杂志信息网-创作、查重、发刊有保障。

集成电路导论论文4000字怎么写

发布时间:2024-09-09 13:47:02

集成电路导论论文4000字怎么写

议论文的论点在文章中用明确的语句表达出来,我们只要把它们找出来即可;有的则没有用明确的语句直接表述出来,需要读者自己去提取、概括

电气工程及其自动化专业(080601)一、培养目标 培养德、智、体等全面发展的,适应社会主义现代化建设需要的高级电气工程技术人才,培养从事与电气工程有关的系统运行、自动控制、电力电子技术、信息处理和电子计算机应用等领域工作的宽口径“复合型”高级工程技术人才。学生毕业后可从事政府部门、科研院所、高等院校、工业企业等单位的与电气工程有关的系统运行与管理、系统开发及应用、工程研究与设计等方面的工作。 二、课程设置 主要的课程体系包括: 1、公共基础课程: 主要包括高等数学、大学物理、英语、体育、政治理论、计算机文化基础、C语言等课程。 2、专业基础课程: 线性代数、概率论与数理统计、电路分析基础、模拟电子线路、数字电路基础、电子技术实验、电子技术课题设计、工程制图、单片机原理、单片机应用系统课题设计、机械基础、自动控制原理、电力电子技术 及应用设计、电机及拖动基础、现代控制理论 、过程控制系统 、专业英语等。 3、计算机类课程: 微机原理与接口技术、多媒体应用技术、网页设计等。 4、专业课程: 电力拖动控制系统、控制系统计算机辅助设计、可编程控制器原理及系统、计算机控制技术、计算机通信 等课程。 5、专业限选课: 模糊控制技术、DSP技术、计算机网络、电气测量等。 6、实践类课程: 重点应包括每年的一次的教学实践和最后的毕业设计。 专业电气工程与自动化专业教学学院学制本科4 年授予学位工学学士培养目标培养在电气工程有关的工业工程控制、电气工程、电力电子技术、监测与自动化仪表、运动控制、电子与计算机技术等领域,从事工程设计、系统分析、系统运行、研究开发等方面的高级工程技术人才。 基本培养规格德育方面热爱社会主义祖国,拥护中国共产党领导,掌握马列主义、毛泽东思想和邓小平理论的基本原理;愿为社会主义现代化建设服务,为人民服务,有为国家富强、民族昌盛而奋斗的志向和责任感;具有敬业爱岗、艰苦奋斗、热爱劳动、遵纪守法、团结合作的品质,具有良好的思想品德、社会公德和职业道德。 智育方面主要学习电工、电子技术、自动控制理论、信息处理、计算机技术与应用等工程技术基础和一定的专业知识,接受电工电子、信息控制及计算机技术方面的基本训练,具有工业过程控制与分析,解决强、弱并举的宽口径专业的技术问题的能力。 本专业的毕业生应获得以下几方面的知识与能力: ( 1 )掌握较扎实的数学、物理、 化学等自然科学的基础知识,较好的人文、社会、管理科学基础和外语综合能力。 ( 2 )掌握本专业领域较宽的技术基础理论知识。 ( 3 )具有本专业 1-2 个专业方向的专业知识和技能,了解本专业的学科前沿发展趋势。 ( 4 )获得较好的工程实践训练,具备一定的科学研究、科技开发、组织管理能力。 ( 5 )达到大学英语教学改革方案中一般要求的有关规定。 ( 6 )通过江苏省高校非计算机专业计算机等级考试二级。 体育方面具有一定的体育和军事基本知识,掌握科学锻炼身体的基本技能,养成良好的体育锻炼和卫生习惯,受到必要的军事训练,达到国家规定的大学生体育和军事训练合格标准,具备健全的心理和健康的体魄,能够履行建设祖国和保卫祖国的神圣义务。 课程结构150 学分普通教育课57 学分学科基础课5 学分专业选修5 学分学位课程高等数学(一)、普通物理(一)、电路原理、电子技术基础、自动控制理论、计算机原理及应用、电力电子技术、电机与电机拖动基础。 三、修业年限及授予学位 1、修业年限: 四年制本科 2、授予学位: 工学学士 电气工程及其自动化比较好一点!

