杂志信息网-创作、查重、发刊有保障。

解析几何发展史论文3000字高清

发布时间:2024-07-05 16:12:12

解析几何发展史论文3000字高清

时代意义:在解析几何创立以前,几何与代数是彼此独立的两个分支。解析几何的建立第一次真正实现了几何方法与代数方法的结合,使形与数统一起来,这是数学发展史上的一次重大突破,解析几何的建立对于微积分的诞生有着不可估量的作用。

1637年,法国的哲学家和数学家笛卡尔发表了他的著作《方法论》,这本书的后面有三篇附录,一篇叫《折光学》,一篇叫《流星学》,一篇叫《几何学》。当时的这个“几何学”实际上指的是数学,就像我国古代“算术”和“数学”是一个意思一样。笛卡尔的《几何学》共分三卷,第一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和“超立体”的作图,但他实际是代数问题,探讨方程的根的性质。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种“普遍”的数学,把算术、代数、几何统一起来。他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。为了实现上述的设想,笛卡尔从天文和地理的经纬制度出发,指出平面上的点和实数对(x,y)的对应关系。x,y的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质。这就是解析几何的基本思想。具体地说,平面解析几何的基本思想有两个要点:第一,在平面建立坐标系,一点的坐标与一组有序的实数对相对应;第二,在平面上建立了坐标系后,平面上的一条曲线就可由带两个变数的一个代数方程来表示了。从这里可以看到,运用坐标法不仅可以把几何问题通过代数的方法解决,而且还把变量、函数以及数和形等重要概念密切联系了起来。解析几何的产生并不是偶然的。在笛卡尔写《几何学》以前,就有许多学者研究过用两条相交直线作为一种坐标系;也有人在研究天文、地理的时候,提出了一点位置可由两个“坐标”(经度和纬度)来确定。这些都对解析几何的创建产生了很大的影响。 在数学史上,一般认为和笛卡尔同时代的法国业余数学家费尔马也是解析几何的创建者之一,应该分享这门学科创建的荣誉。费尔马是一个业余从事数学研究的学者,对数论、解析几何、概率论三个方面都有重要贡献。他性情谦和,好静成癖,对自己所写的“书”无意发表。但从他的通信中知道,他早在笛卡尔发表《几何学》以前,就已写了关于解析几何的小文,就已经有了解析几何的思想。只是直到1679年,费尔马死后,他的思想和著述才从给友人的通信中公开发表。笛卡尔的《几何学》,作为一本解析几何的书来看,是不完整的,但重要的是引入了新的思想,为开辟数学新园地做出了贡献。

黄金分割 对于“黄金分割”大家应该都不陌生吧!由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。也许,618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是618。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目.有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则38°——62°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。多去观察生活,你就会发现生活中奇妙的数学!数字中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。 印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。 阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。 印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。” 14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。 西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。数学很有用学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 已解决问题收藏 转载到QQ空间 有关数学文化方面的论文,3000字左右200[ 标签:文化 论文,数学,论文 ] 语言性论文,可以是数学的历史,发展,以及数学与其他领域方面的关系和影响 匿名 回答:3 人气:11 解决时间:2008-11-17 19:53 满意答案数学的文化价值 一、数学是哲学思考的重要基础 数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。 (一)数学——-根源于实践 数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业革命,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。 数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。 其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。 其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。 但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的独立性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。 总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。 (二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗? 事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。 数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是独立的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现 数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。 有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。 就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都采取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思主义经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。

解析几何发展史论文1000字高清

去找导师啊,想当年我毕业论文网上都搜不到什么,导师给一部分,自己做一部分,在就差不多啦

脚印论文网是国内首家专业论文C2C平台,主要业务包含:毕业论文、论文检索、论文下载、论文写作指导、论文翻译、论文推荐发表等。在论文检索、下载方面,脚印论文网依托维普、知网以及国内外多家重要电子数据库的海量信息,结合自身搜索技术,为千万网友提供论文便捷检索、浏览、下载服务。你咨询一下他们就可以了,希望对你有所帮助。

