都蕴藏在基因中,蕴藏在DNA的序列中.现在人们发现很多遗传信息并不存在于DNA的序列里,而是以其它的方式存在. 下面是百度到的定义:表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化的一门遗传学分支学科.表观遗传的现象很多,已知的有DNA甲基化(DNA methylation),基因组印记(genomic impriting),母体效应(maternal effects),基因沉默(gene silencing),核仁显性,休眠转座子激活和RNA编辑(RNA editing)等. 这门学科很新,进展很快,看书不如看综述.

表观遗传学,研究基因的核苷酸序列不发生改变的情况下,基因表达的可遗传的变化的一门遗传学分支学科。

发展

一直以来人们都认为基因组DNA决定着生物体的全部表型,但逐渐发现有些现象无法用经典遗传学理论解释,比如基因完全相同的同卵双生双胞胎在同样的环境中长大后,他们在性格、健康等方面会有较大的差异。

这说明在DNA序列没有发生变化的情况下,生物体的一些表型却发生了改变。因此,科学家们又提出表观遗传学的概念,它是在研究与经典遗传学不相符的许多生命现象过程中逐步发展起来的一门前沿学科,它是与经典遗传学相对应的概念。

人们认为,基因组含有两类遗传信息,一类为传统意义上的遗传信息,即基因组DNA序列所提供的遗传信息,另一类则是表观遗传学信息,即基因组DNA的修饰,它提供了何时、何地、以何种方式去应用DNA遗传信息的指令。

扩展资料

表观遗传特点

1、可遗传,即这类改变通过有丝分裂或减数分裂,能在细胞或个体世代间遗传。

2、可逆性的基因表达。

3、没有DNA序列的改变或不能用DNA序列变化来解释。

在生物学中,表观遗传学这个名词为基因表达中的多种变化。这种变化在细胞分裂的过程中,有时甚至是在隔代遗传中保持稳定,但是不涉及到基本DNA的改变。

这个概念意味着即使环境因素会导致生物的基因表达出不同,但是基因本身不会发生改变。表观遗传学在真核生物中的变化主要被举例为细胞分化过程中干细胞分化成与胚胎有关的多种细胞这一过程。这个过程通过一些可能包含某些基因的沉默,移除某些基因上沉默的标志并且永久的失活于其他基因的机制变得稳定。

参考资料来源:百度百科-表观遗传学

参考资料来源:百度百科-表观遗传

表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达的可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化(DNA methylation),基因组印记(genomic imprinting),母体效应(maternal effects),基因沉默(gene silencing),核仁显性,休眠转座子激活和RNA编辑(RNA editing)等。表观遗传的研究进展:1 DNA甲基化 DNA甲基化是指在DNA序列的胞嘧啶核苷酸的特定位置共价加减甲基基团的一种变化。甲基化反应进行的程度受到DNA甲基转移酶(DNA methyltransferases,DNMTs)的控制。在脊椎动物中,甲基基团的共价加减反应只会发生于启动子区域的胞嘧啶与鸟苷酸含量丰富的区域,即所谓的CpG岛(CpG islands)[5]。 低甲基化 在机体正常的生理条件下,位于启动子区域外的大约80%的CpG二核苷酸结构处于甲基化状态。全基因组的甲基化程度降低或者处于低甲基化状态会导致信使RNA水平受到抑制。结肠癌患者的DNA总体水平处于低甲基化状态,是首次阐述的表观遗传调控的异常情况[6]。低甲基化状态通过促进有丝分裂导致染色体重组,引起基因组不稳定现象如基因缺失,易位等发生肿瘤。DNA低甲基化状态还与原癌基因如c-Jun、c-Myc及c-Ha-Ras的激活作用有关[7]。目前的研究证实,肿瘤组织的DNA大部分都处于低甲基化状态,低甲基化加速癌变进程[8-9]。 高甲基化 通常,高度甲基化发生于特定的某一基因。基因组启动子区域CpG岛的高度甲基化状态基因的转录沉默,随后导致蛋白表达的缺失。肿瘤抑癌基因的高甲基化被认为是基因沉默致等位基因缺失或突变的一种途径[10]。细胞周期、DNA修复、血管生成、致癌物质的代谢、细胞凋亡以及细胞间相互作用等生物事件都涉及基因的高甲基化。另一方面,基因的高甲基化同样会发生于正常的生理进程,例如,女性的第二X染色体巴氏小体(Barr body)失活期间存在基因的高甲基化。此外,基因的高甲基化还是一种与衰老以及抑制甲基化诱导的重复DNA序列转录以保持基因组稳定性的生理过程。 DNA甲基化的检测方法 组织标本DNA或外周血及机体其他分泌体液如胆汁等的甲基化程度的检测有几种不同的实验方法。这些方法充分利用DNA的稳定性检测甲基化的程度。在DNA甲基化测序方法发明之前,人们常常利用甲基化敏感的同裂酶检测DNA甲基化程度。这种方法的一个主要缺点是,少于5%的甲基化胞嘧啶被错估在给定的DNA序列中。20世纪90年代早期开始,一种高灵敏度检测甲基化程度的方法即对DNA亚硫酸盐修饰方法逐渐被人们所接受。经过亚硫酸盐修饰后,未甲基化的胞嘧啶转变为尿嘧啶,而发生甲基化的则不发生转变。随后,采用与甲基化DNA序列相匹配的特异性引物和探针,定性或定量的甲基化特异PCR方法(methylation-specific PCR,MSP)检测甲基化程度被广泛使用[11]。MSP法的优点在于积极显示甲基化的胞嘧啶,以及描绘出给定DNA序列的基因整体甲基化状态。结合了实时定量的MSP方法则能够给出测定样品甲基化等位基因的百分比。 DNA测序方法也常被应用于亚硫酸盐修饰处理的DNA检测中,目的是确定高度甲基化或低度甲基化的特定区域。这是一种检测不同程度甲基化特定区域特别有用的,且有助于特异性更高的MSP检测时引物及探设计的方法。现在人们熟知的焦磷酸测序是一种基于聚合原理的DNA测序(确定DNA中核苷酸的顺序)方法。它依赖于核苷酸掺入中焦磷酸盐的释放,而非双脱氧核苷三磷酸参与的链终止反应[12]。 PCR技术的一个缺陷是只针对目标候选基因进行实验。近来,高通量技术、全基因组及芯片平台技术应用于肿瘤组中特定的甲基化类型的检测。甲基化DNA免疫沉淀法(methylated DNA immunoprecipitation,MeDIP)是一种富集甲基化DNA的方法。它依据的原理为基因组DNA可以被超声波裂解而随意地进行修剪,同时被特异性5-甲基胞苷的抗体免疫沉淀。这种技术可以用来测定整体基因组甲基化程度以及鉴别异常甲基化的基因[13]。甲基化CpG岛扩增(methylated CpG island amplification,MCA)是基于在甲基化敏感性限制性酶如仅在未甲基化位点进行剪切,在胞嘧啶于鸟苷酸间留下平端SmaⅠ酶对基因组DNA的消化作用的一种方法[14]。 2 染色质修饰 染色质是由组蛋白与DNA组成的。组蛋白是染色质的蛋白组分,DNA分子与其紧密结合,构成核小体。组蛋白翻译后有多种修饰的方式,包括甲基化、乙酰化、磷酸化以及泛素化等。这些修饰反应会影响组蛋白与DNA分子的相互作用,从而导致基因转录、DNA修复与复制、染色体的重排生理过程发生改变。 目前,对于赖氨酸残基乙酰化修饰是研究的比较透彻的组蛋白修饰反应。总体上,组蛋白乙酰化与转录激活相关联,而去乙酰化则与转录抑制有关。乙酰化作用可中和位于组蛋白尾部的赖氨酸残基电荷,减少组蛋白尾部与DNA结合键的长度。这种现象表明核小体更加容易接近转录因子而发挥生物学作用。组蛋白的甲基化作用对转录过程起到积极地或消极地影响。伴随着DNA的甲基化作用与组蛋白不同类型的修饰同时发生,染色质的修饰效果将会发生明显改变。这一领域是目前研究的热点[15-16]。对于染色质修饰的检测手段目前有质谱分析方法与DNA测序技术。质谱分析方法可以很方便且准确地对染色质的修饰程度进行检测。但是,这些技术仅局限于实验室使用,而且对仪器设备的要求较高。为了阐述组蛋白修饰的真正生物学意义,DNA序列的详细信息也是必需的。最佳的检测技术为染色质免疫沉淀反应(chromatin immunoprecipitation,ChIP)联合特异地与组蛋白修饰变化反应的抗体DNA测序技术[17-18]。 3 印记基因丢失 基因组印迹是一种在基因组DNA水平上对双亲等位基因特异性的修饰作用,这种作用发生在胚胎发育早期,具有不包括DNA序列变化,但影响基因调控以及引起两个等位基因不同表达的特性。它是一个基因的特定亲本等位基因或其所在染色体在配子或受精卵中发生的基因外遗传学修饰[19],与该等位基因的表达或不表达密切相关。绝大多数印记基因成簇地分布在很大的染色体区域,在发育过程中起着十分重要的作用。印记基因具有单等位基因表达的特点,即仅从亲代中的一方获取拷贝体。常染色体基因中大约1%的基因为印记基因。由于基因表达仅仅取决于亲代中的一方,所以子代基因的表达在很大程度生依赖于亲代生活的环境条件。研究表明,一些疾病如自闭症、精神分裂症、Angelman综合征、隐睾-侏儒-肥胖-低智能综合征(Prader-Willi syndrome)以及Beckwith-Wiedemann综合征与印记基因丢失关系密切[20]。 4 非编码RNA 在非编码RNA的研究中,microRNA的研究最为清楚。microRNA长度大约为22个核苷酸片段,受长片段的非编码RNA或基因内含子所编码。microRNA在核内转录,再经历一系列变化最终成为成熟体发挥生物学功能[21-22]。microRNA可能通过两种方式抑制mRNA翻译成为蛋白质。若microRNA是mRNA的直接补充序列,那么microRNA则与mRNA结合同时通过RISC复合体将其降解。若microRNA的序列不能与mRNA进行很好的匹配,则microRNA部分结合于mRNA的3′末端,从而抑制转运RNA的活性,导致翻译不能进行[23]。常见的短链RNA为小干涉RNA(shot interfering RNA, siRNA)和微小RNA(MicroRNA, miRNA)。RNA无论以反义转录本存在的、非编码的RNAs,或RNAi均能导致异染色质形成,并且在有丝分裂中可以遗传的转录沉默。microRNA完全有能力如通过调节组蛋白去乙酰化酶分子从而控制核染色质结构的表观遗传途径方式,调控靶基因表达。 此外,microRNAs与肿瘤的表观遗传学进程密切相关,其可能通过协同肿瘤细胞内相关经典的致癌基因或者下调肿瘤抑制基因的表达,来影响肿瘤的进程。肿瘤细胞系中microRNAs表达水平的变化可能直接影响肿瘤细胞的某些基本行为方式,如肿瘤细胞的增殖与凋亡[24]。microRNAs除了在肿瘤抑制及肿瘤诱发中发挥作用,其还被认为是肿瘤相关药物抗性主要基因的调节因子。目前认为microRNAs作为肿瘤相关药物抗性主要基因的调节因子存在两种机制:一种是遗传学机制,另一种为表观遗传学机制。虽然关于化疗后基因改变的证据是有限的,但是已有大量研究揭示耐药肿瘤细胞在化疗后发生显著地表观遗传学改变[25-27]。同时,还表现在microRNAs表达的变化方面[28]。如Lujambio等[29]研究指出,miR-148的高度甲基化状态导致其自身的表达向下调节,可能的机制为miR-148可以加强乳腺癌细胞中DNMTs的超表达的正反馈。若给予乳腺癌患者DNA脱甲基化药物制剂治疗,则会减弱乳腺癌肿瘤的生长及抑制肿瘤转移。 5 环境对表观遗传影响 越来越多的研究表明,环境因素如二手烟、酗酒、病毒性肝炎、工业污染以及碳排放等在疾病发生的早期阶段扮演一个重要的角色。表观遗传能够对这一现象做出合理解释[30]。据文献资料记载,二战期间(1945~1945年),占领区的荷兰被德军实行严格的食物供给限制政策,每日的食物仅仅为2个土豆、2片面包及1片甜菜根。60年后,与他们同性别的兄弟姐妹相比较,饥荒时期怀孕母亲遗传给后代的基因依然包括印记基因IGFR2。据推测造成这一变化的原因可能为饥荒时期怀孕母亲的叶酸摄入不足导致。另外一份针对单卵双胞胎生命的不同时期进行基因甲基化与组蛋白修饰研究表明,年轻时期双胞胎的表观遗传机制几乎一致。但是,到了50岁时,两者表现为显著的差异,提示环境因素可以改变表观基因组的表达[31]。 6 表观遗传在医疗实践中的应用 表观遗传调节基因表达的事件已经作为解释发育生物学以及人类疾病病因的研究机制。例如,癌组织的高度甲基化使得许多细胞通路的多基因被沉默[32]。通过研究这些基因,可以了解癌症的产生及发展。目前,相关研究的大部分主要集中于单个基因,而没有深入进行相关基因沉默的功能研究。随着人类全基因组基因芯片平台技术的发展,DNA甲基化将被更深入的阐明其生物学功能。从表观遗传连同其他遗传信息共同获得的分子信息来看,可以对肿瘤及疾病形成一种全新的分类体系。这个理论上的分类系统目的是用来阐述患者总体的预后情况、术后病情复发风险、化疗的反应等信息的肿瘤生物学内容。 随着人们对疾病发病原因相关知识的积累,有希望掀起高效治疗疾病的新药物制剂的新时代。对DNA的表观遗传修改具有潜在的可预防或者可逆转的作用。例如,通过抑制DNA甲基化转移酶(DNMTs)的作用就可以阻断DNA甲基化发生,结果导致子代细胞启动子区域CpG岛的脱甲基化,随后引起肿瘤抑制基因的持续表达以及肿瘤生长因子的表达受到抑制。目前,一些DNA脱甲基化化合物如5-氮杂胞苷(5-azacytidine)、5-氮杂-2′-脱氧胞苷、普鲁卡因胺,已经被人们深入研究。但是,毒副作用限制这些药物的广泛使用,使其仅仅被用于骨髓增生异常综合征的患者治疗中。有研究预测,脱甲基制剂可能被用来加强传统化疗方式的效力[33]。此外,还有相当一部分组蛋白乙酰化抑制剂(HDAC),如曲古抑菌素、丙戊酸、丁酸钠等被用来治疗癌症。这些药物通过阻塞多重HDACs的作用导致组蛋白乙酰化的增加。 总之,表观遗传学是遗传与环境相互作用的重要纽带。对表观遗传中各种因子突变导致疾病的研究的复杂程度令人难以置信,表观遗传学对基因信息是如何转录、翻译成蛋白质和表型的调节具有深远的影响,将为人类疾病的治疗指引方向,为设计新方案、研制新药提供科学依据。