功耗低CMOS集成电路采用场效应管,且都是互补结构,工作时两个串联的场效应管总是处于一个管导通,另一个管截止的状态,电路静态功耗理论上为零。实际上,由于存在漏电流,CMOS电路尚有微量静态功耗。单个门电路的功耗典型值仅为20mW,动态功耗(在1MHz工作频率时)也仅为几mW。工作电压范围宽CMOS集成电路供电简单,供电电源体积小,基本上不需稳压。国产CC4000系列的集成电路,可在3~18V电压下正常工作。逻辑摆幅大CMOS集成电路的逻辑高电平“1”、逻辑低电平“0”分别接近于电源高电位VDD及电影低电位VSS。当VDD=15V,VSS=0V时,输出逻辑摆幅近似15V。因此,CMOS集成电路的电压电压利用系数在各类集成电路中指标是较高的。抗干扰能力强CMOS集成电路的电压噪声容限的典型值为电源电压的45%,保证值为电源电压的30%。随着电源电压的增加,噪声容限电压的绝对值将成比例增加。对于VDD=15V的供电电压(当VSS=0V时),电路将有7V左右的噪声容限。输入阻抗高CMOS集成电路的输入端一般都是由保护二极管和串联电阻构成的保护网络,故比一般场效应管的输入电阻稍小,但在正常工作电压范围内,这些保护二极管均处于反向偏置状态,直流输入阻抗取决于这些二极管的泄露电流,通常情况下,等效输入阻抗高达103~1011Ω,因此CMOS集成电路几乎不消耗驱动电路的功率。温度稳定性能好由于CMOS集成电路的功耗很低,内部发热量少,而且,CMOS电路线路结构和电气参数都具有对称性,在温度环境发生变化时,某些参数能起到自动补偿作用,因而CMOS集成电路的温度特性非常好。一般陶瓷金属封装的电路,工作温度为-55 ~ +125℃;塑料封装的电路工作温度范围为-45 ~ +85℃。扇出能力强扇出能力是用电路输出端所能带动的输入端数来表示的。由于CMOS集成电路的输入阻抗极高,因此电路的输出能力受输入电容的限制,但是,当CMOS集成电路用来驱动同类型,如不考虑速度,一般可以驱动50个以上的输入端。抗辐射能力强CMOS集成电路中的基本器件是MOS晶体管,属于多数载流子导电器件。各种射线、辐射对其导电性能的影响都有限,因而特别适用于制作航天及核实验设备。可控性好CMOS集成电路输出波形的上升和下降时间可以控制,其输出的上升和下降时间的典型值为电路传输延迟时间的125%~140%。接口方便因为CMOS集成电路的输入阻抗高和输出摆幅大,所以易于被其他电路所驱动,也容易驱动其他类型的电路或器件。 免费考研网