解析几何发展史论文3000字

几何学的发展大致经历了四个基本阶段。1、实验几何的形成和发展几何学最早产生于对天空星体形状、排列位置的观察,产生于丈量土地、测量容积、制造器皿与绘制图形等实践活动的需要,人们在观察、实践、实验的基础上积累了丰富的几何经验,形成了一批粗略的概念,反映了某些经验事实之间的联系,形成了实验几何我国古代、古埃及、古印度、巴比伦所研究的几何,大体上就是实验几何的内容。例如,我国古代很早就发现了勾股定理和简易测量知识,《墨经》中载有“圜(圆),一中同长也”,“平(平行),同高也”,古印度人认为“圆面积等于一个矩形的面积,而该矩形的底等于半个圆周,矩形的高等于圆的半径”等等,都属于实验几何学的范畴。2、理论几何的形成和发展随着古埃及、希腊之间贸易与文化的交流,埃及的几何知识逐渐传入古希腊古希腊许多数学家,如泰勒斯(Thales)、毕达哥拉斯(Pythagoras)、柏拉图(Plato)、欧几里德(Euclid)等人都对几何学的研究作出了重大贡献特别是柏拉图把逻辑学的思想方法引入几何学,确立缜密的定义和明晰的公理作为几何学的基础,而后欧几里德在前人已有几何知识的基础上,按照严密的逻辑系统编写的《几何原本》十三卷,奠定了理论几何(又称推理几何、演绎几何、公理几何、欧氏几何等)的基础,成为历史上久负盛名的巨著。《几何原本》尽管存在公理的不完整,论证有时求助于直观等缺陷,但它集古代数学之大成,论证严密,影响深远,所运用的公理化方法对以后数学的发展指出了方向,以至成为整个人类文明发展史上的里程碑,全人类文化遗产中的瑰宝。3、解析几何的产生与发展公元3世纪,《几何原本》的出现,为理论几何奠定了基础与此同时,人们对圆锥曲线也作了一定研究,发现了圆锥曲线的许多性质但在后来较长时间里,封建社会中的神学占有统治地位,科学得不到应有的重视直到15、16世纪欧洲资本主义开始发展起来,随着生产实际的需要,自然科学才得到迅速发展法国笛卡尔(Descartes)在研究中发现,欧氏几何过分依赖于图形,而传统的代数又完全受公式、法则所约束,他们认为传统的研究圆锥曲线的方法,只重视几何方面,而忽略代数方面,竭力主张将几何、代数结合起来取长补短,认为这是促进数学发展的一个新的途径。4、现代几何的产生与发展在初等几何与解析几何的发展过程中,人们不断发现《几何原本》在逻辑上不够严密之处,并不断地充实一些公理,特别是在尝试用其他公理、公设证明第五公设“一条直线与另外两条直线相交,同侧的内角和小于两直角时,这两条直线就在这一侧相交”的失败,促使人们重新考察几何学的逻辑基础,并取得了两方面的突出研究成果。

