杂志信息网-创作、查重、发刊有保障。

超敏反应的最新研究论文

发布时间:2024-07-08 01:34:37

超敏反应的最新研究论文

这次分享的文章是近期由,中科院何祖华研究员和美国俄亥俄州立大学/中国农业科学院植物保护研究所王国梁教授受邀在 Annual Review of Plant Biology 撰写题为 “Exploiting Broad-Spectrum Disease Resistance in Crops: From Molecular Dissection to Breeding” 的综述论文。文章分为两大部分,第一大部分1-3小节,主要是论述分子层面的抗病过程,第二大部分是4-5小节,提出了如何将BSR应用到育种过程中去,我主要关注的是第一大部分,后面的部分仅作了解。

Broad-spectrum resistance(BSR)是一个优良的性状因为它可以对超过一种病原菌或同一病原菌的大多数病原小种产生抗性。本文报道了不同物种BSR基因的鉴定和功能解析工作,并讨论了BSR在分子育种中的应用。

作物面临的病害有真菌,卵菌,细菌,病毒和线虫。

Broad-spectrum resistance(BSR): 植物能抵抗两种病原菌或对同一病原菌的多个病原小种产生抗性的。

Resistance(R) genes: 对病原菌产生抗性的基因,如编码表面受体(receptor-like kinases)的基因和细胞内受体NLRs(能直接或间接地检测同源的病原菌效应子)

Quantitative trait locus(QTL): 一段特定的染色体区域或负责生物体群体表型中数量性状变异的遗传位点。

Species-nonspecific broad-spectrum resistance(SNS BSR): 植物对多于一种病原菌产生抗性。

Race-nonspecific broad-spectrum resistance(RNS BSR): 植物对同一病原菌的多个小种产生抗性。

育种家早先使用单显性或隐性的R基因,因为它们效应强且容易选择。大多数基因具有对单一或少数病原菌的特异小种产生抗性;然而,致病菌种群的突变和毒力的转移使这些抗特异小种的R基因有效性很短,而由QTLs控制的部分抗病性通常没有小种特异性。尽管在同一遗传背景结合单一R基因和QTLs对抗病性是有效的,但是技术上是有难度的并且耗时长。因此,选择BSR就被提上了日程。

PTI和ETI。

PAMPs通常对于病原菌的生存是至关重要的并且进化上是保守的。植物的PRRs是膜定位的RLKs或RLPs。来自拟南芥,水稻和马铃薯的五个PRRs被报道是SNS BSR(T1)。拟南芥第一个RLK-PRR是FLS2,对包括假单胞菌在内的具有鞭毛蛋白细菌都有SNS BSR;在其他物种中异源表达FLS2增强了其对一些细菌的抗性。细菌的另一种PAMP,elf18,是EF-TU N端的抗原表位,被EFR识别,也作为一种SNS BSR蛋白来调节拟南芥对细菌病害的抗性。Xa21是作物中第一个RLK-PRR R基因,对Xoo和Xoc的大多数小种都有抗性。在柑橘、拟南芥、香蕉中异源表达Xa21增强了对多种细菌病害的抗性。水稻中包含Lysin motif的蛋白LYP4和LYP6是双功能PRRs,可以感知细菌肽聚糖和真菌几丁质,激活对细菌和真菌的抗性。拟南芥中RLP-PRR RLP23与LRR受体激酶SOBIR1和BAK1形成三聚体来调节微生物蛋白坏死和乙烯诱导(Necrosis and ethylene-inducing peptide 1-like protein,NLP)的免疫反应。因此可以说明,识别广泛的微生物模式的PRRs可能特别适合于设计作物免疫。

首次鉴定的SNS-BSR NLR蛋白是与拟南芥抗性相关的RRS1(RESISTANCE TO RALSTONIA SOLANACEARUM1)与RPS4(RESISTANCE TO PSEUDOMONAS SYRINGAE4),它们作为双重的R基因系统,对细菌和真菌都产生抗性。RPS4与RRS1成对工作,触发超敏反应(HR),对含有AvrRps4的丁香假单胞菌产生抗性。除了AvrRps4, RRS1/RPS4还能识别来自青枯菌的效应蛋白PopP2。此外,RRS1和RPS4都是抵抗真菌病原菌炭疽病所必需的,可能是通过识别一种未知的效应子。

Wall-associated kinases(WAKs): 植物的一类受体激酶,包含胞外的聚半乳糖醛酸结合结构域,跨膜结构域和胞内的Ser/Thr激酶结构域。

Defense-signaling genes: 在信号转导通路中发挥功能的基因,与病原菌的识别和防卫激活联系起来。

Pathogenesis-related(PR) genes: 在防卫响应下游的基因,负责抗菌类物质的产生。

NHR(Nonhost resistance): 植物对所有非适应性病原菌的抗病性;植物对大多数可能致病的微生物表现出的最常见的抗病性。

总共42个防卫信号基因被认为参与到SNS BSR抗性中(Supplemental Table1)。

MAPKs是众所周知的防御信号蛋白,它将防御信号从免疫受体传递到下游蛋白;例如,OsMAPK5负向调节水稻对细菌性病原菌 细菌性古枯病和真菌稻瘟病的抗性。OsMPK15负调控PR基因表达和ROS积累,osmpk15敲除突变体增强了对Xoo和多个稻瘟病小种的SNS BSR。

除了MAPKs,其他的激酶,如RLKs和RLCKs,也在SNS-BSR中发挥功能。两个水稻的WAKs,OsWAK25和OsWAK91,对于SNS BSR抗稻瘟病和白叶枯是重要的。

蛋白质泛素化介导的降解也在SNS BSR中发挥重要作用。水稻U-box E3基因Spl11(SPOTTED LEAF11)编码了细胞死亡的负调控因子,而spl11突变体增加了对稻瘟病和Xoo的SNS BSR。敲除SPIN6(SPL11-interacting Protein 6)也增强了植物对这两种病原菌的抗性。另一个多亚基E3泛素连接酶OsCUL3a (Cullin3a)通过靶向和降解OsNPR1(NONEXPRESSER OF PATHOGENESIS-RELATED 1)负调节细胞死亡和对稻瘟病和白叶枯的SNS BSR。OsBAG4是人BAG(Bcl2-associated athanogene)在水稻中的同系物,它与RING结构域的E3泛素连接酶EBR1(Enhanced Blight and blast)形成一个模块,控制程序性细胞死亡和SNS BSR对稻瘟病和白叶枯的抗性。

表观调控SNS BSR。如水稻中沉默HDT701(HISTONE H4 DEACETYLASE GENE 701)增强了对稻瘟病和白叶枯的抗性。

转录因子是植物免疫信号中关键的成分,在调控防卫基因表达中发挥重要的作用。如WRKY类转录因子,过表达OsWRKY45-1 or OsWRKY45-2激活了对稻瘟病的抗性但是抑制了对纹枯病的抗性,此外这两个转录因子在调控水稻对细菌的抗性中发挥相反的作用:OsWRKY45-1负调控水稻对Xoo和Xoc的抗性,而OsWRKY45-2正调控水稻对Xoo和Xoc的抗性。在拟南芥中,过表达NPR1增强了对细菌病原菌丁香假单胞菌和卵菌的SNS BSR,且这种抗性是有剂量效应的。值得注意的是,NPR1过表达会导致自发免疫和多效表型。

抗菌物质(保卫酶,防卫素,次级代谢物如植物抗毒素,ROS,胼胝质的沉积,细胞壁修饰和程序性细胞死亡)的产生通常受PR基因调控的,这在植物中是唯一的,并且对多种病原菌都有效。

这些PR基因的SNS BSR通常由过表达来实现,如在拟南芥中过表达CaAMP1(Capsicum annuum ANTIMICROBIAL PROTEIN1)增强了其对多种病原菌的抗性。

植物激素合成相关的蛋白也在BSR中发挥重要作用,如OsACS2(乙烯合成酶) 。过表达OsACS2增强了乙烯的产生,防卫基因表达,和对纹枯和大多数稻瘟病小种的抗性;但过表达OsACS2对农艺性状没有影响。

Susceptibility (S)gene: 促进感染过程或支持与病原菌感病性的任何植物基因。

S基因通常被病原菌靶向或诱导来负调控宿主抗病性。Xa5,编码TF IIA的γ亚基 ,是水稻中鉴定的第一个S基因和被发现负调节对Xoo和Xoc多个小种的SNS BSR。Xa13/OsSWEET11 编码一个糖运输蛋白,促进了细菌和真菌侵染,失活后增强了对Xoo和纹枯的抗性。

在水稻中克隆了Bsr-k1(BROAD -SPECTRUMRESISTANCE KITAAKE-1),发现其编码了一种肽重复结构域RNA结合蛋白,并且负调控SNS BSR。Bsr-k1敲除导致水稻苯丙氨酸解氨酶基因(OsPALs)表达上调,并且增强了水稻对稻瘟病和Xoo的抗性。