集成电路导论论文4000字

集成电路芯片封装技术浅谈 自从美国Intel公司1971年设计制造出4位微处a理器芯片以来,在20多年时间内,CPU从Intel4004、80286、80386、80486发展到Pentium和PentiumⅡ,数位从4位、8位、16位、32位发展到64位;主频从几兆到今天的400MHz以上,接近GHz;CPU芯片里集成的晶体管数由2000个跃升到500万个以上;半导体制造技术的规模由SSI、MSI、LSI、VLSI达到 ULSI。封装的输入/输出(I/O)引脚从几十根,逐渐增加到几百根,下世纪初可能达2千根。这一切真是一个翻天覆地的变化。 对于CPU,读者已经很熟悉了,286、386、486、Pentium、Pentium Ⅱ、Celeron、K6、K6-2 ……相信您可以如数家珍似地列出一长串。但谈到CPU和其他大规模集成电路的封装,知道的人未必很多。所谓封装是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强电热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁--芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接。因此,封装对CPU和其他LSI集成电路都起着重要的作用。新一代CPU的出现常常伴随着新的封装形式的使用。 芯片的封装技术已经历了好几代的变迁,从DIP、QFP、PGA、BGA到CSP再到MCM,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近于1,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。 下面将对具体的封装形式作详细说明。 一、DIP封装  70年代流行的是双列直插封装,简称DIP(Dual In-line Package)。DIP封装结构具有以下特点: 适合PCB的穿孔安装; 比TO型封装(图1)易于对PCB布线; 操作方便。  DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式),如图2所示。  衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。以采用40根I/O引脚塑料包封双列直插式封装(PDIP)的CPU为例,其芯片面积/封装面积=3×3/24×50=1:86,离1相差很远。不难看出,这种封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。  Intel公司这期间的CPU如8086、80286都采用PDIP封装。 二、芯片载体封装  80年代出现了芯片载体封装,其中有陶瓷无引线芯片载体LCCC(Leadless Ceramic Chip Carrier)、塑料有引线芯片载体PLCC(Plastic Leaded Chip Carrier)、小尺寸封装SOP(Small Outline Package)、塑料四边引出扁平封装PQFP(Plastic Quad Flat Package),封装结构形式如图3、图4和图5所示。  以5mm焊区中心距,208根I/O引脚的QFP封装的CPU为例,外形尺寸28×28mm,芯片尺寸10×10mm,则芯片面积/封装面积=10×10/28×28=1:8,由此可见QFP比DIP的封装尺寸大大减小。QFP的特点是: 适合用SMT表面安装技术在PCB上安装布线; 封装外形尺寸小,寄生参数减小,适合高频应用; 操作方便; 可靠性高。  在这期间,Intel公司的CPU,如Intel 80386就采用塑料四边引出扁平封装PQFP。 三、BGA封装  90年代随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI、VLSI、ULSI相继出现,硅单芯片集成度不断提高,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大。为满足发展的需要,在原有封装品种基础上,又增添了新的品种--球栅阵列封装,简称BGA(Ball Grid Array Package)。如图6所示。  BGA一出现便成为CPU、南北桥等VLSI芯片的高密度、高性能、多功能及高I/O引脚封装的最佳选择。其特点有: I/O引脚数虽然增多,但引脚间距远大于QFP,从而提高了组装成品率; 虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,简称C4焊接,从而可以改善它的电热性能: 厚度比QFP减少1/2以上,重量减轻3/4以上; 寄生参数减小,信号传输延迟小,使用频率大大提高; 组装可用共面焊接,可靠性高; BGA封装仍与QFP、PGA一样,占用基板面积过大;  Intel公司对这种集成度很高(单芯片里达300万只以上晶体管),功耗很大的CPU芯片,如Pentium、Pentium Pro、Pentium Ⅱ采用陶瓷针栅阵列封装CPGA和陶瓷球栅阵列封装CBGA,并在外壳上安装微型排风扇散热,从而达到电路的稳定可靠工作。 四、面向未来的新的封装技术  BGA封装比QFP先进,更比PGA好,但它的芯片面积/封装面积的比值仍很低。 Tessera公司在BGA基础上做了改进,研制出另一种称为μBGA的封装技术,按5mm焊区中心距,芯片面积/封装面积的比为1:4,比BGA前进了一大步。  1994年9月日本三菱电气研究出一种芯片面积/封装面积=1:1的封装结构,其封装外形尺寸只比裸芯片大一点点。也就是说,单个IC芯片有多大,封装尺寸就有多大,从而诞生了一种新的封装形式,命名为芯片尺寸封装,简称CSP(Chip Size Package或Chip Scale Package)。CSP封装具有以下特点: 满足了LSI芯片引出脚不断增加的需要; 解决了IC裸芯片不能进行交流参数测试和老化筛选的问题; 封装面积缩小到BGA的1/4至1/10,延迟时间缩小到极短。  曾有人想,当单芯片一时还达不到多种芯片的集成度时,能否将高集成度、高性能、高可靠的CSP芯片(用LSI或IC)和专用集成电路芯片(ASIC)在高密度多层互联基板上用表面安装技术(SMT)组装成为多种多样电子组件、子系统或系统。由这种想法产生出多芯片组件MCM(Multi Chip Model)。它将对现代化的计算机、自动化、通讯业等领域产生重大影响。MCM的特点有: 封装延迟时间缩小,易于实现组件高速化; 缩小整机/组件封装尺寸和重量,一般体积减小1/4,重量减轻1/3; 可靠性大大提高。  随着LSI设计技术和工艺的进步及深亚微米技术和微细化缩小芯片尺寸等技术的使用,人们产生了将多个LSI芯片组装在一个精密多层布线的外壳内形成MCM产品的想法。进一步又产生另一种想法:把多种芯片的电路集成在一个大圆片上,从而又导致了封装由单个小芯片级转向硅圆片级(wafer level)封装的变革,由此引出系统级芯片SOC(System On Chip)和电脑级芯片PCOC(PC On Chip)。 随着CPU和其他ULSI电路的进步,集成电路的封装形式也将有相应的发展,而封装形式的进步又将反过来促成芯片技术向前发展。