白菜遗传育种研究进展论文

杜永臣 博士,研究员,蔬菜花卉所所长,番茄育种课题组组长,博士生导师,中国农业科学院二级岗位杰出人才,农业部有突出贡献中青年专家,享受政府特殊津贴。兼任国家自然科学基金、北京市自然科学基金和河北省自然科学基金的评审专家,中国园艺学会副秘书长,中国农业科学院学术委员会委员,天津市农业生物技术中心学术委员,农业部全国番茄区域试验负责人。主要从事番茄遗传育种和抗逆形成的生理、生化机制和抗逆材料的鉴定、筛选技术;利用分子标记、基因工程等生物技术、现代育种技术筛选和创造抗逆、抗病、优质育种材料;选育保护地和露地番茄优良新品种;研制国家番茄新品种DUS测试指南及番茄产品质量标准等。截止到2011年,“九五”主持和参加国家重点科技攻关项目番茄育种专题的“番茄耐低温材料选育研究”、“番茄抗病材料选育研究”、“番茄育种技术研究”、农业部“948”项目、教育部、人事部回国留学人员资助项目、国际合作项目等各类项目11项。 育成的“保护地番茄优良品种中杂9号和中杂8号”2000年获国家科技进步二等奖,本人第3名,两品种已累计推广250多万亩,创经济效益亿多元。特别是中杂9号成为了北方广大粉果番茄种植地区保护地生产的主栽品种。主持选育出的“中杂12”保护地番茄新品种2000年通过河北省和北京市品种审定。最新成的“中杂11”番茄获国家攻关后补助二等奖,并在2001年通过全国品种审定;截止到2011年,共发表论文30多篇。 孙日飞 博士,研究员,蔬菜花卉所副所长,白菜育种课题组负责人,博士生导师,中国农业科学院三级岗位杰出人才,学科带头人。兼任北京蔬菜学会副秘书长,《园艺学报》编委,《中国蔬菜》编委,第三届全国农作物品种审定专家,第五届北京市农作物品种审定委员,国家推广计划专家。主要从事大白菜遗传育种研究。截止到2011年,主持“八五”、“九五”国家攻关课题和农业部重点高新技术与基础研究及重点开放实验室项目、国际合作欧盟项目10余项。十五期间,国家863计划“蔬菜高效育种技术及优质、高产、多抗、专用新品种选育2001AA241121” 课题首席科学家。主持十五攻关重大专项“中南地区无公害蔬菜生产关键技术集成与产业化示范”;主持十五攻关“大白菜种质资源创新与利用研究”;主持北京市自然科学基金“大白菜自交不亲和基因的分子鉴别”研究。首次在国内育成了无苗期黄化,有蜜腺,生长和结籽正常,转育容易,育性稳定的新型大白菜细胞质雄性不育系。研究了培养基成分、培养条件对大白菜游离小孢子培养的影响,建立了理想的培养体系,获得大量小孢子再生植株,这些DH单株正用于新品种培育和分子遗传学研究。首次发现了两个与抗TuMV-C4基因连锁的标记和5个与抗TuMV-C1紧密连锁的AFLP标记。1992年“国家农作物种质资源数据库系统”获国家科技进步三等奖,第八名;1995年“用组培获得100%不育群体的白菜制种技术”获国家发明专利,第四发明人;1996年“组培繁育大白菜亲本制种技术”获北京市科技进步一等奖,排名第4位。1999年“大白菜2n配子发生的细胞学机制及应用研究”获农业部科技进步三等奖,排名第5位。 张宝玺 硕士,研究员,蔬菜花卉所副所长,茄科育种室主任,辣椒育种课题组组长,硕士生导师。中国农业科学院三级岗位杰出人才,中国农科院首批跨世纪科技开发与推广带头人,中国农学会第三届全国优秀农业科技工作者,享受政府特殊津贴。中国园艺学会辣椒分会副会长,全国蔬菜品种鉴定委员会委员,北京政协海淀区政协委员。主要从事辣椒遗传育种研究工作。对辣椒的主要植物学性状、抗病性、抗逆性、细胞生物学、分子辅助选育技术等进行了较系统的研究。创新和选育了大批优异育种材料和新品种,育成甜辣椒新品种14个,甜椒的选育在国内处领先水平。'中椒'系列品种在全国的推广产生了巨大的社会经济效益。截止到2011年,参加和主持了国家、部级科技攻关项目、国家基金项目、863项目等。获多项国家、省部级科技成果。西藏作物品种资源考察获国家科技进步二等奖(集体奖) ;早熟丰产抗病毒病甜椒中椒2号的选育获农业部科技进步三等奖(第四名);优质抗病丰产甜椒新品种中椒4、5号的育成,获国家科技进步二等奖、国家'八五'科技攻关重大科技成果(第三名);甜辣椒中椒6号和中椒7号的育成,获中国农科院科学技术一等奖、北京市科技进步二等奖(第一名)。发表论文30余篇。 胡鸿,硕士,研究员,蔬菜花卉所副所长。硕士生导师。中国园艺学会副秘书长,北京市蔬菜学会副秘书长。主要从事蔬菜贮藏保鲜与采后处理技术研究以及科研管理工作。截止到2011年,主持或参加国家科技支撑、“863”、北京市有关蔬菜贮藏研究方面的项目30余项。在主要蔬菜采后生理、采后商品化处理技术和贮藏保鲜技术的研究以及科研计划管理等方面取得一定成绩。“蔬菜流通体系综合保鲜技术的研究与实施”1992年获国内贸易部和北京市科技进步二等奖。“蔬菜采后处理工艺设计与实施”2001年获北京市科技进步三等奖。结合试验研究的进展,共发表论文40余篇。

(一)杂交与远缘杂交

1.离体胚、胚珠和子房培养

离体胚、胚珠和子房培养是克服芸薹属植物远缘杂交障碍的常用方法。Inomata(1978)首次成功地将子房培养应用于白菜与甘蓝的种间杂种胚挽救。巩振辉(1995)通过子房培养成功地获得白菜与白芥的属间杂种。

2.原生质体融合

细胞融合避开了有性交配过程,因此不存在受精不亲和的问题。近年来,在高等植物上,体细胞杂交已有相当进展。在有性杂交不能进行时,可采用体细胞杂交获得种、属间杂种。Takeshita et al.(1980)通过甘蓝与白菜的原生质体融合,人工合成了甘蓝型油菜。体细胞融合为从亲缘关系较远或受精亲和性极低的杂交组合中获得新材料、新品种开辟了一条新途径。

3.多代连续回交

多代连续回交法对种间或属间远缘杂交克服杂种不育具有一定的效果。在回交中,至于利用哪一原亲本回交,这取决于要回交出的后代保留哪一亲本的优异遗传性状,如果回交一次不够,可连续进行第二次或第三次回交。据大白菜的有关研究,值得说明的是,回交的结实力与杂种一代和双亲类型有关。

4.诱导二倍体

由于某些远缘杂交杂种中没有同源染色体组或完整的染色体组存在,杂种完全不育。通过人工处理诱导双二倍体可以成功地克服不育性。如用秋水仙碱处理杂种幼苗可以产生双二倍体而成功地克服不育性。应该指出的是,并非所有远缘杂交F的不育性都可以通过染色体加倍而克服,只有在F的减数分裂由于来自父母本的染色体不存在同源性而不能配对,仅有极少数能配对的情况下,加倍杂种染色体数才会使杂种的育性提高。

白菜种曾进行了广泛的种间和属间杂交,Warwick,SI和(1994)在Guide to the Wild Germplasm of Brassica and Allied Crops中列出了大量的远缘杂交实例。

(二)细胞工程技术

从本世纪初以来,单倍体一直是植物育种工作者们所努力追索的目标,游离小孢子培养与花药培养均可以得到单倍体,进而形成DH植株,但与花药培养相比,用于游离小孢子培养的是分离纯净的小孢子群体,产生的胚和再生植株都来自于小孢子细胞,排除了花药壁和绒毡层组织的干扰;另一方面,利用游离小孢子培养技术能够在较宽的基因型范围内以较高的胚状体发生率获得小孢子胚和再生植株,而小孢子植株又具有自然加倍成为二倍体的特点,因此,游离小孢子培养在遗传和育种研究方面具有十分诱人的应用前景。

20世纪70年代初,Nitsch等(1973)在进行曼陀罗(Datura stramonium L.)花药培养研究的同时,建立了游离小孢子培养技术,Lichter(1982)率先在芸薹属的甘蓝型油菜(Brassica napus L.)游离小孢子培养过程中获得胚状体以及再生植株,并发现小孢子胚胎及其再生植株发生率远高于花药培养。近20年来,这项技术在大白菜育种中的应用已日趋成熟。20世纪80年代末,Sato等(1989)首先进行了大白菜游离小孢子培养。90年代初,曹鸣庆等(1992)率先在国内开展了大白菜小孢子培养。目前国内已有数家单位开展了这方面的研究工作,并且已成功应用于育种实践。栗根义等(1999;2000)应用游离小孢子培养技术育成了优良新品种豫白菜11号、豫白菜7号等。曹鸣庆等(1993)应用游离小孢子培养技术获得了抗除草剂大白菜植株等。目前,大白菜小孢子培养技术已经成为创新种质资源的常规技术,并发挥着越来越大的作用。

游离小孢子培养技术还可以用于各种抗性突变体的筛选。Akmad等(1991)通过紫外辐射诱变处理早熟油菜小孢子,得到了少量对Alternaria brassicicola抗性增强和对除草剂“CleanR”具有抗性的后代。曹鸣庆研究组曾将大白菜黑斑病(Alternaria brassicae)毒素加入培养基,结果从诱导得到的小孢子胚中筛选出了对黑斑病表现一定程度抗性的大白菜小孢子植株。

(三)基因工程技术

随着组织培养和DNA重组技术的建立和不断完善,现代生物技术在许多作物的种质创新和新品种选育中日益得到广泛应用。但是,由于大白菜组织培养难度较大,再生体系较难建立,一定程度上制约了转基因技术在大白菜育种中的应用。进入20世纪80年代之后,大白菜组织培养与高频植株再生体系逐步建立,在此基础上进行的转基因研究也取得了一定突破。

杨广东等(2002)以大白菜3d苗龄带柄子叶为外植体,经根癌农杆菌介导,将修饰的豇豆胰蛋白酶抑制基因(sck)导入大白菜自交系GP-11和杂交种中白4号,并获得了卡那霉素抗性植株。PCR检测和Southern blot杂交证实,sck基因已整合进入大白菜基因组中。豇豆胰蛋白酶抑制剂活性检测表明,大部分转基因植株都对牛胰蛋白酶有一定的抑制活性,对照未转化植株抑制活性很低。室内离体叶片饲虫和田间自然抗虫性鉴定进一步证明:转基因植株对菜青虫(Pieris rapae L.)具有一定的抗性。