与主要的基因介导的抗性相比,QTLs控制的数量抗性通常被认为是非物种特异性的,且更持久。

Lr34/Yr18/Pm38编码一种ATP结合盒转运蛋白,该蛋白能部分抵抗小麦的叶锈病、条锈病和白粉病。

NHR是植物对大多数潜在致病性微生物表现出的最常见的抗病形式。第一个被分离的NHR基因是拟南芥的NHO1(NONHOST 1),它正调节对几种非宿主病原体的SNS BSR,如丁香假单胞菌和灰霉病菌。

水稻6号染色体上的Pi2/Pi9位点包含多个RNS-BSR基因,包括Pi2、Pi9、Pi50、piz-t和Pigm。

9个RNS-BSR R基因编码非NLR蛋白(补充表2);例如,水稻基因Xa4编码WAK蛋白,并在不影响粮食产量的情况下提供了对Xoo的持久的RNS BSR。在未接病的植物中,XA4激活纤维素合成酶基因CesA的转录,促进纤维素生物合成,抑制扩张素表达,增加植物细胞壁的机械强度,抑制Xoo侵染。

泛素化介导的信号通路通过激活NLRs和下游免疫信号从而在RNS BSR中发挥重要作用。水稻E3 OsBBI1(BLAST AND BTH-INDUCED 1)通过修改宿主细胞壁来对稻瘟病产生RNS BSR。过表达OsBBI1 增加了ROS,如H 2 O 2 的积累。水稻中另一种E3 OsPUB15与水稻稻瘟病的R蛋白Pid2互作,从而正调控细胞死亡和基础抗性,因此对稻瘟病有RNS BSR。

蛋白激酶类基因也参与RNS BSR。OsBRR1正调对稻瘟病的抗性;六倍体小麦克隆到的LecRK-V(L-type lectin receptor kinase V),在苗期和成熟期产生对白粉病的抗性。

Pyramiding: 通过遗传策略把两个或两个以上的基因结合起来形成优良品系或品种的过程。

Marker-assisted selection (MAS): 这是传统育种的一个补充工具,其中个体的选择取决于多态分子标记和性状之间的联系。

目前为止已鉴定五种S基因来传递 RNS BSR。Mlo是大麦中鉴定的第一个S基因,后来发现在几乎所有高等植物中都存在。MLO定位在膜上,包含保守的跨膜结构域和C端的钙调蛋白结合结构域。

水稻中的S基因,Pi21(QTL)编码富含脯氨酸的蛋白,有一个重金属结合结构域和蛋白互作结构域。pi21的隐性等位基因(在富含脯氨酸的motif上发生突变)对一些稻瘟病小种有RNS BSR。另一个水稻RNS-BSR S基因 Bsr-d1(Broad-spectrum resistance Digu 1) 编码C2H2类TF,在Bsr-d1启动子区一个单核苷酸的突变增强了与MYB转录因子 MYBS1的结合,抑制了Bsr-d1的表达,增强了对多个稻瘟病小种的抗性。一些S基因也在rice-Xoo的病理系统中起作用,包括Xa25/OsSWEET13和Xa41(t)/OsSWEET14,它们编码促进细菌侵染的糖转运蛋白,减少了对Xoo的RNS BSR

三个RNS-BSR QTL已在小麦、玉米和马铃薯中被克隆。小麦中的Fbb1,玉米中的ZmWAK-RLK,马铃薯的R8.

包含多个R基因的水稻通常比包含单个R基因的水稻抗谱要广。如,包含Pi2/Pi1, Pigm/Pi54,Pi2/Pi54, and Piz-t/Pi54对的水稻株系比只含单个R基因的抗性要好。使用MAS获得的Xa4、Xa21、Xa7、Xa23和Xa27聚合的优良水稻品种比只有一个基因的品系具有更广的抗性谱和更高的抗性水平。

当植物不受病原体侵袭时,通常严格控制植物基因的表达以避免自身免疫;然而,少数R基因的过表达可以激活免疫反应,产生抗多种病原菌的BSR,而不会引起高水平的细胞死亡。如使用不同的启动子,包括天然的WRKY13启动子和玉米ubi启动子,增加水稻R基因Xa3/Xa26的表达,可以增加对Xoo抗谱。过表达水稻PRRs OsLYP4和OsLYP6的使对Xoo和稻瘟病产生BSR。

利用防御信号和PR基因来设计BSR是可能的,因为它们通常在免疫受体的下游起作用。

使用TALEN/CRISPR靶向小麦的Mlo位点使得植物抗白粉病。番茄中,使用CRISPR敲除Mlo的同源基因SIMlo1导致抗白粉病。水稻中,CRISPR诱导的敲除Pi21的富含脯氨酸motif提供了对稻瘟病的RNS BSR,编辑三个SWEET基因的启动子区导致了籼梗稻中对所有测试的Xoo株系的BSR。

在水稻中,在多个地点混合种植两年的抗病和感病品种可以大大降低两个品种稻瘟病的严重程度。

pigm,bsr-d1,IPA1。

免疫受体、防御信号、PR和NHR基因等的过表达常常导致细胞死亡和侏儒表型。上游的开放阅读框,在5‘UTR区域,是翻译过程和mRNA周转强有力的顺势调控元件,在被子植物基因组中含量丰富。

BSR品种的广泛和长期种植可能会增加病原菌的选择压力,增加耐药群体的出现。建立用于评价不同品种抗病能力的自然病圃,也将有助于检验BSR基因的有效性。

将PRR和NLRs或QTLs结合,能够增强抗性水平和转基因的抗谱。

以前的研究表明,在一个金字塔中,一个R基因可能掩盖了其他基因的影响,这样一些R基因组合比其他组合提供更少的抗病性。含piz5和Pita的水稻抗病性低于单独含piz5的水稻。

活体性病原菌和死体性病原菌使用不同的策略:死体性病原体杀死宿主组织,因为它们在死细胞或垂死细胞的内容物上定植并茁壮成长,而活体性病原菌则依赖活的宿主细胞来完成它们的生命周期。在许多情况下,对活体性病原菌具有抗性的植物容易受到死体性病原菌的感染,反之亦然。

1.新品种BSR的选择是作物育种中重要的目标。

基因编码PRRs,NLRs和其他的防卫相关蛋白。

3.以QTLs、感病性丢失、非宿主抗性为基础的基因也涉及到BSR。

4.作物中长期的BSR能够通过不同的育种策略来实现。

5.低成本的定位策略,如RenSeq,能够应用到野生品种BSR基因的快速分离。

6.基因组编辑技术,如CRISPR,在BSR设计育种中发挥重要作用。

论文链接:

反映最新生物研究的期刊

生物学术期刊排名:

1  霍华休斯医学研究中心  (Howard  Hughes  Medical  Institute)  37,810

2  哈佛大学  31,725

3  麻省理工学院  24,868

4  Whitehead  Institute  11,326

5  加州大学圣迭戈分校  (University  of  California,  San  Diego)  11,120

6  美国冷泉港实验室  (Cold  Spring  Harbor  Lab)  10,767

7  加州大学伯克利分校  (University  of  California,  Berkeley)  9,756

8  贝勒医学院  (Baylor  College  of  Medicine)  9,754

9  牛津大学  (University  of  Oxford)  9,421

10  德国马普学会  (Max  Planck  Society)    9,354

这个太多了,有上百种!以下是根据影响因子结合引文量及“二八律”选出的18种核心期刊,其IF均高于,所占比率约20%。可供读者投稿和检索参考。(1) Annual Review of Plant Biology(ANNU REV PLANT BIOL)《植物生理学和植物分子生物学年评》创刊于1950年,全年1期,原版刊号588B0002;国际刊号:1040-2519;综论植物生理学和植物分子生物学领域的研究进展与成果。影响因子为。(2) Trends in Plant Science (TRENDS PLANT SCI)《植物科学趋势》创刊于1996年,全年12期。原版刊号:588C0008;国际刊号:1360-1385;为从分子生物学到生态学的基础植物科学研究提供跨学科论坛。影响因子为。(3) Plant Cell (Plant Cell)《植物细胞》创刊于1989年,全年12期。原版式刊号:588B0005*;国际刊号:1040-4651;发行出版机构地址:Plant Physiology, . Box 15501 Rockville, MD 20855-2768, : American Society of Plant Physiologists。 侧重于植物发育的基因表达的调节以及分子和遗传基础方面的研究。影响因子为。(4) Current Opinion in Plant Biology (CURR OPIN PAANT BIOL)《植物生物学新见》全年6期,原版刊号:588C0084;国际刊号:1369-5266;发行出版机构地址:Current Biology Ltd., 84 The Obalds Rd, London WC1X 8RR, England。影响因子为。(5) Annual Review of Phytopathology (ANNU REV PHYTOPAYHOL)《植物病理学年评》创刊于1963年,全年1期。原版刊号:588B0009;国际刊号:0066-4286;发行出版机构地址:Annual Reviews Inc,评论植物科学领域的研究成果和进展。影响因子为。(6) Plant Journal (PLANT J)《植物杂志》创刊于1991年,全年24期。原版刊号:588C0082;国际刊号:0960-7412;发行出版机构地址:Blackwell Science Ltd., Journal Subscriptions,刊载植物分子科学领域的研究论文。影响因子为。(7) Plant Physiology (PLANT PHYSIOL)《植物生理学》由美国植物生理学会主办,创刊于1926年,全年12期。原版刊号:588B0005;国际刊号:0032-0889;发行出版机构地址:Plant Physiology, . Box 15501 Rockville, MD 20855-2768, USA. ED: American Society of Plant Physiologists。刊载本学科以及生物化学、分子生物学、环境生物学、细胞生物学等研究成果。影响因子为。(8) Plant Molecular Biology (PLANT MOL BIOL)《植物分子生物学》创刊于1984年,全年18期,16开,每期80页。原版刊号:582LB071;国际刊号:0167-4412;发行出版机构地址:Kluwer Academic Publishers, Journals Department, Distribution Centre刊载植物分子生物学与植物分子遗传学基础理论和遗传工程方面的研究论文和实验报告。影响因子为。(9) Critical Reviews in Plant Sciences (CRIT REV PLANT SCI)《植物科学评论》创刊于1983年,全年6期。原版刊号:588B0010;国际刊号:0735-2689;发行出版机构地址:CRC Press Inc.,评论植物科学领域的研究成果和进展。影响因子为。(10) Plant Cell and Environment (PLANT CELL ENVIRON)《植物、细胞与环境》创刊于1978年,全年12期,12开,每期84页。原版刊号:588C0072;国际刊号:0140-7791;发行出版机构地址:Blackwell Science Ltd.刊载绿色植物生理学,包括植物细胞生理学、植物生物化学、环境生理学、农作物生理学和生理生态等方面的研究论文。影响因子为。(11) Molecular Plant-Microbe Interactions (MOL PLANT MICROBE IN)《分子植物与微生物相互作用》创刊于1988年,全年12期,12开,每期56页。原版刊号:582B0109;国际刊号:0897-0282;发行出版机构地址:American Phytopathological Society, 刊载研究论文和评论,包括分子生物学、分子病理遗传学、微生物和植物的共生作用及其对栽培植物、野生植物和植物产品的影响。影响因子为。(12) Journal of Experimental Botany (J EXP BOT)《实验植物学杂志》创刊于1950年,全年12期,18开,每期124页。原版刊号:588C0002;国际刊号:0022-0957;发行出版机构地址:Oxford University Press, 刊载植物生理、生化、生物物理、实验农学等方面的研究论文。读者对象为植物学家、园艺学家、土壤学家、环境与海洋生物学家。影响因子为。(13) Plant and Cell Physiology (PLANT CELL PHYSIOL)《植物和细胞生理学》创刊于1959年,全年12期,16开,每期250页。原版刊号588D0057;国际刊号:0032-0781;发行出版机构地址:日本植物病理学会,T170-8484日本东京都丰岛区驹ごめ1-43-11;发表高等植物和微生物的生理与生化以及生物技术等领域的基础与应用方面的研究论文。影响因子为。(14) New Phytologist (NEW PHYTOL)《新植物学家》创刊于1902年,全年12期,18开,每期156页。原版刊号588C0055;国际刊号:0028-646X;发行出版机构地址:Cambridge University Press, 刊载植物学各领域的研究论文、评论与书评,涉及生物物理学、生理学、生物化学、植物化学、生物技术、生态学等学科。影响因子为。(15) Planta (PLANTA)《植物学》创刊于1925年,全年15期,12开,每期96页。原版刊号:588E0003;国际刊号:0032-0935;发行出版机构地址:Springer-Verlag,Heidelberger Platz3, D-14197 Berlin, Germany;刊载植物生物学原始论文,侧重分子细胞生物学、超微结构、生物化学、新陈代谢、生长、发育、形态发生、生态环境生理学、作物技术、植物与微生物相互作用等方面。影响因子为。(16) Journal of Plant Growth Regulation (J PLANT GROWTH REGUL)《植物生长调节杂志》创刊于1982年,全年4期,18开,每期66页。原版刊号588E0008;国际刊号:0721-7595;发行出版机构地址:Springer-Verlag,Heidelberger 报道植物分子生物学、植物生理学、植物学、生化学、林学、园艺学和农学中有助于基础和应用研究的最新发现,侧重除莠剂在内的天然和全盛物质及其对植物生长发育的影响。影响因子为。(17) Phytopathology (PHYTOPATHOLOGY)《植物病理学》创刊于1911年,全年12期,12开,每期126页。原版刊号:588B0006;国际刊号:0031-949X;发行出版机构地址:American Phytopathological Society, 刊载植物病理学的基础研究论文,图像精密。影响因子为。(18) Australian Journal of Plant Physiology (AUST J PLANT PHYSIOL)《澳大利亚植物生理学杂志》创刊于1974年,全年8期,18开,每期100页。国际刊号:588UA002;国际刊号:0310-7841;发行出版机构地址:CSIRO Publications, 刊载植物生理学领域的研究论文、评论、简报。涉及生物化学、生物物理学、遗传学、细胞生物学结构和分子生物学等。影响因子为。