一、机电一体化技术发展历程及其趋势 自电子技术一问世,电子技术与机械技术的结合就开始了,只是出现了半导体集成电路,尤其是出现了以微处理器为代表的大规模集成电路以后,"机电一体化"技术之后有了明显进展,引起了人们的广泛注意 (一)机电一体化"的发展历程 数控机床的问世,写下了"机电一体化"历史的第一页; 微电子技术为"机电一体化''带来勃勃生机; 可编程序控制器、"电力电子"等的发展为"机电一体化"提供了坚强基础; 激光技术、模糊技术、信息技术等新技术使"机电一体化"跃上新台阶 (二)机电一体化"发展趋势 光机电一体化一般的机电一体化系统是由传感系统、能源系统、信息处理系统、机械结构等部件组成的因此,引进光学技术,实现光学技术的先天优点是能有效地改进机电一体化系统的传感系统、能源(动力)系统和信息处理系统光机电一体化是机电产品发展的重要趋势 自律分配系统化——柔性化未来的机电一体化产品,控制和执行系统有足够的“冗余度”,有较强的“柔性”,能较好地应付突发事件,被设计成“自律分配系统”。在自律分配系统中,各个子系统是相互独立工作的,子系统为总系统服务,同时具有本身的“自律性”,可根据不同的环境条件作出不同反应。其特点是子系统可产生本身的信息并附加所给信息,在总的前提下,具体“行动”是可以改变的。这样,既明显地增加了系统的适应能力(柔性),又不因某一子系统的故障而影响整个系统。 全息系统化——智能化。今后的机电一体化产品“全息”特征越来越明显,智能化水平越来越高。这主要收益于模糊技术、信息技术(尤其是软件及芯片技术)的发展。除此之外,其系统的层次结构,也变简单的“从上到下”的形势而为复杂的、有较多冗余度的双向联系。 “生物一软件”化—仿生物系统化。今后的机电一体化装置对信息的依赖性很大,并且往往在结构上是处于“静态”时不稳定,但在动态(工作)时却是稳定的。这有点类似于活的生物:当控制系统(大脑)停止工作时,生物便“死亡”,而当控制系统(大脑)工作时,生物就很有活力。仿生学研究领域中已发现的一些生物体优良的机构可为机电一体化产品提供新型机体,但如何使这些新型机体具有活的“生命”还有待于深入研究。这一研究领域称为“生物——软件”或“生物——系统”,而生物的特点是硬件(肌体)——软件(大脑)一体,不可分割。看来,机电一体化产品虽然有向生物系统化发展趋,但有一段漫长的道路要走。 微型机电化——微型化。目前,利用半导体器件制造过程中的蚀刻技术,在实验室中已制造出亚微米级的机械元件。当将这一成果用于实际产品时,就没有必要区分机械部分和控制器了。届时机械和电子完全可以“融合”,机体、执行机构、传感器、CPU等可集成在一起,体积很小,并组成一种自律元件。这种微型机械学是机电一体化的重要发展方向。 二、典型的机电一体化产品 机电一体化产品分系统(整机)和基础元、部件两大类。典型的机电一体化系统有:数控机床、机器人、汽车电子化产品、智能化仪器仪表、电子排版印刷系统、CAD/CAM系统等。典型的机电一体化元、部件有:电力电子器件及装置、可编程序控制器、模糊控制器、微型电机、传感器、专用集成电路、伺服机构等。这些典型的机电一体化产品的技术现状、发展趋势、市场前景分析从略。 三、我国发展“机电一体化”面临的形势和任务 机电一体化工作主要包括两个层次:一是用微电子技术改造传统产业,其目的是节能、节材,提高工效,提高产品质量,把传统工业的技术进步提高一步;二是开发自动化、数字化、智能化机电产品,促进产品的更新换代。 (一)我国“机电一体化”工作面临的形势 我国用微电子技术改造传统工业的工作量大而广,有难度 我国用机电一体化技术加速产品更新换代,提高市场占有率的呼声高,有压力。 我国用机电一体化产品取代技术含量和附加值低,耗能、耗水、耗材高,污染、扰民产品的责任重,有意义。在我国工业系统中,能耗、耗水大户,对环境污染严重的企业还占相当大的比重。近年来我国的工业结构、产品结构虽然几经调整,但由于多种原因,成效一直不够明显。这里面固然有上级领导部门的政出多门问题,有企业的“故土难离”“死守故业”问题,但不可否认也有优化不出理想的产业,优选不出中意的产品问题。