朱常像等(2001)以大白菜品种福山大包头的子叶柄为供试材料,对影响大白菜植株再生和基因转化频率的因素进行了研究。在此基础上,建立了大白菜高效再生体系和有效的基因转化体系,并将芜菁花叶病毒的CP基因导入大白菜中,获得转化植株。PCR检测和Southern杂交分析证明TuMV-CP基因已整合于大白菜的基因组中;Nothern杂交分析及ELISA检测表明TuMV-CP在转录和翻译水平上进行了有效表达。转基因植株T代的遗传分析表明,外源基因在转基因植株后代遵循3:1的分离规律。抗病性测定显示,转基因植株具有明显的抗病毒侵染能力。

刘公社等(1998)利用大白菜小孢子胚状体获得抗除草剂转基因植株。用大白菜小孢子培养获得的子叶期胚状体,经粉碎的玻璃碴摩擦后,与农杆菌共培养,在加筛选剂Basta的培养基上,再生出数株绿苗,自交留种后,对其后代进行的Basta抗性鉴定显示,抗性植株的基因组中各有一个bar基因插入点,对转化株的小孢子进行再培养,后代小孢子植株对Basta抗性的分离比显示此转基因为杂合体。

大白菜虽然起源于我国,但它既不象韭、姜、蒜等蔬菜,在古典文献上可以找到悠久确实的记录,也不象有些原产于中国的蔬菜,在山川野间仍有原始的野生种类可寻。遍览古籍,元代以前并无关于大白菜记载的典籍。根据考证,我国大白菜的历史较短,自元代以后历经明清两朝,迄今约七、八百年,农学家对大白菜深入研究的结论是:它是由南方的小白菜和北方的芜菁天然杂交演化而来的。因此,要探究大白菜的来历,必须从小白菜和芜菁的源头说起 大白菜个大体壮、物美价廉、营养丰富,令人久吃不厌。它一经问世,备受人们喜爱。元代忽思慧在《饮膳正要》中写到:“白菜,味甘,温,无毒。主通肠利胃,除胸中烦,解酒毒。”明朝王世懋对大白菜很赏识,认为是蔬菜中的神品。清朝吴其睿说北方大白菜运到南方之后:“竞相争购、味胜于肉,不胫而走。”王士雄在《随息居饮食谱》中记载品评吃大白菜的好处说:“甘平养胃,荤素皆宜,味胜珍馐。”清史学家柯劭

研究遗传学的发展史论文

现代遗传学概论

疾病简介 遗传病是指由遗传物质发生改变而引起的或者是由致病基因所控制的疾病。[编辑本段]疾病类型 由于遗传物质的改变,包括染色体畸变以及在染色体水平上看不见的基因突变而导致的疾病,统称为遗传病。根据所涉及遗传物质的改变程序,可将遗传病分为三大类: 其一是染色体病或染色体综合征,遗传物质的改变在染色体水平上可见,表现为数目或结构上的改变。由于染色体病累及的基因数目较多,故症状通常很严重,累及多器官、多系统的畸变和功能改变。 其二是单基因病,目前已经发现 5余种单基因病,主要是由单个基因的突变导致的疾病,分别由显性基因和隐性基因突变所致。所谓显性基因是指等位基因中(一对染色体上相同座位上的基因)只要其中之一发生了突变即可导致疾病的基因。隐性基因是指只有当一对等位基因同时发生了突变才能致病的基因。 第三是多基因病,顾名思义,这类疾病涉及多个基因起作用,与单基因病不同的是这些基因没有显性和隐性的关系,每个基因只有微效累加的作用,因此同样的病不同的人由于可能涉及的致病基因数目上的不同,其病情严重程度、复发风险均可有明显的不同,如唇裂就有轻有重,有些人同时还伴有腭裂。值得注意的是多基因病除与遗传有关外,环境因素影响也相当大,故又称多因子病。很多常见病如哮喘、唇裂、精神分裂症、高血压、先心病、癫痫等均为多基因病。 遗传病是指完全或部分由遗传因素决定的疾病,常为先天性的,也可后天发病。如先天愚型、多指(趾)、先天性聋哑、血友病等,这些遗传病完全由遗传因素决定发病,并且出生一定时间后才发病,有时要经过几年、十几年甚至几十年后才能出现明显症状。如假肥大型肌营养不良要到儿童期才发病;慢性进行性舞蹈病一般要在中年时期才出现疾病的表现。有些遗传病需要遗传因素与环境因素共同作用才能发病,如孝喘病,遗传因素占80%,环境因素占20%;胃及十二指肠溃疡,遗传因素占30%~40%,环境因素占60%~70%。遗传病常在一个家族中有多人发病,为家族性的,但也有可能一个家系中仅有一个病人,为散发性的,如苯丙酮尿症,因其致病基因频率低,又是常染色体隐性遗传病,只有夫妇双方均带有一个导致该疾病的基因时,子女才会成为这种隐性致病基因的纯合子(同一基因座位上的两个基因都不正常)而得病,因此多为散发,特别在只有一个子女的家庭,偶有散发出现的遗传病患者,就不足为奇了。 那么,遗传病能够治疗吗? 以前,人们认为遗传病是不治之症。近年来,随着现代医学的发展,医学遗传学工作者在对遗传病的研究中,弄清了一些遗传病的发病过程,从而为遗传病的治疗和预防提供了一定的基础,并不断提出了新的治疗措施。家族遗传病 遗传性疾病是由于遗传物质改变而造成的疾病。 遗传病具有先天性、家族性、终身性、遗传性的特点。 遗传病的种类大致可分为三类: 一、单基因病。 单基因常常表现出功能性的改变,不能造出某种蛋白质,代谢功能紊乱,形成代谢性遗传病。单基因病又分为三种: 1.显性遗传:父母一方有显性基因,一经传给下代就能发病,即有发病的代代,必然有发病的子代,而且世代相传,如多指,并指,原发性青光眼等。 2.隐生遗传:如先天性聋哑,高度近视,白化病等,之所以称隐性遗传病,是因为患儿的双亲外表往往正常,但都是致病基因的携带者。 3.性链锁遗传又称伴性遗传发病与性别有关,如血友病,其母亲是致病基因携带者。又如红绿色盲是一种交叉遗传儿子发病是来自母亲,是致病基因携带者,而女儿发病是由父亲而来,但男性的发病率要比女性高得多。 二、多基因遗传:是由多种基因变化影响引起,是基因与性状的关系,人的性状如身长、体型、智力、肤色和血压等均为多基因遗传,还有唇裂、腭裂也是多基因遗传。此外多基因遗传受环境因素的影响较大,如哮喘病、精神分裂症等。 三、染色体异常:由于染色体数目异常或排列位置异常等产生;最常见的如先天愚型,这种孩子面部愚钝,智力低下,两眼距离宽、斜视、伸舌样痴呆、通贯手、并常合并先天性心脏病。 上述遗传病并非携带致病基因就肯定会发病。 其实几乎所有的疾病都与基因有关系,也和环境有密切联系!遗传按生物体的照性状分,还可以分为质量性状和数量性状!所谓质量性状就是白种人和黄种人的差别,这主要是遗传决定的,受环境因数影响小。也就是男女的差别!数量性状即稻谷的重量,人的身高,颜色深浅等等,这些都叫数量性状。数量性状是多基因决定的,基因数一般不易测算,因为误差可以相差一个数量级。所以主要讲基因的总效应!数量性状受环境的影响非常大。可以说超过遗传因子! 总之,绝大部分疾病是环境因子和遗传因子共同作用的结果由于受精卵形成前或形成过程中遗传物质的改变造成的疾病。有人认为只有受父母遗传因素决定的疾病才是遗传病,这一认识不够全面。例如有一些染色体畸变并非由父母遗传因素决定,而是在受精卵形成过程中产生,习惯上染色体畸变都包括在遗传病的范畴内。还有人认为凡是受遗传因素影响的疾病都是遗传病,这一概念也不确切,因为在人类所有疾病中,除了少数几种(如外伤造成骨折)完全由环境因素所致,不受遗传因素影响外,几乎绝大多数疾病都是环境和遗传两方面因素互相作用的结果,只是两者影响疾病发生的程度可不相同。即使细菌感染、外伤后癫痫等环境因素十分明显的疾病,不同个体之间也存在着易感性的差异,而这种差异也是受遗传因素影响的,不可能把这些病都包括在遗传病的范畴之中。完全由遗传因素决定的疾病(A类,如21三体综合征)和完全由环境因素决定的疾病(D类, 如外伤性骨折)都是少数,而大多数人类疾病都居于B类和C类。B类指基本上由遗传因素决定,但需要环境中一定的诱因才发病,如苯丙酮酸尿症患儿在出生后摄入苯丙氨酸就会发病。 C类指遗传因素和环境因素都对发病起作用的疾病,如高血压病、感染等;但不同疾病的遗传度不同,即遗传因素影响越大,则遗传度就越高。所以从理论上来说, A、B、C等三类均属遗传病,但C类如感染、外伤后癫痫等在习惯上不包括在遗传病的范畴中。遗传病不同于先天性疾病,后者是指出生时就已表现出来的疾病。虽然不少遗传病在出生时就已表现出来,但也有些遗传病在出生时表现正常,而是在出生数日、数月,甚至数年、数十年后才开始逐渐表现出来,这显然不属于先天性疾病。另一方面,先天性疾病也并不都是遗传因素造成的,例如孕期母亲受放射线照射时所致的先天畸形,就不属于遗传病。遗传病也不同于家族性疾病。虽然有些由于同一个家族成员具有相同的遗传基础可表现遗传病的家族发病,但是不同的遗传病在亲代、子代之间的传递规律是复杂多样的,有些遗传病(如白化病等隐性遗传病)就可能没有家族史,另一方面,家族性疾病也可能由非遗传因素(如相同的生活条件)造成,如饮食中缺乏维生素 A使多个家族成员出现夜盲。 过去认为遗传病是一个较罕见的疾病,但随着医学的发展和人民生活水平的提高,一些过去严重威胁人类健康的传染病、营养性疾病得以控制,而遗传病成为比较突出的问题。如英国1914年的一项儿童死因调查表明,非遗传性疾病(如感染、肿瘤等)占%,而遗传性疾病只占%,但到20世纪70年代后期,两类疾病各占50%。国内的情况也同样,1951年北京市儿童的死亡原因中,感染性疾病占重要地位,但在1974~1976年儿童死因分析中,先天畸形占全部死因的%,居首位,而在这些畸形中,属遗传病的达3~10名。另一方面,遗传病的病种非常多,随着生物学和医学的发展,近年发现新的遗传病更是层出不穷。表1 表明1958~1982年人类认识的单基因病的病种,至今已有4000种左右的遗传病被人们所认识。 简史 18 世纪法国人莫佩尔蒂第一个对遗传病作了家系调查,他分析了白化病的遗传方式。1814年亚当斯发表有关临床疾病遗传性质的论文,这被认为是近代最早的一篇系统论述遗传病的文章。1908年.加罗德首次提出“先天代谢异常”的概念,将遗传与代谢联系起来,并认为尿酸尿症等先天代谢异常的遗传规律可以用孟德尔定律来解释,为医学遗传学作出了划时代的贡献。1949年L.