新型生化反应器的研究与发展论文

目录一、摘要二、现代生物技术与健康1、现代生物技术中蛋白质与健康2、现代生物技术中糖类与健康3、现代生物技术中与健康4、现代生物技术中与健康三、总结四、后序五、鸣谢六、参考文献关键词:现代生物技术、蛋白质、糖类、脂肪、维生素、健康摘 要现代生物技术以其越来越重要的经济价值和科研价值而逐渐受到人们越来越多关注。据估计生物技术可以给人类创造数千亿美元的收入,但比这更重要的是现代生物技术挽救了数亿人的生命。最典型的例子就是青霉素的使用,因为青霉素的使用而使人类的平均年龄增加十几年。人类的生活条件也因生物技术的使用而大有改善。我国作为一个拥有十三亿人口大国,生物技术对保证国民的身体健康起着举足轻重的作用。那么现代生物技术与健康又有哪些连系呢?带着这些问题,我们小组对此进行了调查。希望通过我们的探究活动性报告,使您对现代生物技术与健康的关系有更深入的了解!现代生物技术与健康1、现代生物技术中蛋白质与健康(1)蛋白质的定义及概述蛋白质是一种复杂的有机化合物,旧称“朊”。组成蛋白质的基本单位是氨基酸,氨基酸通过脱水缩合形成肽链。蛋白质是由一条或多条多肽链组成的生物大分子,每一条多肽链二十~数百个氨基酸残基不等;各种氨基酸残基按一定的顺序排列,蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被翻译后修饰而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以通过结合在一起形成稳定的蛋白质复合物,折叠或螺旋构成一定的空间结构,从而发挥某一特定功能。产生蛋白质的细胞器是核糖体。蛋白质(protein)是生命的物质基础,机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体质量的%,即一个60kg重的成年人其体内约有蛋白质。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸按不同比例组合而成的,并在体内不断进行代谢与更新。被食入的蛋白质在体内经过消化分解成氨基酸,吸收后在体内主要用于重新按一定比例组合成人体蛋白质,同时新的蛋白质又在不断代谢与分解,时刻处于动态平衡中。因此,食物蛋白质的质和量、各种氨基酸的比例,关系到人体蛋白质合成的量,尤其是青少年的生长发育、孕产妇的优生优育、老年人的健康长寿,都与膳食中蛋白质的量有着密切的关系。(2)蛋白质的生理功能1、构成蛋白质的身体。蛋白质是一切生命的物质基础,是肌体细胞的重要组成部分,是人体组织更新和修补的主要原料。人体的每个组织:毛发、皮肤、骨骼、内脏、大脑、血液、神经等都是由蛋白质组成,所以说饮食造就人本身。可见蛋白质对人的生长发育非常重要。2、修补人体组织。人的身体由百兆亿个细胞组成,它们处于永不停息的衰老、死亡、新生的新陈代谢过程中。例如年轻人的表皮28天更新一次,而胃黏膜两三天就要全部更新。所以一个人如果蛋白质的摄入、吸收、利用都很好,那么皮肤就是光泽而又有弹性的。反之,人则经常处于亚健康状态。组织受损后,若不能得到及时和高质量的修补,便会加速肌体衰退。3、维持肌体正常的新陈代谢和各种物质在体内的输送。载体蛋白对维持人体的正常生命活动是至关重要的。可以在体内运载各种物质。比如血红蛋白一输送氧、脂蛋白一输送脂肪、细胞膜上的受体和转运蛋白等。4、白蛋白:维持机体内的渗透压的平衡及体液平衡。5、维持体液的酸碱平衡。6、免疫细胞和免疫蛋白:有白蛋白、淋巴细胞、巨噬细胞、抗体(免疫球蛋白)、补体、干扰素等。七天更新一次。当蛋白质充足时,这个部队就很强,在需要时,数小时内可以增加100倍.7、构成人体必需的各种酶。我们身体有数千种酶,每一种只能催化一种生化反应。相应的酶充足,反应就会顺利、快捷的进行,我们就会精力充沛,不易生病。否则,反应就变慢或者被阻断。8、激素的主要原料。激素可以调节体内各器官的生理活动。如胰岛素是由51个氨基酸分子组合成,生长素是由191个氨基酸分子合成的。9、构成神经递质乙酰胆碱、五羟色氨等。维持神经系统的正常功能:味觉、视觉和记忆。10、胶原蛋白:占身体蛋白质的 ,生成结缔组织,构成身体骨骼。如骨骼、血管、韧带等,决定了皮肤的弹性,保护大脑(在大脑脑细胞中,很大一部分是胶原细胞,并且形成血脑屏障保护大脑)。11、提供生命活动的能量。(3)现代生物技术在蛋白质重点应用保持健康所需要的蛋白质含量因人而异。普通健康男性或女性每公斤体重大约需要克蛋白质。婴幼儿、青少年、怀孕期间的妇女、伤员和运动员通常每日可能需要摄入更多蛋白质。蛋白质缺乏:成年人:肌肉消瘦、肌体免疫力下降、贫血,严重者将产生水肿。未成年:成长发育停滞、贫血、智力发育差,视力差。蛋白质过量:蛋白质在体内不能贮存,多了肌体无法吸收,过量摄入蛋白质,将会因代谢障碍产生蛋白质中毒甚至死亡。面对这些问题营养师根据人体对不同蛋白质的需要量进行膳食调配以及人工添加或减少蛋白质的方法来保证人体内蛋白质含量的相对稳定。而生物学家则通过生物制药技术研发出一些新型的药品,这些药品不仅能促进人体对蛋白质的运输和吸收,而且还能预防由于外界环境或病毒引起的蛋白质变性。当然在临床医学上,这些变性因素也常被应用来消毒及灭菌。对防止蛋白质变性也是有效保存蛋白质制剂(如疫苗等)的必要条件。此外在蛋白质领域运用的现在生物技术还有X线衍射技术和磁共振技术等。它们的应用都能有效控制和制备蛋白质,促进人们的身体健康。2、现代生物技术中糖类与健康(1)糖的定义及概述糖是一类化学本质为多羟酮及其衍生物的有机化合物。在人体内糖的主要形成是葡萄糖及糖原。葡萄糖是糖在血液中的运输形式,在肌体糖代谢中占据主要地位;糖原是葡萄糖的多聚体,包括肝糖原、肌糖原和肾糖原等,是糖在体内的储存形式。葡萄糖和糖原都能在体内氧化提供能量。食物中的糖是机体中糖的主要来源,被人体摄入经消化成单糖吸收后,经血液运输到各组织细胞进行合成代谢和分解代谢。机体内糖的代谢途径主要有葡萄糖的无氧酵解、有氧氧化、磷酸戊糖途径、糖原合成与糖原分解、糖异生以及其他已糖代谢等。(2)糖的生理功能糖分是我们身体必不缺少的营养成分之一。人们摄入谷物、蔬菜等,经过消化系统转化为单糖(如葡萄糖等)进入血液,运送到全体细胞,作为能量的来源。血液中所含的葡萄糖,称为血糖。体内各组织细胞活动所需的能量大部分来自葡萄糖,所以血糖必须保持一定的水平才能维持体内各器官和组织的需要。正常人在清晨空腹血糖浓度为80~120毫克%。空腹血糖浓度超过130毫克%称为高血糖。如果血糖浓度超进160~180毫克%,就有一部分葡萄糖随尿排出,这就是糖尿。血糖浓度低于70毫克%称为低血糖。可见于饥饿时间过长,持续的剧烈体力活动,严重肝肾疾病,垂体前叶机能减退、肾上腺皮质机能减退等。低血糖时,脑组织首先对低血糖出现反应,表现为头晕、心悸、出冷汗以及饥饿感等。如果血糖持续下降到低于45毫克%,就可发生低血糖昏迷。如果从食物中摄取的糖一时消耗不了,则转化为糖原储存在肝脏和肌肉中,肝脏可储存70~120克,约张肝重的6~10%。细胞所能储存的肝糖是有限的。如果摄入的糖分过多,多于的糖即转变为脂肪。当食物消化完毕后,储存的肝糖即成为糖的正常来源,维持血糖的正常浓度。在剧烈运动时,或者长时间没有补充食物情况,肝糖也会消耗完,此时细胞将分解脂肪来供应能量。人类的大脑和神经细胞必需要糖来维持生存,必要时人体将分泌激素,把人体的某些部分(如肌肉、皮肤甚至脏器)摧毁,将其中的蛋白质转化为糖,以维持生存。(3)现代生物技术在糖类中的应用由于血糖高和血糖低对人体来说都是有害的。为此,有关科学家为了保证人体内糖类的正常供应,对低血糖人群提供含有浓缩糖的含片和糖果。开发出浓缩糖技术,保证他们维持血糖浓度恒定。而对高血糖患者,则用降血糖药物加以控制。在临床上静脉滴注葡萄糖过快,也会出现血糖升高的现象。所以对于血糖过高的病人点滴速度不应过快,而这些也都基于一定生物技术基础上。从而保证了人们身体的健康。3、现代生物技术脂质与健康(1)脂质的定义及概述脂质(lipids)是脂肪及类脂的总体,是一类不溶于水而易溶于有机溶液,并能为机体利用的有机化合物。脂肪是三脂肪酸甘油或称甘油三酯。脂肪的生理功能是储存能量及氧化供能。类脂包括固醇及其脂、磷脂及糖脂等,是细胞的膜结构重要部分。(2)脂质的生理功能及影响脂肪是人体重要的储能物质,当人们摄食过足时,人体会将多余的能力主要以脂肪形成储存下来。过去的日子中,在旧的封建思想的影响下,人们总以“肥头大耳”为富贵的象征,甚至到当今社会。但肥胖并不是富,更是一种负担。肥胖会带来许多疾病,威胁健康,甚至造成死亡。当人们身体肥胖,自然他们的血液中脂质的含量升高,随着血液的全身巡回,使他们和心力衰竭的正常体重者多1倍;冠心病多2-5倍;高血压多2-6倍;糖尿病多4倍;胆石病多4-6倍。这些疾病都是人类健康的主要杀手。像正处于成长期的人来说,肥胖不仅带来的是智力上的影响,更有心理上的一系列影响。所以在平常生活中,合理的饮食显得异常重要。有人喜欢大鱼大肉,时常酒足饭饱之后修身养性,静如止水,像这种生活习惯,终有一天会猝死在饭桌之上。胆固醇是由体内储有的脂肪转化而来的,而胆固醇又能合成乳汁、皮脂以及类固醇激素,保证人们内、外分系统的正常运转。胆固醇在人体内还参与血液中脂质的运输。但是,胆固醇过多压迫血管,使血液的径流量减少,导致脑供血不足、淤血等,严重的会导致人死亡。性激素则是一种与性别决定有关的激素,它能促进人和动物生殖器官的发育以及生殖细胞的形成。乱食性激素会使人生殖器官发育不完全,会内分泌失调,严重的还会变成“双性“人,大大减少其自身的寿命。(3)现代生物技术在脂质中应用面对这些现象,生物学家采用现代溶脂技术除去多余脂肪。通过一种溶解药物,舒缓血管,溶解多余胆固醇。面对因肥胖而造成心力衰竭的病人,科学家还采用强心剂等生物化学药物经行急救,这些都在一定程度上减缓了发病率,降低了死亡率,使人们的健康得以延续。4、现代生物技术中维生素与健康(1)、维生素的定义和概述维生素是近百年才被陆续发现的一组营养素,是维持人体正常功能的一类有机化合物。其共同特点:它们都不供应热量,也不是有机体的构造成分,但却是维持身体的正常生长和发育,繁殖等所必需的有机化合物,起着调节身体各种功能的作用,身体对它们的需要量很少,但供应不足时会出现各种代谢障碍和症状,称为维生素缺乏病。(2)、维生素的种类及应用V—A:缺乏维生素A会造成皮肤老化,维生素A是丘脑、脑垂体等内分泌腺体活动所需要的极为重要的营养成分。想要保持年轻靓丽,尽量多吃些维生素A高的动物性食物,如:肝、瘦肉、卵黄等。V—B2:维生素B2会促进脂肪的分解。V—B6: 与氨基酸及代谢关系,能促进氨基酸的吸收和蛋白质的合成为细胞的生长所需,对脂肪代谢都会有影响,与皮脂分泌紧密相关。V—L: 维生素L缺乏会影响结缔组织中中股原纤维的形成。V—E:公认有抗衰老作用,能促进皮肤血液的循环和肉芽组织的生长。谷维素:是从米粮油中提取出来的一种天然物质,其成分为以三萜(稀)醇类主体的阿魏酸酯的混合物,它对植物中枢功能有调节和激活作用。它能降低毛细血管脆性,提高人的皮肤血管循环机能,会使皮肤温度升高,四肢皮肤表面血流?增加,被称为“美容素”此外,谷维素还能降血脂,并含强有力的生长促进因子,有助于我们的亲少年成长。(3)现代生物技术在维生素中的应用。针对现在人体内维生素缺乏现象,有关药剂师及营养师在食品及保健品中添加适量维生素。同时生物学家也在这方面进行了许多研究,通过生物制药技术,将大量维生素合成在一个小药片内,制造出补充维生素的药片,这在一定程度上补充了现在爱吃肉类而不爱吃蔬菜的都市人群体内的维生素,使人体内维生素含量保持在一个平稳水平上,使人们身体更加健康。总结:“身体是革命的本钱”健康的身体是我们一切生活的基础,但一个人要做到健康,是十分不易的,这与我们日常的饮食习惯和生活习惯都息息相关。更重要的是我们是否爱护自己的身体,是否决心要要做一个身体健康的人。糖类、脂肪、蛋白质等都是构成我们身体的重要物质,像维生素,各种无机盐等这样的物质在人类体内的含量虽然相对较少,但其作用也是不忽视的。上述物质共同维持我们的生命活动,前面已经提到了各种维生素、无机盐及糖类、脂肪、蛋白质等对人身体的具体作用,例如在对身体的生长,身体器官的功能的影响都一一列出,同时也告诫了我们如果缺少了这些物质,将会有什么严重的后果。然而这些物质都来源于我们日常的食物中,所以合理膳食是相当重要的,这也是维持我们身体健康的惟一路径。随着科学技术的发展,生物科学家已经将着眼点放在人的身体营养健康上,科学家研发新的生物技术来改善人们的身体状况,减轻许多人身体上的痛苦和伤害。作为青年的我们,正处于身体发育的黄金阶段,所以我们更应要注意自己的饮食习惯,养成良好的生活习惯,这对我们以后的生活起着决定性的作用。后 序如今,好好学习生物技术是很有必要的事。生物技术给人类的生活带来了无数变革。而“人类基因组计划”“克隆技术”都是当今最热门的生物技术项目。而我们生活中的大多数药物都是通过生物技术得到的。很难想象如果没有生物技术我们的生活究竟会怎样。我想一定非常糟糕,甚至我们的寿命将会变短,越来越多的问题都直接威胁着人们的生命。而如果没有生物技术对人体内蛋白质、维生素等重要物质的研究与应用,我们将会对自己一无所知,更提不上身体健康这些话,所以现代生物技术保护了我们自身的健康。现代生物技术不容忽视。而对现代生物技术的开发,我们责无旁贷。鸣 谢通过此次探究活动,大家分工明确,都不辞辛苦的完成了各自的工作任务。在此感谢本小组各位成员,以及为我们提供资料的各出版社,还有我们的指导老师。在大家共同合作下,本次探究活动终于圆满结束。再次由衷致谢!参考文献:1、《生物必修1》人民教育出版社2、《生物化学》 第六版 人民卫生出版社主编: 周爱儒副主编:查锡良3、《登上健康快车》北京出版社主编:关春若4、《高中生物基础知识手册》第七次修改 北京教育出版社主编:薛金星这是我们小组写的,网上绝对跟这一样的。