解析几何发展史论文1000字

几何学的发展大致经历了四个基本阶段。1、实验几何的形成和发展几何学最早产生于对天空星体形状、排列位置的观察,产生于丈量土地、测量容积、制造器皿与绘制图形等实践活动的需要,人们在观察、实践、实验的基础上积累了丰富的几何经验,形成了一批粗略的概念,反映了某些经验事实之间的联系,形成了实验几何我国古代、古埃及、古印度、巴比伦所研究的几何,大体上就是实验几何的内容。例如,我国古代很早就发现了勾股定理和简易测量知识,《墨经》中载有“圜(圆),一中同长也”,“平(平行),同高也”,古印度人认为“圆面积等于一个矩形的面积,而该矩形的底等于半个圆周,矩形的高等于圆的半径”等等,都属于实验几何学的范畴。2、理论几何的形成和发展随着古埃及、希腊之间贸易与文化的交流,埃及的几何知识逐渐传入古希腊古希腊许多数学家,如泰勒斯(Thales)、毕达哥拉斯(Pythagoras)、柏拉图(Plato)、欧几里德(Euclid)等人都对几何学的研究作出了重大贡献特别是柏拉图把逻辑学的思想方法引入几何学,确立缜密的定义和明晰的公理作为几何学的基础,而后欧几里德在前人已有几何知识的基础上,按照严密的逻辑系统编写的《几何原本》十三卷,奠定了理论几何(又称推理几何、演绎几何、公理几何、欧氏几何等)的基础,成为历史上久负盛名的巨著。《几何原本》尽管存在公理的不完整,论证有时求助于直观等缺陷,但它集古代数学之大成,论证严密,影响深远,所运用的公理化方法对以后数学的发展指出了方向,以至成为整个人类文明发展史上的里程碑,全人类文化遗产中的瑰宝。3、解析几何的产生与发展公元3世纪,《几何原本》的出现,为理论几何奠定了基础与此同时,人们对圆锥曲线也作了一定研究,发现了圆锥曲线的许多性质但在后来较长时间里,封建社会中的神学占有统治地位,科学得不到应有的重视直到15、16世纪欧洲资本主义开始发展起来,随着生产实际的需要,自然科学才得到迅速发展法国笛卡尔(Descartes)在研究中发现,欧氏几何过分依赖于图形,而传统的代数又完全受公式、法则所约束,他们认为传统的研究圆锥曲线的方法,只重视几何方面,而忽略代数方面,竭力主张将几何、代数结合起来取长补短,认为这是促进数学发展的一个新的途径。4、现代几何的产生与发展在初等几何与解析几何的发展过程中,人们不断发现《几何原本》在逻辑上不够严密之处,并不断地充实一些公理,特别是在尝试用其他公理、公设证明第五公设“一条直线与另外两条直线相交,同侧的内角和小于两直角时,这两条直线就在这一侧相交”的失败,促使人们重新考察几何学的逻辑基础,并取得了两方面的突出研究成果。