上佳的答案早就摆在了这些企业的面前,这就是发展机电一体化,开发和生产有关的机电一体化产品。机电一体化产品功能强、性能好、质量高、成本低,且具有柔性,可根据市场需要和用户反映时产品结构和生产过程做必要的调整、改革,而无须改换设备。这是解决机电产品多品种、少批量生产的重要出路。同时,可为传统的机械工业注入新鲜血液,带来新的活力,把机械生产从繁重的体力劳动中解脱出来,实现文明生产。 另外,从市场需求的角度看,由于我国研制、开发机电一体化产品的历史不长,差距较大,许多产品的品种、数量、档次、质量都不能满足需求,每年进口量都比较大,因此亟需发展。 (二) 我国“机电一体化”工作的任务 我国在机电一体化方面的任务可以概括为两句话:一句话是广泛深入地用机电一体化技术改造传统产业;另一句话是大张旗鼓地开发机电一体化产品,促进机电产品的更新换代。总的目的是促进机电一体产业的形成、为我国产业结构和产品结构调整作贡献。 总之,机电一体化技术既是振兴传统机电工业的新鲜血液和源动力,又是开启我国机电行业产品结构、产业结构调整大门的钥匙。 四、我国发展“机电一体化”的对策 (一)加强统筹安排,协调发展计划 目前,我国从事“机电一体化”研究开发及生产的单位很多。各自都有一套自己的发展策略。各单位的计划由于受各自立足点、着眼点的限制,难免只考虑局部利益,各主管部门的有关计划和规划,也有统一考虑不足,统筹安排不够的问题,同时缺少综观全局的有权威性的发展计划和战略规划。因此,建议各主管部门责成有关单位在进行深入调查研究、科学分析的基础上,制定出统管全局的“机电一体化”研究、开发、生产计划和规划,避免开发上重复,生产上撞车! (二)强化行业管理,发挥“协会”作用 目前,我国“机电一体化”较热,而按目前的行业划分方法和管理体制,“政出多门”是难哆的。因此,我国有必要明确一个“机电一体化”行业的统管机构,根据目前国家政治体制改革和经济体制改革的精神,以及机电一体化行业特点,我们建议,尽快加强北京机电一体化协会的建设,赋予其行业管理职能。“协会”要进一步扩大领导机构——理事会的代表层面和复盖面,要加强办公室、秘书处的建设;要通过其精明干练的办事机构、经济实体,组织“行业”发展计划、战略规划的拟制;指导行业布点布局的调整,进行发展突破口的选择,抓好重点工程的试点和有关项目的发标、招标工作…… (三)优化发展环境、增大支持力度 优化发展环境指通过宣传群众,造成一种社会上下、企业内外都重视、支持“机电一体化”发展的氛围,如尽快为外商到我国投资发展“机电一体化”产业提供方便;尽可能为兴办开发、生产机电一体化产品的高新技术企业开绿灯;尽力为开发、生产机电一体化产品调配好资源要素等。 增大支持力度,在技术政策上,要严格限制耗电、耗水、耗材高的传统产品的发展,对未采用机电一体化技术落后产品限制强制淘汰;大力提倡用机电一体化技术对传统产业进行改造,对有关机电一体化技术对传统产业乾地改造,对有关技术开发、应用项目优先立项、优先支持,对在技术开发、应用中做出贡献的单位领导、科技人员进行表彰奖励等。 (四)突出发展重点,兼顾“两个层次” 机电一体化产业复盖面非常广,而我们的财力、人力和物力是有限的,因此我们在抓机电一体化产业发展时不能面面俱到、平铺直叙,而应分清主次,大胆取舍,有所为,有所不为。要注意抓两个层次上的工作。第一个层次是“面上”的工作,即用电子信息技术对传统产业进行改造,在传统的机电设备上植入或嫁接上微电子(计算机)装置,使“机械”和“电子”技术在浅层次上结合。第二个层次是“提高”工作,即在新产品设计之初,就把“机械”与“电子”统一起来进行考虑,使“机械”与“电子”密不可分,深度结合,生产出来的新产品起码正做到机电一体化。 结束语:本论文在各位老师的悉心指导和严格要求下已完成。在学习和生活期间,也始终感受着导师的精心指导和无私的关怀,我受益匪浅。在此向各位老师表示深深的感谢和崇高的敬意。不积跬步何以至千里,本设计能够顺利的完成,也归功于各位任课老师的认真负责,使我能够很好的掌握和运用专业知识,并在设计中得以体现。同时我在网上也搜集了不少资料,才使我的毕业论文工作顺利完成。在此向学院工程系的全体老师表示由衷的谢意。 希望我的答案可以帮得上楼主!