化学反应工程的早期研究主要是针对流动、传热和传质对反应结果的影响,如德国G.达姆科勒、美国O.霍根和.华生以及苏联Α.Д.弗兰克-卡曼涅斯基等人的工作。当时曾取名化工动力学或宏观动力学,着眼于对化学动力学作出某些修正以应用于工业反应过程。1947年霍根与华生合著的《化工过程原理》第三分册中论述了动力学和催化过程。50年代,有一系列重要的研究论文发表于《化学工程科学》杂志,对反应器内部发生的若干种重要的、影响反应结果的传递过程,如返混、停留时间分布、微观混合、反应器的稳定性(见反应器动态特性)等进行研究,获得了丰硕的成果,从而促成了第一届欧洲化学反应工程讨论会的召开。50年代末到60年代初,出版了一系列反应工程的著作,如.华拉斯的《化工动力学》,O.列文斯比尔的《化学反应工程》等,使学科体系大体形成。此后,一方面继续进行理论研究,积累数据,并应用于实践;另一方面,把应用范围扩展至较复杂的领域,形成了一系列新的分支。例如:应用于石油炼制工业和石油化工中,处理含有成百上千个组分的复杂反应体系,发展了一种新的处理方法,即集总方法(见反应动力学);应用于高分子化工中的聚合反应过程,出现了聚合反应工程;应用于电化学过程,出现了电化学反应工程;应用于生物化学工业中的生化反应体系,出现了生化反应工程;应用于冶金工业的高温快速反应过程,出现了冶金化学反应工程等。

羰氨反应研究论文

【美拉德反应】又称为“非酶棕色化反应”,是 法国化学家在1912年提出的。所谓美拉德反应是广泛存在于食品工业的一种非酶褐变,是羰基化合物(还原糖类)和氨基化合物(氨基酸和蛋白质)间的反应,经过复杂的历程最终生成棕色甚至是黑色的大分子物质类黑精或称拟黑素,所以又称羰胺反应。【烹饪中的作用】:烹饪过程中,影响菜肴质量的物化变化有很多。美拉德反应是其中极其重要的一种。美拉德反应能使很多菜肴产生美妙的色泽和诱人的香味。但美拉德反应在有些场合是有害的。在炸、烤、煎等烹调方法中,高温长时间加热引起的美拉德反应是形成致癌物质丙烯酞胺的重要途径。

答案如下:美拉德反应中斯特克勒讲解发生是1.美拉德(Maillard)反应是指含羰基(-C=O)的化合物和含氨基(-NH2)的化合物在常温或者加热情况下,发生缩合、聚合反应,生成类黑色素、芳香化合物等多种物质的过程。该反应的产物同样会引起食物色泽和香味的变化。2.糖类即为含羰基的化合物,氨基酸为含氨基的化合物,因此将五花肉放入有白糖的油锅里,糖会和五花肉进一步发生美拉德反应,使五花肉的颜色进一步加深,并产生特殊的香气。3.由于大多数食物中都含有蛋白质和糖,因此在加热过程中都可以发生美拉德反应和焦糖化反应,比如烤红薯、烤面包、烤肉、爆米花等等。食物中氨基酸和糖的种类不同,通过美拉德反应得到的产物也不同,从而产生各种各样的风味。同样是烤着吃,鸡肉、羊肉和牛肉的风味却各不相同。氨基酸种类越多,产生的芳香化合物种类也越多,味道也更丰富。4.虽然美拉德反应在常温下也能进行,但是十分缓慢。一般情况下,美拉德反应速度随加工温度的上升而加快,香味物质也主要在较高温度下反应形成。要想通过美拉德反应改善食物的色泽和香味,必须要达到相当高的温度(一般需要达到140℃-170℃)。而且食物含水量在15%左右的时候,美拉德反应最为活跃。因此,用油煎、炸、炒,或者用烤箱烘烤出来食物,往往比煮或者蒸出来的食物更美味。5.需要特别注意的是,虽然美拉德反应给我们带来了很多美味,但是在反应过程中也会造成氨基酸和糖类一定的损失,使得食物营养价值下降。此外,美拉德反应过程中还可能会产生微量对人体有害的物质。