几何学的发展史几何学研究的主要内容,为讨论不同图型的各类性质,它可说是与人类生活最密不可分的远自巴比伦,埃及时代,人们已知道利用一些图的性质来丈量土地,划分田园但是并没有把它当作一门独立的学问来看,只把它当作人类生活中的一些基本常识而已真正认真去研究它,则是从古希腊时代才开始的所以由此,我们约略的将几何学的发展,分为下列几个方向:古希腊的几何学解析几何投影几何非欧几何微分几何几何的公理化 古希腊的几何学的发展 发展阶段 古希腊几何发展的原因 欧基里德的贡献———介绍"Elements" 阿基米德的贡献 阿波罗尼阿斯的贡献 古希腊几何学中的著名问题(1)方圆问题(2)倍积问题(3)三等分角问题(4)平行公设 影响数学发展的人物 古希腊数学衰退的原因 与几何学有关的应用科学古希腊数学的批判 发展阶段:古希腊所发展的几何学是所有近代数学的原动力若要了解整个数学的架构,必定要先了解古希腊几何学的发展我们可将其分为三个阶段:(1)启蒙期:主要人物有泰利斯(Thales),毕达哥拉斯(Pythagoras),尤多沙斯(Eadoxus)泰利斯:为古希腊天文学与几何学之父,他曾正确的预测日蚀的时间他开始对一些几何图形做有系统的研究毕达哥拉斯(毕式学派):首创集体创作,称为毕式学派也是一位音乐家,发明毕式音阶毕式定理为几何学中的重要定理这个学派认为"数"是宇宙万物的基础C,尤多拉斯:创立穷尽法(exhaustion method),所谓穷尽法就是"无穷的逼近"的观念,主要构想是为了求取圆周率π的近似值所予理论上说尤多拉斯是微积分的开山祖师尤多拉斯的另一贡献,为对比例问题做有系统的研究 (2)巅峰期:重要人物有:欧基里德(Euclid)阿基米德(Archimedes)阿波罗尼阿斯(Apollonoius)欧基里德:他将一些前人对数学的结果,加以整理,写成"Elements"这本书(中译为几何原本)这本书是有史以来第一本数学教科书,也是最畅销的在往后数学的每一分支都是由这本书出发的目前初中所学的平面几何学,内容仍以"Elements"这本书为主这本书的详细内容,将在后面单独介绍这本书的另一优点为浅显易读(readable)欧基里德本身并没有什麼重大的数学突破,它是一个数学的集大成者这本书直到明朝中叶以后才传人中国阿基米德:生於西西里岛,曾留学埃及亚历山大城是有史以来三大数学家之一,发明不计其数,以后我们将单独介绍他及他的贡献阿波罗尼阿斯:与阿基米德同一时代最大一贡献是对於圆锥曲线的研究,这对於以后的解析几何,以至於微积分的发明有直接的影响圆锥曲线的应用,直到16世纪才由刻卜勒加以发扬光大(3)衰退期:自阿基米德及阿波罗尼阿斯之后,希腊数学已渐渐走入衰退期在这中间,仍有几位值得一提的人物托勒密:将三角函数发扬光大,并由此将天文学炒热帕布斯:可说是末代时期的代表人物古希腊几何发展的原因:我们不禁要问:为什麼古希腊会发展出这麼伟大的一些数学结果,是什麼原动力使他们如此 在希腊以前的各支文明,都把大自然看成是无秩序的,神秘的,多元的,可怕的自然的现象均为神控制人的生活和运气都是神的意志决定但是希腊文明期,知识份子对自然摆出一种新的姿势,也就是理智的,评价的,现实的,他们主张自然界是有秩序的依照某一公式而表现其作用人类不仅能研究自然的法则,甚至预言什麼事情将发生毕学派首先提出下列观念:"将神秘性,不确定性从自然活动中抹去,并将表面看似纷乱不堪的自然现象,重新整理成可理解的次序和型式,并决定性的关键就在於数学的应用"继承毕式学派观念的就是柏拉图:柏拉图主张:"只有循数学一途,才能了解实体世界的真面目,而科学之成为科学,在於它含有数学的份"就是因为希腊时代的一些学者对於自然的这种看法和确立了依循数学研究自然的做法,给食腊时代本身及后来世世代代的数学创见提供了莫大的诱因而在数学的领域中,几何学是最接近实际的描述对希腊人而言,几何学的原则是宇宙结构的具体表现,本身正一门实际空间的科学几何学就是数学,研究的中心欧基里德的贡献:"Elements"这本书共有13册,其内容为:(1)1-6册:平面几何学,它是以下列五大公设为基础:a,任二点之间可作一直线b,直线可以任意延长,可以以任意点为圆心,任意长为半径,画出一圆d,直角皆相等,平行公设以研究下列性质:三角形的性质—全等,相似,等等平行线的性质—内错角,同位角毕式定理圆的性质 - 内接圆,外切圆比例的问题平行四边形的性质(2)7,8,9册:整数论讨论奇数,偶数,质数的问题,另外也讨论了穷尽法的应用(3)11,12,13册:立体几何讨论角锥,圆锥,圆柱等性质,也提到了穷尽法的应用(4)第10册:不可测问题类似无理数的性质这本书的最大的特色就是:它只引用了几个简单的假设,再根据这些假设,推导出一连串的定理,最后变成一套完整的理论,在因果之间确立了严密的逻辑推理,由此确立了数学为一门演绎的科学这本书也有一些缺点,而事实上这些缺点,就是使日后数学发扬光大的原动力举例来说,在第五个(平行公设)中,有无数的数学家在这假设上打转,最后终於在19世纪造就了非欧式几何学,而直接产生了爱因斯坦的相对论"Elements"为第一部成型的数学著作数学之基本概念,证明模式,定理布局的逻辑性,都经由研读它而得以通晓欧基里德的其他著作:锥线(Conics)它的内容是阿罗尼阿斯的"圆锥曲线"骨架现象讨论天文学的问题阿基米德的贡献:阿基米德在西元前287年生於西西里岛的西那库斯,他在亚力山大城求学 他治学的态度是从一些简单的公理出发,再用无懈可击的逻辑导出其他的定理,把物理及数学联合起来一起叙述,他算是第一人,因此我们也可以称他为物理学之父,他是第一个有科学精神的工程师,他找一般性的原理,然后用到特殊的工程问题上他最重要的贡献是将"穷尽法"发扬光大,它已经将等於这个观念跨向"任意趋近於"的观念,而这已经跨进近代微积分的领域,他曾用穷尽法算π的近似值,得到:1408<π<142858阿基米德创立了流体静力学(浮力原理是最重要的结果),同时发现的杠杆原理,所以可以把他视为一个工艺学家(美劳专家)阿基米德的去世,可代表著希腊数学开始衰退的起点,我们到后面会专门讨论衰败的原因阿基米德著作的一个缺点是内容非常难懂,不具可读性的特性,所以未能像Element这本书流传这样广顺便一提的是,在1906年时在土耳其,发现了一本当年阿基米德的著作"The Method",在当时引起一阵轰动阿波罗尼阿斯的贡献:他居住亚力山大,与阿基米德同一时期他主要的研究对象是圆锥曲线,在他之前也有一些零星的结果,但是由他开始对圆锥曲线作严密的定义与讨论由几何学的观点来看,它所著的"圆锥曲线"这本书可说是古希腊几何学的巅峰这本书计有八册,共有487个项目其真正的实用性,直到16世纪才被发扬事实上,在这以后,任何时期的数学家在启蒙入门时大概都是靠欧基里德的"Element"与阿波罗尼阿斯的"圆锥曲线"起家的希腊数学中的著名问题:所谓的问题,就是只能用圆规与没有刻度的直尺之下,是否可以解决下列问题:方圆问题:是否能将一个已知的圆,变成一个正方形,而使得两者面积相等 这个问题在由尤多拉斯时代,就有许多人在这方面的研究,直到十九世纪才证明其为不可能,但是研究期间,已经另外产生了许多数学的分支倍积问题:对一个已知的正立方体,长,宽,高应该扩大,才可使新的立方体为原来立方体体积的两倍等分角问题:对任意的一个角,如何将其三等分问题2,3到十九世纪才被解决,证明为不可能平行公设:有人认为平行公设不为一公设,所以有人将平行公设这个去除,结果造出一套新的几何学出来,而又不会违背原来的欧式几何,这也就是非欧几何学也就是爱因斯坦相对论的基础也许有人认为希腊人不切实际,这三个问题在当时,可说完全无实用性,只可说是一些有闲阶级的人磨练脑力之用但是就是因为有那麼多人投下心力去研究,才会间接带动几何学研