波林提出了“分子病”的概念。1944年比克尔首先提出控制新生儿营养,可有效防止苯丙酮酸尿症的发展,为遗传病的有效治疗开创了新的一章。1958年J.勒热纳发现先天愚型患儿为三条21号染色体,这是第一次报道了遗传病的染色体异常。 1969年拉布斯发现了 X染色体的脆性部位,为染色体的畸变的研究开辟了一个新的领域。从60年代起,遗传病的产前诊断开始应用于临床。1978年卡恩和多齐首次将 DNA重组技术应用于遗传病的诊断,他们诊断了一例镰刀状细胞性贫血,此后这一诊断技术发展极为迅速。 分类 按照目前对遗传物质的认识水平,可将遗传病分为单基因遗传病、多基因遗传病和染色体病三大类。 单基因遗传病 同源染色体中来自父亲或母亲的一对染色体上基因的异常所引起的遗传病。这类疾病虽然种类很多,3000种以上(见表[1958~1982年全世界报告的单基因遗传病的病种数]1958~1982年全世界报告的单基因遗传病的病种数),但是每一种病的患病率较低,多属罕见病。欧美国家统计,约1%的新生儿患有较严重的基因病。按照遗传方式又可将单基因病分为四类:①常染色体显性遗传病。人类的23对染色体中,一对与性别有关,称为性染色体,其余22对均称常染色体。同源常染色体上某一对等位基因彼此相同的,称为纯合子,一对基因彼此不同的称杂合子。如果在杂合状态下,异常基因也能完全表现出遗传病的,称为常染色体显性遗传病,如多指并指、先天性肌强直,这类遗传病的发生与性别无关,男女患病率相同。父母中有一位患此疾病,其子女中就可能出现患者。据估计,约7‰新生儿患有常显体显性遗传病。②常染色体隐性遗传病。常染色体上一对等位基因必须均是异常基因纯合子才能表现出来的遗传病。大多数先天代谢异常均属此类。父母双方虽然外表正常,但如果均为某一常显体隐性遗传基因的携带者,其子女仍有可能患该种遗传病。近亲婚配时容易产生纯合状态,所以其子女隐性遗传病的发病率也高。③常染色体不完全显性遗传病。这是当异常基因处于杂合状态时,能且仅能在一定程度上表现出症状的遗传病。如地中海贫血,引起该病的异常基因为,纯合子 表现为重症贫血,杂合子则表现为中等程度的贫血④ 伴性遗传病。分为X连锁遗传病和Y连锁遗传病两种。有些遗传病的基因位于X染色体上,Y染色体过于短小,无相应的等位基因,因此,这些异常基因将随X染色体传递,所以称为X连锁遗传病。也分为显性和隐性两种,前者是指有一个X染色体的异常基因就可表现出来的遗传病,由于女性拥有两条X染色体而男性只有一条,所以女性获得该显性基因的机会较多,发病率高于男性,但这类遗传病为数很少,至今仅知10余种。如Xg血型,又如抗维生素D佝偻病是 X连锁不完全显性遗传病。X连锁隐性遗传病是指X染色体上等位基因在纯合状态下才发病者,在女性,只有当两条X染色体上的一对等位基因都属异常时才患病,如果其中有一条 X染色体的等位基因正常就不会患有此病。但是男性只有一条X染色体,只要X染色体上的基因异常,就会表现出遗传病,所以男性发病率高于女性发病率。这种伴性隐性遗传病占伴性遗传病的绝大部分,例如红绿色盲、血友病等都比较常见。据估计约1‰新生儿患有X连锁遗传病。 Y连锁遗传病的致病基因位于Y染色体上,X染色体上则无相应的等位基因,因此这些基因随着Y染色体在上下代间传递,也叫全男性遗传。在人类中属于 Y连锁遗传病的有外耳道多毛症等。 多基因遗传病 与两对以上基因有关的遗传病。每对基因之间没有显性或隐性的关系,每对基因单独的作用微小,但各对基因的作用有积累效应。一般说来,多基因遗传病远比单基因遗传病多见。受环境因素的影响,不同的多基因遗传病,受遗传因素和环境因素影响的程度也不同。遗传因素对疾病发生的影响程度,可用遗传度来说明,一般用百分数来表示,遗传度越高,说明这种多基因遗传病受遗传因素的影响越大。例如唇裂、腭裂是多基因遗传病,其遗传度达76%,而溃疡病仅37%。多基因遗传病还包括一些糖尿病、高血压病、高脂血症、神经管缺陷、先天性心脏病、精神分裂症等。在人群中,多基因遗传病的患病率在2~3%以上。 染色体病 指由于染色体的数目或形态、结构异常引起的疾病。新生儿中染色体异常的发病率为 %。染色体异常称为染色体畸变,包括常染色体的异常和性染色体的异常。但是染色体病在全部遗传病中所占的比例不大,仅约1/10。 遗传病的研究和诊断 要研究判断某一疾病是否为遗传病可通过以下几个途径:家系调查及分析、挛生子分析、种族比较,伴随性状研究、动物模型和 DNA分析。通过家系调查、分析并与人群发病情况比较,不仅可以判断某病是否为遗传病,如果是遗传病的话,还可进一步确定其遗传方式。通过单卵孪生和双卵孪生同胞发病的一致率分析,可能判断某种病受遗传因素及环境因素影响的程度。不同种族和民族发病情况的比较,尤其是对同样生活环境不同种族的发病率的研究可能为遗传病的判断提供重要线索。在伴随症状分析中,目前应用最多的是同种白细胞抗原(HLA)系统,应用这一系统作为遗传病标志。研究作为某一遗传的伴随性状,进行连锁分析,则也能为遗传病的判断提供依据。目前已建立了数十种染色体畸变和单基因遗传病的动物模型,为遗传病的研究提供了有力手段。 DNA分析是近年来发展的重要手段,其中以限制片断长度多态性(RFLP)分析在遗传病判断中应用最多。 遗传病的临床诊断比其他疾病更困难。一方面遗传病的种类极多,另一方面每一种遗传病的单独发病率很低,所以临床医师在遗传病的诊断上不容易取得经验。除了一般疾病的诊断方法(如病史、体格检查、实验室和仪器检查)外,遗传病的诊断还可能需要依靠一些特殊的诊断手段,如染色体检查,特殊的生化学测定及系谱分析。遗传病的临床表现是最重要的诊断线索,每一种遗传病都有一些症状、体征同时存在,被称为“综合征”,这是提示诊断的最初线索,也是选择实验室检查和其他遗传学检查的依据。对遗传病患者必须要详细询问家族史并绘制准确可靠的家系谱,对家系谱的分析不仅是遗传病诊断的一项依据,而且对遗传方式的判明及进行遗传咨询也是极为重要的。皮纹分析是遗传病诊断的另一种特殊手段,主要对染色体病最有价值,对其他个别单基因遗传病也可能有一定意义,常用于临床检查的是指纹、掌纹、掌褶纹、指褶纹和脚掌纹。许多遗传病的最后诊断,还有赖于染色体检查和特殊的生化测定或DNA分析。 产前诊断是遗传病诊断的一个重要方面,在婴儿出生以前通过穿刺取得羊水或绒毛组织。进行染色体检查、特异的酶活性或代谢产物测定,或进行DNA分析对胎儿的发病情况作出判断,决定是否需要进行人工流产以终止妊娠,这在减少遗传病患儿的出生,提高人口素质方面具有重要意义,尤其在目前人类对大多数遗传病还不能进行有效治疗的条件下,用终止妊娠来防止遗传病患儿的出生更具有突出的意义。近年来由于 B型超声扫描仪的广泛应用和技术的提高,在产前诊断,尤其是发育畸形的诊断上有很大的价值。胎儿镜也开始应用于产前诊断。 基因诊断是新发展起来的一项重要技术,也能对近百种遗传病作出准确的诊断,但是由于这些遗传病大多数还不能作有效治疗,所以从医学伦理学的观点来看,除应用于产前诊断外,基因诊断的推广仍存在很大问题。 治疗和预防,要根治遗传病,应该从基因水平或染色体水平来纠正已发生的缺陷,这种方法称为基因治疗,属于基因工程的范畴。但是基因治疗在理论上、技术上还存在着极大的困难,目前谈不上临床应用。目前对遗传病所能进行的治疗只是在早期诊断的前提下,通过控制环境条件(如饮食成分等),调节代谢过程,防止症状的出现,称为“环境工程”。目前能应用于环境工程的治疗包括饮食控制疗法(如苯丙酮尿症用低或无苯丙酮酸奶粉喂养)、药物疗法(如用维生素B6治疗B6 依赖症,用别嘌呤醇治疗痛风等)、手术治疗(如脾切除术治疗遗传性球形红细胞增多症)、酶的补充(如异体骨髓移植治疗戈谢氏病)和对症疗法(如用抗癫痫药物控制苯丙酮酸尿症的惊厥)等。环境工程虽然可以减轻或消除一些遗传病的症状,对个体来说是有利的,但是治疗结果却使带有致病基因的患者不仅存活下来,甚至还能继续繁殖后代,而这些患者如果不经治疗本来可以自然淘汰,至少不会繁衍后代。所以环境工程对整个人类的影响可能是有害的,它将使致病基因的频率在人群中逐代提高,从而导致遗传病发病率的增高。 正因为目前对大多数遗传病尚无有效治疗方法,所以遗传病的预防就有特别重要的意义。预防措施包括新生儿筛查、环境保护、携带者的检出和遗传咨询等方面。新生儿筛查是指对所有出生的婴儿进行某项遗传病的简单检查,以便在症状出现以前就开始治疗,防止症状发生。只有那些在症状出现以前就可以通过检查发现生化异常,而且已有治疗措施,而不给予治疗日后又会造成严重残疾的遗传病才进行新生儿筛查。苯丙酮酸尿症和先天性甲状腺功能低下在许多国家已列为法定新生儿筛查项目。中国自1982年以来在北京、上海、天津、武汉等地也进行了一些筛查。其中1985年发表的全国12省市的苯丙酮酸尿症筛查是中国第一次报告的较大规模的新生儿筛查。生物素基酶缺陷的新生儿筛查在国际上也还是一个新课题,中国从1987年开始已在北京开始了这项筛查工作。环境保护是指减少或消除环境中的致畸剂、致癌剂、致染色体畸变剂和致基因突变剂,主要是工农业生产中产生的污染。携带者检出是指将那些外表正常,但带有致病基因或异常染色体的个体从人群中检出,对其婚姻和生育进行指导,防止其后代发生这种遗传病,检出的方法主要是染色体检查、特异的酶活性测定或代谢产物测定以及DNA分析,目前已能对染色体平衡易位及百余种单基因病作携带者的检出,对这些遗传病的预防有重要意义。遗传咨询, 1952年首先出现在美国,中国70年代以后才开展起来,是医务人员对遗传病患者及其家属对该遗传病的病因、遗传方式、防治、预后,以及提出的各项问题进行解答,并对患者的同胞子女再患此病的危险率作出估计,给予建议和指导。可以认为遗传咨询、产前诊断和终止妊娠三者为防止遗传病患者出生的“三部曲”。有人把婚姻咨询和生育咨询也纳入遗传咨询的范畴内,这些工作对优生优育具有重大意义。