No.12.2006美拉德反应又称羰氨反应,指含有氨基的化合物和含有羰基的化合物之间经缩合、聚合而生成类黑精的反应。此反应最初是由法国化学家美拉德于1912年在将甘氨酸与葡萄糖混合共热时发现的,故称为美拉德反应。由于产物是棕色的,也被称为褐变反应。反应物中羰基化合物包括醛、酮、还原糖,氨基化合物包括氨基酸、蛋白质、胺、肽。反应的结果使食品颜色加深并赋予食品一定的风味,如:面包外皮的金黄色、红烧肉的褐色以及它们浓郁的香味。但是在反应过程也会使食品中的蛋白质和氨基酸大量损失,如果控制不当也可能产生有毒有害物质。1反应机理[1]对于美拉德反应机理,长期以来研究得还很不彻底。食品化学家Hodge在早年作出了初步的解释,认为美拉德反应可以分成3个反应阶段。目前对于美拉德反应初级、中级阶段机理已经基本明确,但是终级阶段机理还不是很明确。以下用葡萄糖与胺反应说明美拉德反应整个过程。1.1初级阶段还原糖与氨基化合物反应经历了羰氨缩合和分子重排过程。首先体系中游离氨基与游离羰基发生缩合生成不稳定的亚胺衍生物-薛夫碱,它不稳定随即环化为N-葡萄糖基胺。N-葡萄糖基胺在酸的催化下经过阿姆德瑞分子重排生成果糖基胺(1-氨基-1-脱氧-2-酮糖)。初级反应产物不会引起食品色泽和香味的变化,但其产物是不挥发性香味物质的前体成分。1.2中级阶段此阶段反应可以通过3条途径进行。第1条途径:在酸性条件下,果糖基胺进行1,2-烯醇化反应,再经过脱水、脱氨最后生成羟甲基糠醛。羟甲基糠醛的积累与褐变速度密切相关,羟甲基糠醛积累后不久就可发生褐变反应,因此可以用分光光度计测定羟甲基糠醛积累情况作为预测褐变速度的指标。第2条途径:在碱性条件下,果糖基胺进行2,3-烯醇化反应,经过脱氨后生成还原酮类和二羰基化合物。还原酮类化学性质活泼,可进一步脱水再与收稿日期:2006-05-16作者简介:付莉(1979-),女,黑龙江人,硕士,助教,研究方向为食品化学。简述美拉德反应付莉1,李铁刚2(锦州医学院畜牧兽医学院,锦州121001)摘要:综述美拉德反应的概念、反应机理、反应的影响因素、控制反应的条件及其在食品工业上的应用。关键词:美拉德反应;概念;机理;影响因素;食品工业中图分类号:TS201.2文献标识码:B文章编号:1005-9989(2006)12-0009-03ReviewsonmaillardreactionFULi1,LITie-gang2(JinzhouMedicalUniversity,InstituteofAnimalScienceandVeterinaryMedicine,Jinzhou121001)Abstract:Thearticlereviewsthechemistryofmaillardreaction,includingtheconception,theprinciple,thefac-torofinfluence,theconditionofcontrolandtheuseonfoodindustry.Keywords:maillardreaction;conception;principle;thefactorofinfluence;foodindustry专题论述9No.12.2006胺类缩合,或者本身发生裂解成较小分子如二乙酰、乙酸、丙酮醛等。第3条途径:美拉德反应风味物质产生于此途径。在二羰基化合物的存在下,氨基酸发生脱羧、脱氨作用,成为少一个碳的醛,氨基转移到二羰基化合物上,这一反应为斯特勒克降解反应。这一反应生成的羰氨类化合物经过缩合,生成吡嗪类物质。1.3终级阶段此阶段包括两类反应。即醇醛缩合:两分子醛自相缩合,进一步脱水生成更高级不饱和醛;生成类黑精的聚合反应:中级阶段生成产物[葡萄糖酮醛、3-脱氧Osulose(3-DG)、3,4-二脱氧Osulose(3,4-2DG)、HMF、还原酮类及不饱和亚胺类等]经过进一步缩合、聚合形成复杂的高分子色素[3]。2反应的影响因素[1]2.1糖从发生美拉德反应速度上看,糖的结构和种类不同导致反应发生的速度也不同。一般而言,醛的反应速度要大于酮,尤其是α、β不饱和醛反应及α-双羰基化合物;五碳糖的反应速度大于六碳糖;单糖的反应速度要大于双糖;还原糖含量和褐变速度成正比关系。2.2氨基化合物常见的几种引起美拉德反应的氨基化合物中,发生反应速度的顺序为:胺>氨基酸>蛋白质。其中氨基酸常被用于发生美拉德反应,氨基酸的种类、结构不同会导致反应速度有很大的差别,比如:氨基酸中氨基在ε-位或末位这比α-位反应速度快,碱性氨基酸比酸性氨基酸反应速度快。2.3温度温度相差10℃,褐变速度就可相差3~5倍。当温度大于30℃,褐变速度较快;小于20℃,褐变速度较慢。2.4pHpH3~9范围内,随着pH上升,褐变反应速度上升;pH≤3,褐变反应程度较轻微。在偏酸性环境中,反应速率降低。因为在酸性条件下,N-葡萄糖胺容易被水解,而N-葡萄糖胺是Maillard特征风味形成的前体物质。2.5水分含量10%~15%含水量,容易发生褐变;完全干燥的情况下,褐变难以进行。2.6金属离子铜与铁可促进褐变反应,其中三价铁的催化能力要大于二价铁。2.7亚硫酸盐在美拉德反应初期阶段就加入亚硫酸盐可有效抑制褐变反应的发生。主要原因是亚硫酸盐可以和还原糖发生加成反应后再与氨基化合物发生缩合,从而抑制了整个反应的进行。在实际生产过程中,根据产品的需要,要对美拉德反应进行控制。基于以上因素我们可以总结出控制美拉德反应程度的措施:(1)除去一种反应物:可以用相应的酶类,比如葡萄糖转化酶,也可以加入钙盐使其与氨基酸结合成不溶性化合物;(2)降低反应温度或将pH调制偏酸性;(3)控制食品在低水分含量;(4)反应初期加入亚硫酸盐也可以有效控制褐变反应的发生。3美拉德反应在食品工业上的应用3.1美拉德反应与食品色泽美拉德反应赋予食品一定的深颜色,比如面包、咖啡、红茶、啤酒、糕点、酱油,对于这些食品颜色的产生都是我们期望得到的。但有时美拉德反应的发生又是我们不期望的,比如乳品加工过程中,如果杀菌温度控制的不好,乳中的乳糖和酪蛋白发生美拉德反应会使乳呈现褐色,影响了乳品的品质。美拉德反应产生的颜色对于食品而言,深浅一定要控制好,比如酱油的生产过程中应控制好加工温度,防止颜色过深。面包表皮的金黄色的控制,在和面过程中要控制好还原糖和氨基酸的添加量及焙烤温度,防止最后反应过度生成焦黑色。3.2美拉德反应与食品风味通过控制原材料、温度及加工方法,可制备各种不同风味、香味的物质,比如:核糖分别与半胱氨酸及谷胱甘肽反应后会分别产生烤猪肉香味和烤牛肉香味。相同的反应物在不同的温度下反应后,产生的风味也不一样,比如:葡萄糖和缬氨酸分别在100 ̄150℃及180℃温度条件下反应,会分别产生烤面包香味和巧克力香味[5];木糖和酵母水解蛋白分别在90℃及160℃反应会分别产生饼干香味和酱肉香味。加工方法不同,同种食物产生的香气也不同,比如:土豆经水煮可产生125种香气,而经烘烤可产生250种香气;大麦经水煮可产生75种香气,经烘烤可产生150种香气。可见利用美拉德反应可以生产各种不同的香精。目前,主要用于生产肉类香精。肉中的还原糖主要是葡萄糖和核糖,在加工过程中它们和肉中的氨基酸、肽、蛋白质发生美拉德反应形成风味物质。这些风味物质主要是含氮、硫、专题论述10No.12.2006氧的杂环化合物以及其他的含硫化合物,其中包括呋喃、吡嗪、吡咯、噻吩、噻唑、咪唑、吡啶以及环烯硫化物。另外,在美拉德反应的中间产物中有一些二羰基化合物,它们可以进一步和脂质以及硫胺素的降解产物反应,生成具有肉香味的化合物。目前在制备肉味香味料时通常采用含硫的氨基酸如胱氨酸、半胱氨酸以及肽类,含硫氨基酸发生美拉德反应经过斯特勒克尔降解会产生硫化氢和氨,为大量杂环风味物质的形成提供前体物质。同时通过斯特勒克尔降解可产生氨基酮,2分子的氨基酮缩合会产生1分子二氢吡嗪,经过氧化生成吡嗪。烷基吡嗪是一种重要的香味呈味物质[2]。目前国内已经研究出利用美拉德反应制备牛肉、鸡肉、鱼肉香料的生产工艺。艾萍等[10]利用美拉德反应制备了牛肉香味料。宋焕禄[11]利用鸡肉酶解物/酵母抽提物进行美拉德反应来产生肉香味化合物。张彩菊等[6]利用鳙鱼的酶解产物、谷氨酸、葡萄糖、木糖、VB1进行美拉德反应制备鱼味香料。美拉德反应对于酱香型白酒的风味贡献也很大。其中风味物质主要包括呋喃酮、吡喃酮、吡咯、噻吩、吡啶、吡嗪、吡咯等含氧、氮、硫的杂环化合物[7]。3.3抗氧化作用美拉德反应的抗氧化活性是由Franzke和Iwainsky于1954年首次发现的,他们对加入甘氨酸-葡萄糖反应产物的人造奶油的氧化稳定性进行相关报道[9]。直到20世纪80年代,美拉德反应产物的抗氧化性才引起人们的重视,成为研究的热点。研究表明美拉德反应产物中的促黑激素释放素、还原酮、一些含N、S的杂环化合物具有一定的抗氧化活性,某些物质的抗氧化活性可以和合成抗氧化剂相媲美[4]。Lingnert等人的研究发现在弱碱性(pH=7~9)条件下组氨酸与木糖的美拉德反应产物表现出较高的氧化活性,beckel、朱敏等人先后报道在弱酸性(pH=5~7)条件下,精氨酸与木糖的反应产物的抗氧化活性最佳[8]。也有人研究木糖与甘氨酸、木糖与赖氨酸、木糖与色氨酸、二羟基丙酮与组氨酸、二羟基丙酮与色氨酸、壳聚糖和葡萄糖的氧化产物有很好的抗氧化作用[4]。可见美拉德反应产物可以作为一种天然的抗氧化剂。但是目前对美拉德反应产物抗氧化活性的研究还不充分,对其中的抗氧化物质和抗氧化机理还有待人们进一步研究。参考文献:[1]阚建全.食品化学.北京:中国农业大学出版社,2002[2]马相杰,谢华.美拉德反应与肉味变化.肉品工业,2002,(11):8-10[3]蔡妙颜,肖凯军,袁向华.美拉德反应与食品工业.食品工业科技,2003,(7):90-93[4]毛善友,周瑞宝,马宇翔,等.美拉德反应产物抗氧化活性.粮食与油脂,2003,(11):15-16[5]江志炜,沈蓓英,潘秋琴.蛋白质加工技术.北京:化学工业出版社,2003[6]张彩菊,等.利用美拉德反应制备鱼味香料.无锡轻工大学学报,2004,(9):11-14[7]庄名扬.再论美拉德反应产物与中国白酒的香和味.酿酒科技,2005,(5):34-38[8]万素英,侯银菊,李小六,等.美拉德反应产物的抗氧化性能研究.中国食品添加剂,2005,(6):46-49[9]FranzkeC,IwainskyH.Antioxidantcapacityofmelanoidin.DtschLebensmRundsch,1954,50:251-254[10]艾萍,张伟民.论述利用美拉德反应来制备牛肉香味料.中国调味品,2002,(7):32-35[11]宋焕禄.