集成电路导论论文4000字开头

集成电路芯片封装技术浅谈 自从美国Intel公司1971年设计制造出4位微处a理器芯片以来,在20多年时间内,CPU从Intel4004、80286、80386、80486发展到Pentium和PentiumⅡ,数位从4位、8位、16位、32位发展到64位;主频从几兆到今天的400MHz以上,接近GHz;CPU芯片里集成的晶体管数由2000个跃升到500万个以上;半导体制造技术的规模由SSI、MSI、LSI、VLSI达到 ULSI。封装的输入/输出(I/O)引脚从几十根,逐渐增加到几百根,下世纪初可能达2千根。这一切真是一个翻天覆地的变化。 对于CPU,读者已经很熟悉了,286、386、486、Pentium、Pentium Ⅱ、Celeron、K6、K6-2 ……相信您可以如数家珍似地列出一长串。但谈到CPU和其他大规模集成电路的封装,知道的人未必很多。所谓封装是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强电热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁--芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接。因此,封装对CPU和其他LSI集成电路都起着重要的作用。新一代CPU的出现常常伴随着新的封装形式的使用。 芯片的封装技术已经历了好几代的变迁,从DIP、QFP、PGA、BGA到CSP再到MCM,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近于1,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。 下面将对具体的封装形式作详细说明。 一、DIP封装  70年代流行的是双列直插封装,简称DIP(Dual In-line Package)。DIP封装结构具有以下特点: 适合PCB的穿孔安装; 比TO型封装(图1)易于对PCB布线; 操作方便。  DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式),如图2所示。  衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。以采用40根I/O引脚塑料包封双列直插式封装(PDIP)的CPU为例,其芯片面积/封装面积=3×3/24×50=1:86,离1相差很远。不难看出,这种封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。  Intel公司这期间的CPU如8086、80286都采用PDIP封装。 二、芯片载体封装  80年代出现了芯片载体封装,其中有陶瓷无引线芯片载体LCCC(Leadless Ceramic Chip Carrier)、塑料有引线芯片载体PLCC(Plastic Leaded Chip Carrier)、小尺寸封装SOP(Small Outline Package)、塑料四边引出扁平封装PQFP(Plastic Quad Flat Package),封装结构形式如图3、图4和图5所示。  以5mm焊区中心距,208根I/O引脚的QFP封装的CPU为例,外形尺寸28×28mm,芯片尺寸10×10mm,则芯片面积/封装面积=10×10/28×28=1:8,由此可见QFP比DIP的封装尺寸大大减小。QFP的特点是: 适合用SMT表面安装技术在PCB上安装布线; 封装外形尺寸小,寄生参数减小,适合高频应用; 操作方便; 可靠性高。  在这期间,Intel公司的CPU,如Intel 80386就采用塑料四边引出扁平封装PQFP。 三、BGA封装  90年代随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI、VLSI、ULSI相继出现,硅单芯片集成度不断提高,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大。