我zju的孩子伤不起啊···哥···你看到这个题目还high了一下···我以为我的搞定了···

【遗传学的产生与发展】各种考古学资料表明,人类在远古时代就已经知道优良动植物能够产生与之相似的优良后代的现象,并通过选择和培育有用的动植物以用于各种生活目的。公元前8000年到1000年,古埃及人就开始通过饲养瞪羚作为食物,以后又用绵羊和山羊代替瞪羚并用来生产羊奶。在古非洲的尼罗河流域,公元前4000年就有记载人类通过选择和饲养蜜蜂来生产蜂蜜的活动。在植物的选育方面,在我国湖北地区新石器时代末期的遗址中还保存有阔卵圆形的粳稻谷壳,说明人类对植物品种的选育具有更悠久历史。公元前4000年左右,古埃及的石刻上还记载了人们进行植物杂交授粉的情况。但是,这些都仅仅是史前时期的人类对遗传变异现象的观察,或是在生产实践中利用一些遗传、变异性状对动植物进行选择,或许是一种无意识的行为,并没有对生物遗传和变异的机制进行严肃的研究。公元前5世纪到4世纪,古希腊医师希波克拉底(Hippocrates)及其追随者在生殖和遗传现象以及人类的起源方面作了大量探索,使古希腊人对生命现象的认识逐步从宗教的神秘色彩转向哲学的和原始科学的思维方面来。希波克拉底学派认为,雄性精液首先在身体的各个器官中形成,然后再通过血管运输到睾丸中。这种所谓的具有活性的体液(humor)是遗传特征的载体,是从身体的各个器官采集而来的。如果体液带有疾病,新生儿就表现出先天性缺陷。这种早期的思想就产生了后来由达尔文(—1882)正式提出的泛生说(hypothesis of pangenesis)。希波克拉底学派的第二种观点认为,双亲的各种生理活动和智理活动都可以传递给子代,使子代具有与亲代相似的能力和特征。体液在亲代体内可以发生变化,所以子代可以遗传其双亲从环境中获得的某些特征。这一观点与19世纪法国学者拉马克(—1829)提出的获得性遗传(inheritance of acquired characteristics)假说的形成很有关。古希腊哲学家和自然科学家亚里士多德(Aristotle,公元前384年—322年)对人类起源和人体遗传作了比希波克拉底学派更广泛的分析,他是泛生说形成的重要人物之一。他认为雄性的精液是从血液形成的,而不是从各个器官形成的。精液含有很高能量,这种能量作用于母体的月经,使其形成子代个体。古希腊的希波克拉底学派和亚里士多德的观点今天看起来似乎很天真、幼稚,但由于在当时并未发现精、卵细胞,直到1827年卵细胞才被发现,因此这种对遗传现象的解释在当时乃至以后几个世纪都产生了重要影响。由于他们都认为遗传是通过双亲进行的,并受到位于不同单位中遗传信息的控制,这些观点在遗传学系统理论的形成和发展过程中占有突出地位。因为任何一个学科的形成都不是偶然的,都离不开前人为这一学科产生所做出的大量先驱性工作。从17世纪开始直到19世纪,人们对生命现象的探索便进入了实验生物学的时代。18世纪瑞典分类学家林奈(—1778)建立了动物和植物的系统分类学,并创立了双名法,这对于后来进行动、植物育种和杂交试验提供了选择亲本的重要依据,起到了积极作用。但是,他认为物种是神创造的即所谓特创论(special creation),物种是固定不变的(fixity of species)。这对于遗传学的形成和发展又起了消极作用,使一些从事杂交工作的研究者不能正确认识他们的试验结果和从中发现遗传规律。18世纪的德国植物育种学家柯尔络特(—1806)就是受林奈思想影响很深的人之一。柯尔络特被认为世界上第一个通过杂交育种、成功地培育出植物品种的人。他首先将两组不同烟草植株杂交,然后再将杂交种反复与其亲本之一进行回交,培育出新的烟草品种。在另一组石竹属植物的育种试验中,他清楚地观察到了性状的分离现象,但由于他相信特创论和物种不变论的思想,致使对自己的研究结果产生了矛盾心理,而不能正确认识其在科学上的重要意义。法国学者拉马克总结了古希腊哲学家的思想,在1809年发表的《动物的哲学》(Philosophie Zoologique)一书中提出了与林奈物种不变论相反的观点,认为动物器官的进化取决于用与不用即用进废退理论(doctrine of use and disuse)。拉马克还认为每一世代中由于用和不用而加强或削弱的性状是可以遗传的即获得性遗传。如鼹鼠没有视力是由于其祖先长期生活在黑暗洞穴,无须使用眼睛。这样,它们的眼睛逐代退化并遗传下去,最后鼹鼠就完全丧失了视力。英国生物学家达尔文曾随“贝格尔”号战舰进行了5年的环球旅行和生物学考查,广泛研究了生物遗传、变异和进化的关系,于1859年发表了《物种起源》(The Origin of Species)的著作,提出了生物通过生存斗争(struggle for existence)以及自然选择的进化理论。他认为生物在长时间内累积微小的有利变异,当发生生殖隔离后,就形成了一个新物种,然后新物种又继续发生进化变异。达尔文的进化论是19世纪自然科学中最伟大的成就之一,它不仅否定了物种不变的谬论,而且有力地论证了生物由简单到复杂、由低级到高级的进化过程。达尔文的进化理论没有对生物遗传和变异的遗传学基础进行论述,他在1868年发表的第二部著作《在驯养下动物和植物的变异》(Variations of Animals and Plants under Domestication)中试图对这一不足作出明确解释,但他重提了“泛生说”和“获得性遗传”的观点。达尔文认为在动物的每一个器官里都存在称为胚芽(gemule)的单位,它们通过血液循环或体液流动聚集到生殖细胞中。当受精卵发育成为成体时,胚芽又进入各器官发生作用,因而表现出遗传现象。胚芽还可对环境条件作出反应而发生变异,表现出获得性遗传。达尔文的这些观点也完全是一些没有事实依据的假设。德国生物学家魏斯曼()支持达尔文有关进化的选择论,但反对获得性遗传。他于1892年提出了种质连续论(theory of continuity of germplasm),把生物体分成体质(somatoplasm)和种质(germplasm)。种质是独立的、连续的,能产生后代的种质和体质,而体质则不能产生种质。环境只影响体质,故由环境引起的变异是不遗传的即获得性不能遗传。遗传的是种质而不是体质。种质论在生物科学中产生了广泛影响,直到今天的遗传学研究和动、植物育种仍沿用了种质论的某些观点。但是,魏斯曼将生物体绝对地划分为种质和体质是片面的,而且今天的大量遗传学研究和分子生物学研究证明,某些获得性也是可以遗传的。真正科学地、有分析地研究遗传与变异是从孟德尔(—1884)开始的。孟德尔是奥地利布隆(Brünn)的一位天主教修道士,同时也是一所中学的代课教师。他于1856—1864年在他所在修道院的小花园内对豌豆(Pisum sativum)进行了杂交实验,于1865年在当地召开的自然科学学会上宣读了试验结果。他认为生物性状的遗传是受遗传因子控制的,并提出了遗传因子分离和自由组合的基本遗传规律。他从试验中得到的结论是形成今天科学遗传学的基石,所以他被公认为是遗传学的创始人。已如前述,孟德尔并不是第一个从事植物杂交试验的人,但他是第一位从生物体的单个性状出发,分析其试验结果的人。孟德尔采用科学的方法设计实验,对杂交结果进行计数和分类,并采用数学模式对各种比例进行比较分析,然后针对各种差异提出假说。接着,他根据初步试验结果和假设,准确预测有关遗传单位的传递方式,最后再根据后来的杂交结果证明他所作假设的正确性。孟德尔的研究方法和提出的学说是比较先进的和科学的,特别是他的思维方法至今仍然是科学工作者学习的榜样。但是,孟德尔的理论在当时并未受到重视,直到1900年,他的论文才得到3个不同国家的3位植物学家的注意。他们分别是荷兰的迪·弗里斯( Vries),他研究月见草和玉米;德国的柯伦斯(),他研究玉米、豌豆和菜豆;奥地利的切尔马克( ),他研究豌豆等数种植物。他们3人都从自己独立的研究中获得了孟德尔原理的证据。当他们在收集资料、引用文献时都发现了孟德尔的论文。从此,孟德尔的成就才得到广泛重视。从这以后,许多学者都按照孟德尔的理论和研究方法对动、植物的遗传现象进行了广泛深入的研究,使遗传学研究得到迅速发展。因此,人们把1900年孟德尔论文被重新发现之时定为遗传学形成和建立的开端。1905年英国人贝特逊()依据希腊“生殖”(generate)一词给遗传学正式定名(genetics)。贝特逊除了给遗传学进行科学定名外,还将孟德尔最初提出的控制一对相对性状的遗传因子定名为等位基因(allelomorph,后缩写为allele)。1903年萨顿()发现染色体行为与遗传因子的行为一致,于是提出了染色体是遗传因子的载体的观点。1909年丹麦遗传学家约翰逊()提出用基因(gene)一词代替孟德尔的遗传因子。基因一词由达尔文的泛子(pangen)的最后一个音节衍生而来。至今,遗传学中广泛使用等位基因和基因这两个名词。等位基因是指控制一对有相对差异的两种特征的遗传单位,而基因则是指控制某一特征发育的遗传单位。1910年左右,美国遗传学家摩尔根()及其同事根据对普通果蝇的研究,确定了基因是染色体上的分散单位,在染色体上呈直线排列,提出了基因的连锁交换规律,并结合当时的细胞学成就,创立了以染色体遗传为核心的细胞遗传学(cytogenetics)。就在孟德尔规律被重新发现的1900年,英国医生、生物化学家加罗德()根据对人体的一种先天性代谢疾病尿黑酸症(alkaptonuria)的研究,认为这种疾病是由于单个基因发生突变后,产生一种不具功能的产物,从而导致代谢障碍。加罗德的这种一个突变基因决定一种代谢障碍的观点在当时也并未受到广泛注意,直到1941年,比德尔()和他的老师泰特姆()对红色面包霉(Neurospora)的生化突变型进行研究时,才发现了加罗德的工作,明确提出了“一个基因一种酶”(one gene-one enzyme)的理论。后来“一个基因一种酶”又被修改成较准确的概念即“一个基因一种多肽(one gene-one polypeptide)。基因究竟是由什么物质组成的呢?这是自孟德尔规律被发现以来人们一直探索的问题。早在1869年,一位瑞士医生米切尔()就宣称自己从脓细胞中分离到了核酸。时隔30多年以后,美国的细胞生物学家威尔逊()又发现了核酸,证明它是染色体的重要组成成分,并指出它可能是遗传物质。1944年,埃弗里()等从肺炎双球菌(Diplococcuspneumoniae)的转化试验中又直接证明了脱氧核糖核酸(DNA)是遗传物质。直到1953年,沃森()和克里克()提出了DNA的双螺旋结构模型,这一成就才为进一步阐明DNA的结构、复制和遗传物质如何保持世代连续的问题奠定了基础。埃弗里及沃森等人的研究开创了分子遗传学这一新的学科领域,不仅使遗传学,而且使整个生物学跨入了一个新纪元。今天,遗传学已是一门成熟的、非常有活力的学科,被认为是现代生物学的核心。它是自孟德尔奠基以来,人类对生命本质认识的集体智慧的结晶,世界上许多科学家都对遗传学的发展做出了杰出贡献。现代遗传学的发展非常迅速,特别是在高等真核生物包括人体的发育、细胞分化、记忆、衰老及信号转导等分子机制的研究,以及结构基因组和功能基因组研究方面,几乎每年都有突破。【遗传学研究的领域】遗传学研究的领域非常广泛,包括病毒、细菌、各种植物和动物以及人体等所有生命形式。研究手段从分子水平、染色体水平直到群体水平。但现代遗传学的研究领域一般可划分成4个主要分支,即传递遗传学(transmission genetics)、细胞遗传学(cytogenetics)、分子遗传学(molecular genetics)和生统遗传学(biometrical genetics)。各个分支领域之间相互联系、相互重叠、相互印证,它们又组成了一个不可分割的整体。传递遗传学是最经典的研究领域,它研究遗传特征从亲代到子代的传递规律。我们可以将具有不同特征的个体进行交配,通过对几个连续世代的分析,研究性状从亲代传递给子代的一般规律。但在对人体进行研究时,则采用谱系分析,即通过对多个世代的调查,追踪某种遗传特征的传递方式,估测其遗传模式。由于这种研究方法首先是从孟德尔开始的,所以这一遗传学分支又称为经典遗传学(classical genetics)。细胞遗传学是通过细胞学手段对遗传物质进行研究。在这一领域中使用最早的工具是光学显微镜。20世纪初,就是利用光学显微镜发现了细胞有丝分裂(mitosis)和减数分裂(meiosis)过程中染色体及其行为的。染色体及其在细胞分裂过程中行为特征的发现不仅对孟德尔规律的再发现和被承认起到了重要作用,而且还奠定了遗传的染色体理论基础。染色体理论在20世纪上半叶遗传学研究中起着主导作用,它认为染色体是基因的载体,是传递遗传信息的功能单位。所以,有人把其中专门研究染色体变化与遗传变异的关系以及基因在染色体上定位等内容称为染色体遗传学(chromosomal genetics)。后来,随着电子显微镜的发明,我们已能够直接观察遗传物质的结构特征及其在基因表达过程中的行为,使细胞遗传学的研究视野扩大到分子水平。分子遗传学是从分子的水平上对遗传信息进行研究。它研究遗传物质的结构特征、遗传信息的复制、基因的结构与功能、基因突变与重组及基因的调节表达等内容,是遗传学中最活跃、发展最迅速的一大分支。对遗传信息在分子水平上进行研究始于20世纪40年代。虽然开始的研究对象只是细菌和病毒,但现在我们已经知道了许多真核生物遗传信息的特征、复制和调节表达机制。到70年代,随着重组DNA(recombinant DNA)技术的发明与应用,我们可以在实验室内有目的地将任何生物的基因拼接到细菌或病毒DNA上,进行大量克隆(cloning)即在离体条件下扩增目的基因。DNA重组技术在分子遗传学研究方面是一种使用广泛的、非常重要的基本技术,它不仅使基因研究不断向理论的纵深发展,而且还对医学和农业具有重要的实用意义。生统遗传学是一门用数理统计学方法来研究生物遗传变异现象的分支学科。根据研究的对象不同,又可分为数量遗传学(quantitative genetics)和群体遗传学(population genetics)。前者是研究生物体数量性状即由多基因控制的性状遗传规律的分支学科,后者是研究基因频率在群体中的变化、群体的遗传结构和物种进化的学科。生统遗传学传统上是依据群体中不同个体所表现出来的特征即表型来研究遗传和变异,但现在正在逐步向研究群体内分子水平变异的方向发展。

细胞遗传稳定性研究进展论文

植物细胞器间遗传信息转移董色白艳玲*徐海津张秀明乔明强(南开大学生命科学学院,天津300071)摘要真核生物细胞质中有多种执行特定功能的细胞器,其中线粒体和质体含有独立的基因组,但细胞器的遗传信息储量有限,其多数结构和功能蛋白质仍然由核基因组编码。来自植物的相关研究表明,细胞核与细胞器间不仅在功能上相互依存,而且遗传信息分子能跨越生物膜屏障,在细胞核与细胞器间及不同的细胞器间进行传递,并由此可以引起部分遗传信息在细胞内定位及基因表达等方面的相应改变。细胞器间遗传信息转移机制的研究将为深入认识核质相互作用及真核生物的进化提供重要的线索。关键词细胞器;遗传信息;传递真核生物细胞内具有两种遗传系统:独立自主的细胞核基因组和具有半自主性的核外基因组。核外基因组主要是动植物共有的线粒体和植物所特有的质体。绝大多数遗传信息位于细胞核,而线粒体和质体仅包含为数有限的与细胞器功能相关的基因。在起源上,对于线粒体和质体有两种推测:(1)细胞器是由细胞核分离出的部分基因组成[1]。(2)细胞器来源于内共生的自养微生物[2]。现在人们普遍接受内共生学说,该学说认为线粒体起源于变形菌(Proteobacterium),质体起源于蓝细菌(Cyanobacterium)[3]。内共生体进化的典型特征就是基因逐渐趋于简化,简化过程即基因丢失或转移的过程。转移是指在进化过程当中细胞器的部分基因转移到细胞核,随着这一过程的进行遗传信息逐渐集中于细胞核。转移到细胞核的基因一方面扩大了细胞核的基因含量,另一方面也使得一部分核基因的功能取代了线粒体和质体基因的功能。然而,遗传信息的交流并不是单方向的,也有细胞核基因转移到细胞器,同时线粒体和质体之间也存在着基因的交流。只是质体基因组相对保守,不同的植物间质体基因组相差无几,而线粒体则相反,在不同植物间线粒体基因组大小差距很大。植物细胞内一直都进行着细胞核、线粒体和质体基因组间的遗传信息传递,只是传递方式各有不同。对细胞内遗传信息的交流及其传递方式的研究逐步揭开了细胞器进化的面纱,为实现细胞器遗传转化提供了重要依据。1细胞器间遗传信息的传递谢谢采纳