利用鸡肉酶解物/酵母抽提物-美拉德反应产生肉香味化合物的研究.食品科学,2001,22(10):83-85化合物名称香气特征丙醛、乙醛等鸡皮焦香,焦糖香,肉香苯乙醚紫罗兰,玫瑰花香戊醛、氨基戊醛炸土豆,面包香异西醛果香,巧克力咖啡香西醛酸、西醛焦糖香,旧木香,鸡肉香3-甲基西醛甜巧克力香,干酪香3-硫甲基丙醛酱香,芝麻香3-硫甲基西醛酱香,雪菜味糠醛杏仁,香蕉香3-甲基糖醛焦香,辛香,坚果香3-羟基西酮馊香,略带酱香2,3-丁酮爽快的馊香,1mg/L时呈奶油香2,3-丁醇微馊香3-硫甲基丙醇肉香,酱香表1美拉德反应斯特勒克尔降解的醛、酮、醇的香气特征表2几种香型酒中美拉德反应斯特勒克尔降解的醛、酮、醇含量物质名称酱香浓香清香乙醛55058140丙醛19928异西醛17163异戊醛986815糠醛2943942,3-丁二醛1.61.41.4丁二酮250.28醋8.065.41.4专题论述11百度文库VIP已帮您省80元现在续费最低仅需元/天​​立即续费​简述美拉德反应No.12.2006美拉德反应又称羰氨反应,指含有氨基的化合物和含有羰基的化合物之间经缩合、聚合而生成类黑精的反应。此反应最初是由法国化学家美拉德于1912年在将甘氨酸与葡萄糖混合共热时发现的,故称为美拉德反应。由于产物是棕色的,也被称为褐变反应。反应物中羰基化合物包括醛、酮、还原糖,氨基化合物包括氨基酸、蛋白质、胺、肽。反应的结果使食品颜色加深并赋予食品一定的风味,如:面包外皮的金黄色、红烧肉的褐色以及它们浓郁的香味。但是在反应过程也会使食品中的蛋白质和氨基酸大量损失,如果控制不当也可能产生有毒有害物质。第 1 页1反应机理[1]对于美拉德反应机理,长期以来研究得还很不彻底。食品化学家Hodge在早年作出了初步的解释,认为美拉德反应可以分成3个反应阶段。目前对于美拉德反应初级、中级阶段机理已经基本明确,但是终级阶段机理还不是很明确。以下用葡萄糖与胺反应说明美拉德反应整个过程。1.1初级阶段还原糖与氨基化合物反应经历了羰氨缩合和分子第 2 页重排过程。首先体系中游离氨基与游离羰基发生缩合生成不稳定的亚胺衍生物-薛夫碱,它不稳定随即环化为N-葡萄糖基胺。N-葡萄糖基胺在酸的催化下经过阿姆德瑞分子重排生成果糖基胺(1-氨基-1-脱氧-2-酮糖)。初级反应产物不会引起食品色泽和香味的变化,但其产物是不挥发性香味物质的前体成分。1.2中级阶段此阶段反应可以通过3条途径进行。第1条途径:在酸性条件下,果糖基胺进行1,2-第 3 页烯醇化反应,再经过脱水、脱氨最后生成羟甲基糠醛。羟甲基糠醛的积累与褐变速度密切相关,羟甲基糠醛积累后不久就可发生褐变反应,因此可以用分光光度计测定羟甲基糠醛积累情况作为预测褐变速度的指标。第2条途径:在碱性条件下,果糖基胺进行2,3-烯醇化反应,经过脱氨后生成还原酮类和二羰基化合物。还原酮类化学性质活泼,可进一步脱水再与收稿日期:2006-05-16作者简介:付莉(1979-),女,黑龙江人,硕士,助教,研究方向为食品化学。第 4 页简述美拉德反应付莉1,李铁刚2(锦州医学院畜牧兽医学院,锦州121001)摘要:综述美拉德反应的概念、反应机理、反应的影响因素、控制反应的条件及其在食品工业上的应用。关键词:美拉德反应;概念;机理;影响因素;食品工业中图分类号:TS201.2文献标识码:B第 5 页文章编号:1005-9989(2006)12-0009-03ReviewsonmaillardreactionFULi1,LITie-gang2(JinzhouMedicalUniversity,InstituteofAnimalScienceandVeterinaryMedicine,Jinzhou121001)Abstract:Thearticlereviewsthechemistryofmaillardreaction,includingtheconception,theprinciple,thefac-torofinfluence,theconditionofcontrolandtheuseonfoodindustry.第 6 页Keywords:maillardreaction;conception;principle;thefactorofinfluence;foodindustry专题论述9No.12.2006胺类缩合,或者本身发生裂解成较小分子如二乙酰、乙酸、丙酮醛等。第 7 页第3条途径:美拉德反应风味物质产生于此途径。在二羰基化合物的存在下,氨基酸发生脱羧、脱氨作用,成为少一个碳的醛,氨基转移到二羰基化合物上,这一反应为斯特勒克降解反应。这一反应生成的羰氨类化合物经过缩合,生成吡嗪类物质。1.3终级阶段此阶段包括两类反应。即醇醛缩合:两分子醛自相缩合,进一步脱水生成更高级不饱和醛;生成类黑精的聚合反应:中级阶段生成产物[葡萄糖酮醛、第 8 页3-脱氧Osulose(3-DG)、3,4-二脱氧Osulose(3,4-2DG)、HMF、还原酮类及不饱和亚胺类等]经过进一步缩合、聚合形成复杂的高分子色素[3]。2反应的影响因素[1]2.1糖从发生美拉德反应速度上看,糖的结构和种类不同导致反应发生的速度也不同。一般而言,醛的反应速度要大于酮,尤其是α、β不饱和醛反应及α-双羰基化合物;五碳糖的反应速度大于六碳糖;单糖的反应速度要大于双糖;还原糖含量和褐变速度成正比关系。第 9 页2.2氨基化合物常见的几种引起美拉德反应的氨基化合物中,发生反应速度的顺序为:胺>氨基酸>蛋白质。其中氨基酸常被用于发生美拉德反应,氨基酸的种类、结构不同会导致反应速度有很大的差别,比如:氨基酸中氨基在ε-位或末位这比α-位反应速度快,碱性氨基酸比酸性氨基酸反应速度快。2.3温度温度相差10℃,褐变速度就可相差3~5倍。当第 10 页温度大于30℃,褐变速度较快;小于20℃,褐变速度较慢。2.4pHpH3~9范围内,随着pH上升,褐变反应速度上升;pH≤3,褐变反应程度较轻微。在偏酸性环境中,反应速率降低。因为在酸性条件下,N-葡萄糖胺容易被水解,而N-葡萄糖胺是Maillard特征风味形成的前体物质。2.5水分含量10%~15%含水量,容易发生褐变;完全干燥的情况下,褐变难以进行。第 11 页2.6金属离子铜与铁可促进褐变反应,其中三价铁的催化能力要大于二价铁。2.7亚硫酸盐在美拉德反应初期阶段就加入亚硫酸盐可有效抑制褐变反应的发生。主要原因是亚硫酸盐可以和还原糖发生加成反应后再与氨基化合物发生缩合,从而抑制了整个反应的进行。第 12 页在实际生产过程中,根据产品的需要,要对美拉德反应进行控制。基于以上因素我们可以总结出控制美拉德反应程度的措施:(1)除去一种反应物:可以用相应的酶类,比如葡萄糖转化酶,也可以加入钙盐使其与氨基酸结合成不溶性化合物;(2)降低反应温度或将pH调制偏酸性;(3)控制食品在低水分含量;(4)反应初期加入亚硫酸盐也可以有效控制褐变反应的发生。3美拉德反应在食品工业上的应用3.1美拉德反应与食品色泽第 13 页美拉德反应赋予食品一定的深颜色,比如面包、咖啡、红茶、啤酒、糕点、酱油,对于这些食品颜色的产生都是我们期望得到的。但有时美拉德反应的发生又是我们不期望的,比如乳品加工过程中,如果杀菌温度控制的不好,乳中的乳糖和酪蛋白发生美拉德反应会使乳呈现褐色,影响了乳品的品质。美拉德反应产生的颜色对于食品而言,深浅一定要控制好,比如酱油的生产过程中应控制好加工温度,防止颜色过深。面包表皮的金黄色的控制,在和面过程中要控制好还原糖和氨基酸的添加量及焙烤温度,防止最后反应过度生成焦黑色。第 14 页3.2美拉德反应与食品风味通过控制原材料、温度及加工方法,可制备各种不同风味、香味的物质,比如:核糖分别与半胱氨酸及谷胱甘肽反应后会分别产生烤猪肉香味和烤牛肉香味。相同的反应物在不同的温度下反应后,产生的风味也不一样,比如:葡萄糖和缬氨酸分别在100 ̄150℃及180℃温度条件下反应,会分别产生烤面包香味和巧克力香味[5];木糖和酵母水解蛋白分别在第 15 页90℃及160℃反应会分别产生饼干香味和酱肉香味。加工方法不同,同种食物产生的香气也不同,比如:土豆经水煮可产生125种香气,而经烘烤可产生250种香气;大麦经水煮可产生75种香气,经烘烤可产生150种香气。可见利用美拉德反应可以生产各种不同的香精。目前,主要用于生产肉类香精。肉中的还原糖主要是葡萄糖和核糖,在加工过程中它们和肉中的氨基酸、肽、蛋白质发生美拉德反应形成风味物质。这些风味物质主要是含氮、硫、第 16 页专题论述10No.12.2006氧的杂环化合物以及其他的含硫化合物,其中包括呋喃、吡嗪、吡咯、噻吩、噻唑、咪唑、吡啶以及环烯硫化物。另外,在美拉德反应的中间产物中有一些二羰基化合物,它们可以进一步和脂质以及硫胺素的降解产物反应,生成具有肉香味的化合物。目前在制备肉味香味料时通常采用含硫的氨基酸如胱氨酸、半胱氨酸以及肽类,含硫氨基酸发生美拉德反应经过斯特勒克尔降解会产生硫化氢和氨,为大量杂环风味物质的形成提供前体物质。同时通过斯特勒克尔降解可产生氨基酮,2分子的氨基酮缩合会产生1分子二氢吡嗪,经过氧化生成吡嗪。烷基吡嗪是一种重要的香味呈味物质[2]。第 17 页目前国内已经研究出利用美拉德反应制备牛肉、鸡肉、鱼肉香料的生产工艺。艾萍等[10]利用美拉德反应制备了牛肉香味料。宋焕禄[11]利用鸡肉酶解物/酵母抽提物进行美拉德反应来产生肉香味化合物。张彩菊等[6]利用鳙鱼的酶解产物、谷氨酸、葡萄糖、木糖、VB1进行美拉德反应制备鱼味香料。美拉德反应对于酱香型白酒的风味贡献也很大。其中风味物质主要包括呋喃酮、吡喃酮、吡咯、噻吩、吡啶、吡嗪、吡咯等含氧、氮、硫的杂环化合物[7]。3.3抗氧化作用美拉德反应的抗氧化活性是由Franzke和Iwainsky于1954年首次发现的,他们对加入甘氨酸-葡萄糖反应产物的人造奶油的氧化稳定性进行相关报道[9]。直到20世纪80年代,美拉德反应产物的抗氧化性才引起人们的重视,成为研究的热点。研究表明美拉德反应产物中的促黑激素释放素、还原酮、一些含N、S的杂环化合物具有一定的抗氧化活性,某些物质的抗氧化活性可以和合成抗氧化剂相媲美[4]。Lingnert等人的研究发现在弱碱性(pH=7~9)条件下组氨酸与木糖的美拉德反应产物表现出较高的氧化活性,beckel、朱敏等人先后报道在弱酸性(pH=5~7)条件下,精氨酸与木糖的反应产物的抗氧化活性最佳[8]。也有人研究木糖与甘氨酸、木糖与赖氨酸、木糖与色氨酸、二羟基丙酮与组氨酸、二羟基丙酮与色氨酸、壳聚糖和葡萄糖的氧化产物有很好的抗氧化作用[4]。可见美拉德反应产物可以作为一种天然的抗氧化剂。但是目前对美拉德反应产物抗氧化活性的研究还不充分,对其中的抗氧化物质和抗氧化机理还有待人们进一步研究