究的风潮而因此产生以后数学蓬勃的发展对数学发展有影响力的人物(1)亚力山大大帝(2)托勒密王朝:建立了亚力山大城,并建立了亚力山大图书馆,为世界当时最大图书馆在这个图书馆中,产生了许多有影响力的学者(阿基米德等人)Hiero国王:为西西里岛国王,阿基米德的直接赞助者苏格拉底,柏拉图,亚里斯多德克利奥派翠亚(埃及艳后)托勒密王朝的末代人物,亚力山大图书馆的第一次大火,就因它而起(第一认浩劫)基督教领袖与回教领袖:对希腊数学作第二次与第三次摧毁的主要角色希腊数学的衰退在阿基米德,阿波罗尼阿斯等人之后,希腊数学开始衰退,以后我们将讨论它所遭受的灾难:第一次浩劫:罗马人的来临,使得希腊数学遭到破坏罗马人都很实际,他们设计完成很多工程,但是却拒绝去深思用的原理罗马的皇帝也不热衷的支持数学家希腊在公元前十四世纪完全被罗马征服当时托勒密王朝的末代君主为克利奥派翠亚(埃及艳后)与凯撒很好,凯撒为了帮助她与她的兄弟的纷争,放火烧了亚力山大港的战舰,结果大火无法控制,将亚力山大图书馆也烧掉了大概有数以百万计的图书及手稿全部付之一炬,造成重大损伤这一次损伤,耗了希腊数学不少元气第二次浩劫:基督教的兴起,使得希腊数学面临第二次浩劫因为他们反对教会外的研究,并且嘲弄数学,天文学及物理学基督徒被迫禁止参与希腊研究,以防止受到污染所以又有成千上万的希腊书被毁第三次浩劫:回教徒征服亚力山大城后连最后的一些图书都被烧掉,当时的回教征服有一句话说:若是这些书的内容在可兰经中已有,则我们不必去读它若在可兰经中没有则更不应该去读它,所以全部图书付之一炬残余的部份:此时,一些学者都移居君士坦丁堡,寄托於东罗马帝国之下,虽然仍感到基督徒的不友好气氛,但是总是较安全,使得知识的库存又慢慢增加,直到14世纪文艺复兴时才又再发扬光大与几何学有关的科学天文学:对希腊人而言,几何学的原则是宇宙空间的具体表现,所以几乎每个数学家都曾在天文学上下过功夫事实上,三角学的发明,就是要研究天文学而发展出来的技术有许多数学家都曾设计过天体间星球运行的模型当时流行的有日心识菟地心说,日心说由阿里斯塔克提出(他是亚力山大城第一位伟大的天文学家),但是当时反对的人很多地心说由托勒密提出来的这个学说直到16世纪时才被推翻在托勒密的时代,也就是天文学发展最巅峰的时期另一位伟大的天文学家是阿波罗尼阿斯,他以数量的观点来描述过星球运动,这已接近18世纪时天文学的研究领域托勒密的Almagest为经典之作另外,中国的历代数学家在几何在也作出了不小的贡献,单列如下:中国几何发展史自明朝后期(十六世纪)欧几里得"几何原本"中文译本一部分出版之前,中国的几何早已在独立发展着。应该重视古代的许多工艺品以及建筑工程、水利工程上的成就,其中蕴藏了丰富的几何知识。 中国的几何有悠久的历史,可靠的记录从公元前十五世纪谈起,甲骨文内己有规和矩二个字,规是用来画圆的,矩是用来画方的。 汉代石刻中矩的形状类似现在的直角三角形,大约在公元前二世纪左右,中国已记载了有名的勾股定理(勾股二个字的起源比较迟)。 圆和方的研究在古代中国几何发展中占了重要位置。墨子对圆的定义是:"圆,一中同长也。"—个中心到圆周相等的叫圆,这解释要比欧几里得还早一百多年。 在圆周率的计算上有刘歆(?一23)、张衡(78—139)、刘徽(263)、王蕃(219—257)、祖冲之(429—500)、赵友钦(公元十三世纪)等人,其中刘徽、祖冲之、赵友钦的方法和所得的结果举世闻名。祖冲之所得的结果π=355/133要比欧洲早一千多年。 在刘徽的"九章算术"注中曾多次显露出他对极限概念的天才。 在平面几何中用直角三角形或正方形和在立体几何中用锥体和长方柱体进行移补,这构成中国古代几何的特点。 中国数学家善于把代数上的成就运用到几何上,而又用几何图形来证明代数,数值代数和直观几何有机的配合起来,在实践中获得良好的效果. 江苏吴云超解答 供参考!