遗传与变异 ---新形式下的基因突变 ( 2005动物科学院 X X X ) 摘要:染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 关键词:遗传;变异;基因突变 遗传从现象来看是亲子代之间的相似的现象,即俗语所说的“种瓜得瓜,种豆得豆”。它的实质是生物按照亲代的发育途径和方式,从环境中获取物质,产生和亲代相似的复本。 遗传是相对稳定的,生物不轻易改变从亲代继承的发育途径和方式。因此,亲代的外貌、行为习性,以及优良性状可以在子代重现,甚至酷似亲代。而亲代的缺陷和遗传病,同样可以传递给子代。 遗传是一切生物的基本属性,它使生物界保持相对稳定,使人类可以识别包括自己在内的生物界。 变异是指亲子代之间,同胞兄弟姊妹之间,以及同种个体之间的差异现象。俗语说“一母生九子,九子各异”。世界上没有两个绝对相同的个体,包括挛生同胞在内,这充分说明了遗传的稳定性是相对的,而变异是绝对的。 生物的遗传与变异是同一事物的两个方面,遗传可以发生变异,发生的变异可以遗传,正常健康的父亲,可以生育出智力与体质方面有遗传缺陷的子女,并把遗传缺陷(变异)传递给下一代。 遗传和变异的物质基础 生物的遗传和变异是否有物质基础的问题,在遗传学领域内争论了数十年之久。 在现代生物学领域中,一致公认生物的遗传物质在细胞水平上是染色体,在分子水平上是基因,它们的化学构成是脱氧核糖核酸(DNA),在极少数没有DNA的原核生物中,如烟草花叶病毒等,核糖核酸(RNA)是遗传物质。 真核生物的细胞具有结构完整的细胞核,在细胞质中还有多种细胞器,真核生物的遗传物质就是细胞核内的染色体。但是, 细胞质在某些方面也表现有一定的遗传功能。人类亲子代之间的物质联系是精子与卵子,而精子与卵子中具有遗传功能的物质是染色体,受精卵根据染色体中DNA蕴藏的遗传信息,发育成和亲代相似的子代。 一、遗传与变异的奥秘 俗话说“种瓜得瓜,种豆得豆”,这是生物遗传的根本特征。人类与其他生物一样,在世代的交替中,子女(子代)总是保持着父母(亲代)的某些基本特征,这种现象就是遗传。但子代又会与亲代有所差异,有的差异还很明显。子代与亲代的这植钜炀褪潜湟臁R糯�捅湟焓巧��淖罨�咎卣髦�唬�ü��镆淮��姆敝程逑殖隼础?遗传和可以遗传的变异都是由遗传物质决定的。这种遗传物质就是细胞染色体中的基因。人类染色体与绝大多数生物一样,是由DNA(脱氧核糖核酸)链构成的,基因就是在DNA链上的特定的一个片段。由于亲代染色体通过生殖过程传递到子代,这就产生了遗传。染色体在生物的生活或繁殖过程中也可能发生畸变,基因内部也可能发生突变,这都会导致变异。 如遗传学指出:患色盲的父亲,他的女儿一般不表现出色盲,但她已获得了其亲代的色盲基因,她的下一代中,儿子将因获得色盲基因而患色盲。 我们观察我们身边很多有生命的物种:动物、植物、微生物以及我们人类,虽然种类繁多,但在经历了很多年后,人还是人,鸡还是鸡,狗还是狗,蚂蚁、大象、桃树、柳树以及各种花草等等,千千万万种生物仍能保持各自的特征,这些特征包括形态结构的特征以及生理功能的特征。正因为生物界有这种遗传特性,自然界各种生物才能各自有序地生存、生活,并繁衍子孙后代。 大家可能会问,生物是一代一代遗传下来,每种生物的形态结构以及生理功能应该是一模一样的,但为什么父母所生子女,一人一个样,一人一种性格,各有各自的特征。又如把不同人的皮肤或肾脏等器官互相移植,还会发生排斥现象,彼此不能接受,这又如何解释呢?科学家研究的结果告诉我们,生物界除了遗传现象以外还有变异现象,也就是说个体间有差异。例如,一对夫妇所生的子女,各有各的模样,丑陋的父母生出漂亮的孩子,平庸的父母生出聪明的孩子,这类情况也并不罕见。全世界恐怕很难找出两个一模一样的人,既使是单卵双生子,外人看起来好像一模一样,但是与他们朝夕相处的父母却能分辨出他们之间的微细差异,这种现象就是变异。人类中多数变异现象是由于父母亲遗传基因的不同组合。每个孩子都从父亲那里得到遗传基因的一半,从母亲那里得到另一半,每个孩子所得到的遗传基因虽然数量相同,但内容有所不同,因此每个孩子都是一个新的组合体,与父母不一样,兄弟姐妹之间也不一样,而形成彼此间的差异。正因为有变异现象,人类才有众多的民族。人们可以很容易地从人群中认出张三、李四,如果没有变异,大家全都是一个样子,社会上的麻烦事就多了。除了外形有不同,变异还包括构成身体的基本物质--蛋白质也存在着变异,每个人都有他自己特异的蛋白质。所以,如果皮肤或器官从一个人移植到另一个人身上便会发生排斥现象,这就是因为他们之间的蛋白质不一样的缘故。 还有一类变异是遗传基因的突变,这类突变往往是由环境中的条件所诱发的,这种突变的基因还可以遗传给下一代。许多基因突变的结果会造成遗传病。 变异也可以完全由环境因素所造成,例如患小儿麻痹症后遗的跛足,感染大脑炎后形成的痴呆等这些性状都是由环境因素所造成的,是因为病毒感染使某些组织受损害,造成生理功能的异常,不是遗传物质的改变,所以不是遗传的问题,因此也不会遗传给下一代。 总之,遗传与变异是遗传现象中不可分离的两个方面,我们有从父母获得的遗传物质,保证我们人类的基本特征经久不变。在遗传过程中还不断地发生变异,每个人又在一定的环境下发育成长,才有了人类的多种多样。 二、遗传变异的科学理论 遗传的分子基础 (一)遗传物质的存在形式 (1)染色体是遗传物质的载体,遗传信息以基因的形式蕴藏于DNA分子中; (2)每个人体体细胞含两个染色体组,每个染色体组的DNA构成一个基因组; (3)广义的基因组包括细胞核染色体基因组和线粒体基因组; (4)人类细胞核染色体基因组中90%左右为DNA重复序列,10%为单一序列; (5)多基因家族是真核基因组中重要的结构之一。 (二)基因的结构及其功能 、真核生物基因的分子结构 (1)、基因的DNA序列由编码序列和非编码序列两部分构成,编码序列是不连续的,被非编码序列分隔开,形成镶嵌排列的断裂形式,因此称为断裂基因;编码序列称为外显子,非编码序列称为内含子; (2)、在每个外显子和内含子的接头区存在高度保守的一致序列,称为外显子-内含子接头,即在每个内含子的5’端开始的两个核苷核为GT,3’端末尾是AG,特称之为GT-AG法则; (3)、真核生物基因的大小相关悬殊,外显子和内含子的关系也不是固定不变的; (4)、DNA分子两条链中,5’→3’链称为编码链,其碱基排列序列中储存着遗传信息;3’→5’链称为反编码链,是RNA合成的模板; (5)、每个断裂基因中第一个外显子和最后一个外显子的外侧都有一段不被转录的非编码区,称为侧翼序列,其上有一系列调控序列,对基因的表达起调控作用。这些结构包括: ①启动子:位于基因转录起始处,是RNA聚合酶的结合部位,能启动基因转录。 ②增强子:位于基因转录起始点的上游或下游,能增强启动子转录,提高转录效率; ③终止子:位于3’端非编码区下游的一段序列,在转录中提供转录终止信号。 、基因的复制 (1)、基因的复制是以DNA复制为基础的,每个DNA分子上有多个复制单位(复制子); (2)、每个复制子有一个复制起点,从起点开始双向复制,在起点两侧各形成一复制叉; (3)、DNA聚合酶只能使DNA链的3’端加脱氧核苷核,故复制只能沿5’→3’方向进行; (4)、与复制叉同向的新链复制是连续的,速度也较快,称为前导链;与复制叉反向的新链复制是不连续的(先要在RNA引物存在下合成一个个冈崎片段,然后在DNA连接酶作用下补上一段DNA),速度也较慢,称为后随链;故DNA的复制是半不连续复制; (5)、复制后的DNA分子都含有一条旧链和一条新链,故DNA的复制又是半保留复制。 、基因的表达 基因表达是DNA分子中所蕴藏的遗传信息通过转录和翻译形成具有生物活性的蛋白质或通过转录形成RNA发挥功能作用的过程。 (1)、转录:是在RNA聚合酶催化下,以DNA为模板合成RNA的过程。 ①新合成好的RNA称为不均一核RNA(也叫核内异质RNA,hnRNA); ②hnRNA要经过“戴帽”和“加尾”以及剪接等加工过程才能形成成熟的mRNA。 (2)、翻译:是以mRNA为模板指导蛋白质合成的过程。 ①mRNA分子中每3个相邻的碱基为三联体,能决定一种氨基酸,称为密码子; ②翻译后的初始产物大多无功能,需经进一步加工才可成为有一定活性的蛋白质。 、基因表达的调控(了解操纵子学说) 、基因的突变 (1)、基因突变的概念:基因突变是DNA分子中的核苷核序列发生改变,导致遗传密码编码信息改变,造成基因表达产物蛋白质的氨基酸变化,从而引起表型的改变。 (2)、基因突变的方式 ①碱基替换 也叫点突变,包括转换和颠换两种方式。其后果可以造成同义突变、错义突变、无义突变或终止密码突变(延长突变)等生物学效应。 ②移码突变 是DNA分子中某一位点增加或减少一个或几个碱基对,造成该位点以后的遗传编码信息全部发生改变。 ③动态突变 微卫星DNA或短串联重复序列,尤其是三核苷酸的重复,在靠近基因或位于基因序列中时,其重复次数在一代一代的传递中会出现明显增加的现象,导致某些遗传病的发生。 (3)、基因突变的修复 ①切除修复 是一种多步骤的酶反应过程,首先将受损的DNA部位切除,然后再合成一个片段连接到切除的部位以修补损伤。 ②重组修复 又称复制后修复,是在DNA受损产生胸腺嘧啶二聚体(T-T)以后,当DNA复制到损伤部位时,再与T-T相对应的部位出现切口,完整的DNA链上产生一个断裂点。此时,在重组蛋白作用下,完整的亲链与有重组的子链发生重组,亲链的核苷酸片段补充了子链上的缺失。重组后亲链的切口在DNA聚合酶作用下,以对侧子链为模板,合成单链DNA片段来填补,随后在DNA连接酶作用下,以磷酸二酯键使新片段与旧链相连接,而完成修复过程。 2、遗传的细胞基础 染色质:在间期细胞核,染色质的功能状态不同,折叠程度也不同,分为常染色质和异染色质两种。1、常染色质 在细胞间期处于解螺旋状态,具有转录活性,呈松散状,染色较浅;2、异染色质 在细胞间期处于凝缩状态,很少进行转录或无转录活性,染色较深;3、性染色质 在间期细胞核中染色体的异染色质部分显示出来的一种特殊结构,有两种:(1)、X染色质 正常女性间期细胞核中有一个染色较深,大小约为10nm的椭圆形小体(了解Lyon假说)。(2)、Y染色质 正常男性间期细胞核用荧光染料染色后,核内可见一个圆形或椭圆形的强荧光小体,直径为3nm左右。 染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 (三)人类的正常核型:色体数目、形态结构特征的分析叫核型分析。1、非显带核型 根据丹佛体制,将正常人类体细胞的46条染色体分为23对7个组(A、B、C、D、E、F和G组)。在描述一个核型时,首先写出染色体总数(包括性染色体),然后是一个“,”号,最后是性染色体。正常男性核型描述为46,XY;女性为46,XX。2、显带核型 用各种特殊的染色方法使染色体沿长轴显现出一条条明暗交替或深浅相间的带,故又叫带型。