研究论文二抗反应

二抗是指在治疗某种疾病时,第二类药物治疗方案中使用的抗生素或其他抗菌药物。这些药物通常被用于治疗由多种细菌引起的感染病例,或者是治疗原发性治疗失败的情况。如果患者在使用第一种治疗方案后仍然未能得到有效的治疗效果,医生会考虑选择二抗来进行治疗。 查询二抗的方法有很多种。首先可以通过专业的药品查询网站或APP,输入相关药品名称、作用机制、剂量等信息进行检索。国内常用的药品查询网站有“百度药品查询”、“药品明细查询”等。其次,也可以直接询问医生或药师,他们会提供详细的药物信息和使用说明。另外,还可以通过阅读相关疾病的治疗指南和研究论文来获取二抗的相关信息。总之,在查询二抗时,需要确保信息来源的可靠性和准确性,以便为患者提供最优质的医疗服务。

近期,苏州大学材料与化学化工学部的汪胜教授在国际重量级学术期刊Advanced Materials上发表了题为“Ultrastrong and Tough Graphene Aerogel Fibers with Hierarchical Architecture”的论文。该论文报道了一种新型石墨烯气凝胶纤维,该纤维具有超强和韧性的特点,并且具有分层结构。这种新型石墨烯气凝胶纤维的制备方法简单易行,所得纤维具有超高的拉伸强度和韧性,并且具有显著的储能能力和超高的导电性能,因此在柔性电子、高强度材料和先进能源储存等领域有着广泛的应用前景。这项研究成果的发表不仅提高了我国在新型高性能材料领域中的国际影响力,而且也为石墨烯气凝胶纤维的制备和应用提供了新的思路。

会和样本反应。所以当将鼠的这种蛋白质注入羊体内的时候羊就会产生针对该抗原的抗体,当然抗体可能有好几种。

二抗通常是指抗生素的第二选择,主要用于治疗因细菌感染引起的疾病。查询二抗的方法很多,可以通过以下几种途径进行:1.咨询医生:如果您有感染症状,建议尽快就诊,医生会根据病情和细菌培养结果等信息来判断是否需要使用二抗。2.检查药品说明书:药品说明书中通常会列出该药品的适应症、用法、剂量、服用时注意事项等信息,其中包括可能的二抗药品推荐。3.查阅相关资料:如医学专业书籍、期刊论文、医药网站等,了解具体的二抗药物及其作用机制、适用范围、不良反应等信息。综合各种途径获取信息,应更加全面和准确地了解二抗药物的相关知识。但需注意二抗药物使用上的种种限制以及潜在风险,应在医生指导下正确使用。

相关百科