去找导师啊,想当年我毕业论文网上都搜不到什么,导师给一部分,自己做一部分,在就差不多啦

解析几何发展史论文1000

时代意义:在解析几何创立以前,几何与代数是彼此独立的两个分支。解析几何的建立第一次真正实现了几何方法与代数方法的结合,使形与数统一起来,这是数学发展史上的一次重大突破,解析几何的建立对于微积分的诞生有着不可估量的作用。

1637年,法国的哲学家和数学家笛卡尔发表了他的著作《方法论》,这本书的后面有三篇附录,一篇叫《折光学》,一篇叫《流星学》,一篇叫《几何学》。当时的这个“几何学”实际上指的是数学,就像我国古代“算术”和“数学”是一个意思一样。笛卡尔的《几何学》共分三卷,第一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和“超立体”的作图,但他实际是代数问题,探讨方程的根的性质。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种“普遍”的数学,把算术、代数、几何统一起来。他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。为了实现上述的设想,笛卡尔从天文和地理的经纬制度出发,指出平面上的点和实数对(x,y)的对应关系。x,y的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质。这就是解析几何的基本思想。具体地说,平面解析几何的基本思想有两个要点:第一,在平面建立坐标系,一点的坐标与一组有序的实数对相对应;第二,在平面上建立了坐标系后,平面上的一条曲线就可由带两个变数的一个代数方程来表示了。从这里可以看到,运用坐标法不仅可以把几何问题通过代数的方法解决,而且还把变量、函数以及数和形等重要概念密切联系了起来。解析几何的产生并不是偶然的。在笛卡尔写《几何学》以前,就有许多学者研究过用两条相交直线作为一种坐标系;也有人在研究天文、地理的时候,提出了一点位置可由两个“坐标”(经度和纬度)来确定。这些都对解析几何的创建产生了很大的影响。 在数学史上,一般认为和笛卡尔同时代的法国业余数学家费尔马也是解析几何的创建者之一,应该分享这门学科创建的荣誉。费尔马是一个业余从事数学研究的学者,对数论、解析几何、概率论三个方面都有重要贡献。他性情谦和,好静成癖,对自己所写的“书”无意发表。但从他的通信中知道,他早在笛卡尔发表《几何学》以前,就已写了关于解析几何的小文,就已经有了解析几何的思想。只是直到1679年,费尔马死后,他的思想和著述才从给友人的通信中公开发表。笛卡尔的《几何学》,作为一本解析几何的书来看,是不完整的,但重要的是引入了新的思想,为开辟数学新园地做出了贡献。

古希腊数学家梅内克缪斯(Menaechmus)的解题、证明方式与现在使用坐标系十分相似,以至于有时会认为他是解析几何的鼻祖。阿波罗尼奥斯在《论切触》中解题方式在现在被称之为单维解析几何;他使用直线来求得一点与其它点之间的比例。阿波罗尼奥斯在《圆锥曲线论》中进一步发展了这种方式,这种方式与解析几何十分相似,比起笛卡儿早了1800多年。他使用了参照线、直径、切线与现进所使用坐标系没有本质区别,即从切点沿直径所量的距离为横坐标,而与切线平行、并与数轴和曲线向交的线段为纵坐标。他进一步发展了横坐标与纵坐标之间的关系,即两者等同于夸张的曲线。然而,阿波罗尼奥斯的工作接近于解析几何,但它没能完成它,因为他没有将负数纳入系统当中。在此,方程是由曲线来确定的,而曲线不是由方程得出的。坐标、变量、方程不过是一些给定几何题的脚注罢了。十一世纪波斯帝国数学家欧玛尔·海亚姆发现了几何与代数之间的密切联系,在求三次方程使用了代数和几何,取得了巨大进步。但最关键的一步由笛卡儿完成。从传统意义上讲,解析几何是由勒内·笛卡儿(René Descartes)创立的。笛卡儿的创举被记录在《几何学》(La Geometrie)当中,在1637年与他的《方法论》一道发表。这些努力是以法语写成的,其中的哲学思想为创立无穷小提供了基础。最初,这些著作并没有得到认可,部分原因是由于其中论述的间断,方程的复杂所致。直到1649年,著作被翻译为拉丁语,并被冯·斯霍滕(van Schooten)恭维后,才被大众所认可接受。费马也为解析几何的发展做出了贡献。他的《平面与立体轨迹引论》(Ad Locos Planos et Solidos Isagoge)虽然没有在生前发表,但手稿于1637年在巴黎出现,正好早于笛卡儿《方法论》一点。《引论》文字清晰,获得好评,为解析几何提供了铺垫。费马与笛卡儿方法的不同在于出发点。费马从代数公式开始,然后描述它的几何曲线,而笛卡儿从几何曲线开始,以方程的完结告终。结果,笛卡儿的方法可以处理更复杂的方程,并发展到使用高次多项式来解决问题。

相关百科