根据ISCN规定,描述一特定带时,需要写明4项内容:①染色体号;②臂号;③区号;④带号。 遗传的基本规律:孟德尔提出的分离定律和自由组合定律以及摩尔根提出的连锁与交换定律构成了遗传的基本规律,通称为遗传学三大定律。分离律说的是遗传性状有显隐性之分,这样具有明显显隐性差异的一对性状称为相对性状。相对性状中的显性性状受显性基因控制,隐性性状由一对纯合隐性基因决定。杂合体往往表现显性基因的性状。基因在体细胞中成对存在,在形成配子时,彼此分离,进入不同的子细胞。减数分裂时同源染色体彼此分离,分别进入不同的生殖细胞是分离律的细胞学基础。自由组合律是说生物在形成配子时,不同对基因独立行动,可分可合,以均等的机会组合到同一个配子中去。减数分裂过程中非同源染色体随机组合于生殖细胞是自由组合律的细胞学基础。连锁与交换律是说位于同一条染色体上的基因是互相连锁的,它们常一起传递(连锁律),但有时也会发生分离和重组,是因为同源染色体上的各对等位基因进行了交换。减数分裂中,同源染色体联会和交换是交换律的细胞学基础。 单基因性状的遗传:遗传性状受一对基因控制的,称单基因性状的遗传。单基因性状又叫质量性状。1、决定某种遗传性状的等位基因,在传递时服从分离律;2、当决定两种遗传性状的基因位于不同对染色体上时,这两种单基因性状的传递符合自由组合律。3、如果决定两种遗传性状的基因位于同一对染色体上时,它们的传递将从属于连锁与交换律。 多基因性状的遗传:由多基因控制的性状往往与单基因性状不同,其变异往往是连续的量的变异,称为数量性状。每对基因对多基因性状形成的效应是微小的,称为微效基因。微效基因的效应往往是累加的。多基因遗传性状除受多基因遗传基础影响外,也受环境因素影响。(熟悉多基因遗传假说,了解多基因遗传的特点) 遗传的变异:(一)染色体异常与疾病;染色体异常类;形成机; 数目畸变 整倍性改变 单倍体 多倍体 双雄受精,双雄受精,核内复制 非整倍性改变 亚二倍体 染色体不分离,染色体丢失 超二倍体 结构畸变 缺失(del) 受多种因素影响,如物理因素、化学因素和生物因素等 重复(dup) 倒位(inv) 易位(t) 环状染色体 双着丝粒染色体 等臂染色体 1、一个个体内同时存在两种或两种以上核型的细胞系,这种个体称嵌合体。 2、染色体结构畸变的描述方式有简式和详式两种。 (二)人类的单基因遗传病1、常染色体显性遗传(AD)病 (1)、AD系谱特点:①致病基因位于常染色体上,遗传与性别无关;②患者双亲中至少有一方是患者,但多为杂合体;③患者与正常个体结婚,后代有1/2的发病风险;④系谱中可看到连续传递现象。 (2)、其它AD类型:①不完全显性或半显性,是指杂合体的表现型介于显性纯合体与隐性纯合体的表现型之间;②不规则显性,是指杂合体由于某种原因不一定表现出相应的症状,即使发病,但病情程度也有差异;③共显性,是指一对等位基因无显隐性之分,杂合状态下,两种基因的作用都能表现出来;④延迟显性,有显性致病基因的杂合体在生命早期不表现出相应症状,当到一定年龄后,其作用才表达出来。 2、常染色体隐性遗传(AR)病 (1)、AR系谱特点:①致病基因的遗传与性别无关,男女发病机会均等;②患者双亲往往表型正常,但都是致病基因的携带者,患者的同胞中约有1/4的可能将会患病,3/4表型正常,但表型正常者中2/3是可能携带者;③系谱中看不到连续传递现象,常为散发;④近亲婚配后代发病率比非近亲婚配后代发病率高。 (2)、常见AR病:苯丙酮尿症、白化病、先天性聋哑、高度近视和镰状细胞贫血等。 3、X连锁显性遗传(XD)病 (1)、XD系谱特点:①系谱中女性患者多于男性患者,且女患者病情较轻;②患者双亲中至少有一方是患者;③男性患者后代中,女儿都为患者,儿子都正常;女性患者后代中,子女各有1/2的患病风险;④系谱中可看到连续传递现象。 (2)、常见XD病:抗维生素D性佝偻病。 4、X连锁隐性遗传(XR)病 (1)、XR系谱特点:①人群中男性患者远多于女性患者;②双亲无病时,儿子可能发病,女儿则不会发病;③由于交叉遗传,患者的兄弟、舅父、姨表兄弟和外甥各有1/2的发病风险;④如果女性是患者,父亲一定是患者,母亲一定是携带者或患者。 (2)、常见XR病:甲型血友病、红绿色盲。 5、Y连锁遗传(YL)病 全男性遗传 (三)多基因遗传病 1、有关多基因遗传病的几个重要概念 (1)、易感性 在多基因遗传病中,由多基因遗传基础决定某种多基因病发病风险高低。 (2)、易患性 由遗传基础和环境因素共同作用,决定了一个个体是否易于患病。 (3)、发病阈值 当一个个体的易患性高达一定水平即达到一个限度时,这个个体就将患病,这个易患性的限度称为阈值。 (4)、遗传度 在多基因遗传病中,易患性受遗传基础和环境因素的双重影响,其中遗传基础所起作用大小的程度称为遗传度或遗传率。一般用百分率(%)来表示。 2、多基因遗传病的特点 (1)、有家族聚集倾向,患者亲属的发病率高于群体发病; (2)、随着亲属级别的降低,患者亲属的发病风险迅速降低; (3)、近亲婚配时,子女患病风险增高; (4)、发病率有种族(或民族)差异。 三、遗传与变异在当代 人类基因组计划的工作草图已于今年的6月26日绘制完成,但要将全部30多亿个碱基完全装配完成还需要一段时间,预计要到明年的6月份。即使完成了人类基因组计划的“精图”,也只是我们认识人类基因功能的开始,完全弄清基因的功能及其相互间的作用,至少还要40年的时间。毋庸赘言,这是一项浩繁巨大的工程。 迄今为止,人们对整个人类基因组中所含有的基因数目尚存争议,有人说是3万,有人说是14万,相差非常大。在整个人类基因组序列中,只存在1%的差异,就是这1%的差异导致了人种、肤色、身高、眼睛、胖瘦以及疾病的易感性等方面的不同。科学家除继续研究基因的数量和功能外,基因在多大程度上受外界环境和体内因素的影响以及这种改变是否可以一代代地延续下去,也是需要解决的问题。 上述问题涉及到后成说(epigenetics)这一范畴。后成说是研究通过其他的化学途径,而不是通常所说的碱基突变,使基因活性发生半永久性改变的一门科学。后成说的重要性一直存有很大争议。如果后成说真有科学依据的话,那么它将是解释不同个体之间,甚至不同物种之间存在差异的关键所在,同时还将是疾病发生的一个重要机制。 不同基因的表达:基因含有合成蛋白质的指令,蛋白质合成的过程称为基因表达。但是遗传学家们很早以前就知道通过对DNA链碱基上的化学基团进行修饰来调控基因表达、影响蛋白质的合成。最常见的修饰方式是基因的甲基化(甲基是由一个碳原子和三个氢原子组成的基团),即在基因上添加甲基基团,结果常常会终止基因表达。 科研人员通过对某些哺乳动物的研究发现,此类修饰只存在于个体中,而不遗传给后代,因为这种修饰在精子和卵子细胞中常常被清除。最近有人发现,后成特征在小鼠中可以遗传。在悉尼大学生化学家怀特劳博士所做的实验中,遗传学相同的小鼠,同其父母相比,更像它们的母亲。因为它们继承了其母亲的卵子DNA的甲基化类型。该型甲基化在决定小鼠毛色中起着非常重要的作用。 怀特劳博士小组的大量的研究数据表明,要探明动物是如何把物理特征或疾病易感性传给后代的,有必要先搞清可遗传的后成特征。如果后成特征可遗传,那么这些特征所引起的疾病应能够像普通的基因突变一样在家系之间传递。该研究小组对小鼠的后成标记在传代过程中如何关闭和表达进行了深入地研究。研究人员将一个可以产生特异类型红细胞的基因(称为转基因)导入具有相同遗传学特征小鼠的基因组中(接受该基因的小鼠称之为转基因鼠)。研究发现这些转基因小鼠体内的转基因正以不同的方式表达。有些转基因小鼠体内40%的红细胞表达该基因,而另一些则根本就不表达。同时该小组还对小鼠毛色进行了研究,发现与毛色有关的DNA甲基化增高与转基因的不表达(或称为“沉默”表达)有关。但是在这种情况下,后成性改变可来自父方,也可以来自母方。 令人费解的是,虽然这种基因表达的沉默现象至少可以维持三代,但不是不可逆转的。在该型的后代小鼠与非同类小鼠交配时,发现在后代小鼠中不存在甲基化和表达沉默现象,转基因又可在小鼠的幼崽中获得表达。如果这种基因沉默和再活化现象是自然发生的话,那么就可以解释个体之间和代与代之间差异的原因。 后成说还可以解释物种之间的差异。最近普林斯顿大学的迪尔格曼通过两种相近小鼠的交配,将多个小鼠基因上的后成特征破坏。这些小鼠相互之间不能进行正常的交配,并且它们杂交的后代表现为生长异常。研究人员认为这种生长异常与杂交后代基因上的甲基化模式破坏有关。他们推测后成性效应非常显著,仅靠改变这些特征就可以造就新物种。 大家都知道,物种的产生是遗传变异逐渐积累的结果。但是,迪尔格曼认为有些物种出现之快不是该假说所能解释的。所以物种后成说的假设有一定优势。例如,甲基化可以迅速地关闭整条基因的表达,并引起根本的改变。这种改变足以阻止新的品种与旧品种之间的杂交,尤其是阻止新物种的产生。 四、结论 变异基因的表达:许多生物学家对此种假说表示不屑。基因序列虽不能完全解释动物的特征,但是至少可以解释一些由基因突变所引起的疾病。 疾病基因突变假说的倡导者把癌症作为经典的实例,来说明在个体DNA水平上,到底有多少碱基差错才能导致肿瘤。但加州大学伯克利分校的杜斯博格博士不同意这一观点,认为癌症并不是由基因异常引起的,而是由另一形式的后成现象 染色体异常引起的。 根据癌症基因突变假说,指导细胞分裂和死亡的基因突变使正常的细胞分裂和死亡过程遭到破坏,导致细胞不受控制地生长。但是,最近杜斯博格博士领导的研究小组报道,至今还没有人证实突变的基因会使正常的细胞变为癌细胞。他还指出,如果突变基因对细胞分裂具有显著影响的话,为什么有些情况下,突变发生的数月甚至数年后才发展为癌症,这是非常奇怪的现象。他认为可以用后成性非整倍现象对上述问题加以解释,非整倍性是指细胞具有错误的染色体个数。 在细胞分裂时,染色体排列整齐,通过纺锤体(一种蛋白质的支架)分配到子代细胞中。杜斯博格推测,致癌的化学物质可以影响纺锤体,因此,造成子代细胞具有或多或少的染色体。由于这种错误分配的染色体不稳定,细胞分裂时染色体之间相互混合并发生非自然的重组。 大多数重组对细胞而言是至关重要的,但最终会产生一个分裂异常的细胞。产生这种异常细胞的概率非常小,这种低概率事件可以解释为什么从接触致癌物质到细胞发生癌变,要经过这么长时间。细胞的非整倍性是5000多种肿瘤的一种显著特征。 与个体碱基突变相比,染色体数的增加或减少使细胞表征发生显著改变。因为染色体数目的改变(即非整倍性),可以导致成千上万种蛋白质活性发生改变,而不仅仅是一种或两种蛋白质,导致细胞分裂的失控。假如这种假说成立的话,那么现在试图通过定点修复癌基因来治疗癌症的策略将毫无效果。 杜斯博格博士10年前曾因自己的假说而声名狼藉,他认为人类免疫缺陷病毒(HIV)并不能引起艾滋病。一系列的HIV和艾滋病的研究表明,杜斯博格的理论是极其荒谬的。这严重地损害了他的声誉,因此,他的其他理论也很容易被人忽视。但是,他的非整倍性假说似乎非常有价值。癌症中非整倍体的普遍性尚需进一步阐明。

苜蓿遗传育种研究与进展论文

看图可知:杂交后代中,圆粒与肾粒的比例为1:1,黄色与褐色的比例为3:1,A正确;B、亲本中黄色圆粒和黄色肾粒的基因型分别是YyRr和Yyrr,B正确;C、亲本黄色圆粒YyRr和褐色肾粒yyrr杂交,属于测交,后代可能出现四种表现型,比例为1:1:1:1,C正确;D、黄色肾粒Y_rr和褐色圆粒yyR_杂交,后代不一定是黄色圆粒,D错误.故选:D.

2014:1 Ma Q, Li XY, Yuan HJ, Hu J, Wei L, Bao AK, Zhang JL(张金林), Wang SM (2014) ZxSOS1 is essential for long-distance transport and spatial distribution of Na and K in the xerophyteZygophyllum xanthoxylum. Plant and Soil 374: 661-676 (SCI IF2012=)2 Bao AK, Wang YW, Xi JJ, Liu C, Zhang JL(张金林), Wang SM (2014) Co-overexpression of xerophyte Zygophyllum xanthoxylum ZxNHX andZxVP1-1 enhances salt and drought tolerance in transgenic Lotus corniculatus by increasing cations accumulation. Functional Plant Biology 41: 203-214(SCI IF2012=)2013:3 Zhang JL(张金林), Wang SM, Flowers TJ (2013) Differentiation of low-affinity Na uptake pathways and kinetics of the effects of K on Na uptake in the halophyte Suaeda maritima. Plant and Soil 368: 629-640 (SCI IF2012=)4 Zhang JL(张金林), Shi HZ (2013) Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis Research 115: 1-22 (SCI IF2012= )5 Gurmani AR, Bano A, Najeeb U, Zhang JL(张金林), Khan SU, Flowers TJ (2013) Exogenously applied silicate and abscisic acid ameliorates the growth of salinity stressed wheat (Triticum aestivum L.) seedlings through Na exclusion. Australian Journal of Crop Science 7(8): 1123-1130 (SCI IF2011=)6 李剑, 张金林(通讯作者), 王锁民 (2013) 小花碱茅PutHKT2;1基因全长cDNA的克隆与生物信息学分析. 草业学报 22(2): 140-1497 王雪芳, 王春梅, 张金林, 段丽婕, 王锁民 (2013) 小花碱茅组织培养植株再生体系的建立. 草业学报(已接受)2012:8 Guo Q, Wang P, Ma Q, Zhang JL(张金林), Bao AK, Wang SM (2012) Selective transport capacity for K over Na is linked to the expression levels of PtSOS1 in halophyte Puccinellia tenuiflora. Functional Plant Biology 39: 1047-1057(SCI IF2012=)9 Ma Q, Yue LJ, Zhang JL(张金林), Wu GQ, Bao AK, Wang SM (2012) Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. Tree Physiology 32(1): 4-13 (SCI IF2012=)10 Yue LJ, Li SX, Ma Q, Zhou XR, Wu GQ, Bao AK, Zhang JL(张金林), Wang . (2012) NaCl stimulates growth and alleviates water stress in the xerophyte Zygophyllum xanthoxylum. Journal of Arid Environments 87: 153-160 (SCI IF2012= )11 吴永娜, 胡静, 王引权, 李剑, 张金林(通讯作者) (2012) 当归Actin基因片段的克隆及序列分析. 中草药 43(12): 2485-248912 李剑,张金林(通讯作者) (2012) 拒盐型牧草小花碱茅PutHKT2;1基因表达模式分析. 草业科学 29(9): 1379-138313 于建龙, 张金林, 徐建华, 徐生智, 王锁民 (2012) 钠复合肥提高移栽梭梭抗旱性. 兰州大学学报(自然科学版) 48(5): 79-8414 赵常玉, 李剑, 张金林, 王锁民 (2012) HKT与植物耐盐性研究进展. 草业科学 29(10): 1604-161215 王引权, 赵勇, 安培坤, 张金林, 王艳 (2012) 不同含水量当归种子贮藏过程中生理生化特性研究. 中国中药杂志 37(2): 181-18516 王引权, 王艳, 陈红刚, 张金林, 樊秦, 夏琦, 陈健, 安培坤 (2012) 海拔梯度对药用植物品质形成影响的研究进展. 中国现代中药 14(5): 41-4417 安培坤, 王引权, 窦丽丽, 张金林, 康生福 (2012) 岷山红三叶茎叶水浸液对3种植物种子萌发及幼苗生长的影响. 草业科学 29(6): 960-96318 方永丰, 李永生, 白江平, 慕平, 孟亚雄, 张金林, 王汉宁, 尚勋武 (2012) 玉米持绿相关QTL整合图谱构建及一致性QTL区域内候选基因发掘. 草业学报 21(4): 175-1852011:19 Gurmani AR, Bano A, Khan SU, Din J,Zhang JL(张金林, 通讯作者) (2011) Alleviation of salt stress by seed treatment with abscisic acid (ABA), 6-benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes ion and organic matter accumulation and increases yield of rice (Oryza sativaL.). Australian Journal of Crop Science 5(10):1278-1285 (SCI IF2011=)20 Zhang JL(张金林), Wetson AM, Wang SM, Gurmani AR, Bao AK, Wang CM (2011) Factors associated with determination of root Na influx in the salt accumulation halophyte Suaeda maritima. Biological Trace Element Research 139(1): 108-117(SCI IF2012=)21 Wu GQ, Xi JJ, Wang Q, Bao AK, Ma Q, Zhang JL(张金林), Wang SM (2011) The ZxNHX gene encoding vacuolar Na/H antiporter in the xerophyte Zygophyllum xanthoxylum plays important roles in response to salt and drought. Journal of Plant Physiology 168: 758–767 (SCI IF2012=)22 Paré PW, Zhang HM, Aziz M, Xie XT, Kim MS, Shen X, Zhang JL(张金林) (2011) Beneficial rhizobacteria induce plant growth: mapping signaling networks in Arabidopsis. Biocommunication in Soil Microorganisms, Soil Biology 23(2): 403-41223 吴永娜, 李剑, 许瑞, 王引权, 张延红, 王惠珍, 张金林(通讯作者) (2011) 党参肌动蛋白基因片段的克隆及序列分析. 中草药 42(12): 2518-252224 李剑, 赵常玉, 吴永娜, 马清, 郭强, 王锁民, 张金林(通讯作者) (2011) 小花碱茅HKT1;4(HKT7)基因片段的克隆与序列分析. 草业科学 28(6): 969-97325 徐建华, 于健龙, 伍国强, 王锁民, 张金林(通讯作者) (2011) 钠复合肥增强荒漠植物梭梭抗旱性的研究. 草业科学 28(6): 1025-102926 赵丽君,王雪芳,张金林,王锁民 (2011) 植物组织培养及其在草类植物中的研究和应用. 草业科学 28(6): 1140-11482010:27 Zhang JL(张金林), Flowers TJ, Wang SM (2010) Mechanisms of sodium uptake by roots of higher plant. Plant and Soil, 326(1): 45-60(SCI IF2012=)28 李剑, 赵常玉, 张富生, 王锁民, 包爱科, 张金林(通讯作者) (2010) LEA蛋白与植物抗逆性. 植物生理学通讯 46(11): 1101-110829 孟亚雄, 张金文, 张金林, 仲军, 王化俊 (2010) 棉纤维特异启动子LTP12 驱动的基因phaB、phaC双价载体构建及其原核表达研究. 草业学报 19(3): 170-17630 蔡建一, 马清, 周向睿, 张金林, 王锁民 (2010) Na在霸王适应渗透胁迫中的生理作用. 草业学报 20(1): 89-9531 郭强, 周向睿, 王沛, 张金林, 包爱科, 伍国强, 王锁民 (2010) 盐生植物小花碱茅K通道PtAKT1基因片段的克隆及序列分析. 草地学报 18(5): 683-6882009:32 Zhang JL(张金林), Ma JF, Cao ZY (2009) Screening of cold-resistant seedlings of a Chinese wild grape (Vitis piasezkii Maxim Var. pagnucii) native to loess plateau of eastern Gansu province,China, as rootstocks. Scientia Horticulturae, 122: 125-128(SCI IF2012=)33 Wang CM, Zhang JL(张金林), Liu XS, Li Z, Wu GQ, Cai JY, Flowers TJ, Wang SM (2009) Puccinellia tenuiflora retains a low Na level under salt stress by limiting unidirectional Na influx resulting in a high selectivity for K over Na. Plant Cell and Environment, 32, 486-496 (SCI IF2012=)34 Bao AK, Wang SM, Wu GQ, Xi JJ, Zhang JL(张金林), Wang CM (2009) Overexpression of the Arabidopsis H-PPase enhanced the salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Science, 176: 232-240 (SCI IF2012=)35 王生银, 张永超, 李莉, 张金林(通讯作者), 王春梅, 郭强, 包爱科 (2009) 拒盐型盐生植物小花碱茅(Puccinellia tenuiflora)肌动蛋白基因片段的克隆及序列分析. 基因组学与应用生物学 28(4): 673-6772008:36 张金林, 王锁民, 陈托兄, 徐震, 严学兵,陆妮 (2008) 烯效唑(S3307)对大麦Na、K选择性和游离脯氨酸分配的影响. 麦类作物学报 28(4): 655-66037 王春梅, 李湛, 伍国强, 张金林, 王锁民 (2008) 用核素示踪研究小麦根系Na外排速率的两种方法. 核农学报 22(3): 370-3732007:38 Wang SM, Zhang JL(张金林), Flowers TJ (2007) Low-affinity Na uptake in the halophyte Suaeda maritima. Plant Physiology, 145(2): 559-571 (SCI IF2012=)39 张金林, 石明辉, 许瑞, 李唯, 王锁民 (2007) 提高春小麦幼胚离体培养中愈伤组织诱导及分化效率的研究. 中国农学通报 23(4): 49-5340 刘小莉, 张金林(通讯作者), 石明辉, 张永泽, 张洪荣 (2007) Fe对红地球葡萄试管苗生长发育的影响. 中外葡萄与葡萄酒 (4): 7-1041 王旺田, 马静芳, 张金林, 曹孜义 (2007) 一种新的葡萄叶面积测定方法. 果树学报 24( 5) : 709-71342 包爱科, 王强龙, 张金林, 王锁民 (2007) 紫花苜蓿基因工程研究进展. 分子植物育种 5(6): 160-16843 谭雪莲, 张绪成, 郭天文, 夏芳琴, 张金林 (2007) 氮素对小麦幼苗叶片气体交换和能量转化特性的调控. 核农学报 21(4): 305-31044 郝燕, 王发林, 杨瑞, 张雅丽, 李红旭, 卢江, 张金林 (2007) 几种葡萄砧木生长特性及与“矢富罗莎”绿枝嫁接试验初报. 中外葡萄与葡萄酒 (6): 20-232006:45 Zhang JL(张金林), Xu R, Wang SM, Cao ZY, Ren JZ (2006) Factors affecting in vitro propagation of a Chinese wild grape (Vitis piasezkii Maxim. (Planch.) Rehd.): shoot production and Zealand Journal of Crop and Horticultural Science, 34(3): 217-223 (SCI IF2012=)46 张金林, 王锁民, 陈托兄 (2006) 6-苄氨基嘌呤(BA)和脱落酸(ABA)对大麦Na、K选择性和游离脯氨酸分配的调节. 草业学报 15 (5): 63-6947 张金林, 陈托兄, 严学兵, 陆妮, 王锁民 (2006) 烯效唑(S3307)对湖南稷子整株水平Na、K选择性和游离脯氨酸分配的影响. 草业学报 15(2): 42-4748 王月梅, 张金林(通讯作者), 司宗信 (2006) 甘肃省发展农村能源生态模式效应及应用实例. 草业科学 23(6): 78-8149 王月梅, 张金林(通讯作者), 司宗信 (2006) 甘肃省草地资源退化原因及草地生态系统恢复途径. 中国农学通报 22(8): 495-49850 陈托兄, 张金林, 陆妮, 王锁民 (2006) 不同类型抗盐植物整株水平上游离脯氨酸的分配. 草业学报 15(1): 36-4151 包爱科, 张金林, 郭正刚, 王锁民 (2006) 液泡膜H-PPase与植物耐盐性. 植物生理学通讯 42(4): 777-78352 王强龙,王锁民,张金林,陈托兄,楼洁琼,陆妮 (2006) 紫花苜蓿高频再生体系的建立. 草业科学 23(11): 21-2753 王强龙,王锁民, 张金林,包爱科,陈托兄,楼洁琼,陆妮 (2006) 根癌农杆菌介导AtNHX1基因转化紫花苜蓿的研究. 草业科学 23(12): 55-5954 李文彬, 曹孜义, 王雅梅, 周万海, 张金林 (2006) 葡萄试管简易嫁接技术. 中外葡萄与葡萄酒 (5): 10-122002-2005:55 张金林, 王锁民, 许瑞, 曹孜义 (2005) 植物微嫁接技术的研究及应用. 植物生理学通讯 41(2): 247-25256 张金林, 陈托兄, 王锁民 (2004) 阿拉善荒漠区几种抗旱植物游离氨基酸和游离脯氨酸分布特征. 中国沙漠 24(4): 493-49957 王锁民, 陈托兄, 张金林 (2004) 6-苄氨基嘌呤(BA)和脱落酸(ABA)对湖南稷子Na、K选择性和游离脯氨酸分配的调节. 西北植物学报 24(4): 588-59558 张金林 (2003) 砧木技术在中西部地区葡萄产业发展中的应用. 甘肃科技纵横 32(4): 55-5659 张金林, 曹孜义 (2002) 葡萄砧木生根及成苗特性研究. 中外葡萄与葡萄酒 (6): 15-1860 曹孜义, 李 胜, 张金林, 陈子宣 (2002) 一次硕士研究生植物生理大实验结果分析.中国当代教育杂志 22: 63-6461 陈建军, 张金林, 曹孜义 (2001) 葡萄病毒和类病毒的研究进展. 甘肃农业大学学报 (增刊): 30-34。

相关百科