为满足发展的需要,在原有封装品种基础上,又增添了新的品种--球栅阵列封装,简称BGA(Ball Grid Array Package)。如图6所示。  BGA一出现便成为CPU、南北桥等VLSI芯片的高密度、高性能、多功能及高I/O引脚封装的最佳选择。其特点有: I/O引脚数虽然增多,但引脚间距远大于QFP,从而提高了组装成品率; 虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,简称C4焊接,从而可以改善它的电热性能: 厚度比QFP减少1/2以上,重量减轻3/4以上; 寄生参数减小,信号传输延迟小,使用频率大大提高; 组装可用共面焊接,可靠性高; BGA封装仍与QFP、PGA一样,占用基板面积过大;  Intel公司对这种集成度很高(单芯片里达300万只以上晶体管),功耗很大的CPU芯片,如Pentium、Pentium Pro、Pentium Ⅱ采用陶瓷针栅阵列封装CPGA和陶瓷球栅阵列封装CBGA,并在外壳上安装微型排风扇散热,从而达到电路的稳定可靠工作。 四、面向未来的新的封装技术  BGA封装比QFP先进,更比PGA好,但它的芯片面积/封装面积的比值仍很低。 Tessera公司在BGA基础上做了改进,研制出另一种称为μBGA的封装技术,按5mm焊区中心距,芯片面积/封装面积的比为1:4,比BGA前进了一大步。  1994年9月日本三菱电气研究出一种芯片面积/封装面积=1:1的封装结构,其封装外形尺寸只比裸芯片大一点点。也就是说,单个IC芯片有多大,封装尺寸就有多大,从而诞生了一种新的封装形式,命名为芯片尺寸封装,简称CSP(Chip Size Package或Chip Scale Package)。CSP封装具有以下特点: 满足了LSI芯片引出脚不断增加的需要; 解决了IC裸芯片不能进行交流参数测试和老化筛选的问题; 封装面积缩小到BGA的1/4至1/10,延迟时间缩小到极短。  曾有人想,当单芯片一时还达不到多种芯片的集成度时,能否将高集成度、高性能、高可靠的CSP芯片(用LSI或IC)和专用集成电路芯片(ASIC)在高密度多层互联基板上用表面安装技术(SMT)组装成为多种多样电子组件、子系统或系统。由这种想法产生出多芯片组件MCM(Multi Chip Model)。它将对现代化的计算机、自动化、通讯业等领域产生重大影响。MCM的特点有: 封装延迟时间缩小,易于实现组件高速化; 缩小整机/组件封装尺寸和重量,一般体积减小1/4,重量减轻1/3; 可靠性大大提高。  随着LSI设计技术和工艺的进步及深亚微米技术和微细化缩小芯片尺寸等技术的使用,人们产生了将多个LSI芯片组装在一个精密多层布线的外壳内形成MCM产品的想法。进一步又产生另一种想法:把多种芯片的电路集成在一个大圆片上,从而又导致了封装由单个小芯片级转向硅圆片级(wafer level)封装的变革,由此引出系统级芯片SOC(System On Chip)和电脑级芯片PCOC(PC On Chip)。 随着CPU和其他ULSI电路的进步,集成电路的封装形式也将有相应的发展,而封装形式的进步又将反过来促成芯片技术向前发展。

基本就是那几本书的前言绪论,摘抄一下吧

工程硕士的学位论文的选题可以直接来源于生产实际或具有明确的生产背景和应用价值。学位论文选题应具有一定的先进性和技术难度,能体现工程硕士研究生综合运用科学理论、方法和技术手段解决工程实际问题的能力。学位论文选题可以是一个完整的集成电路工程项目,可以是工程技术研究专题,也可以是新工艺、新设备、新材料、集成电路与系统芯片新产品的研制与开发。学位论文应包括:课题意义的说明、国内外动态、设计方案的比较与评估、需要解决的主要问题和途径、本人在课题中所做的工作、理论分析、设计计算书、测试装置和试验手段、计算程序、试验数据处理、必要的图纸、图表曲线与结论、结果的技术和经济效果分析、所引用的参考文献等,与他人合作或前人基础上继续进行的课题,必须在论文中明确指出本人所做的工作。

集成电路导论论文3000字怎么写

电气工程专业概论课程论文暨学期总结2012年第一学期 电气工程专业概论是我们大一的第一门专业课,作为大一新生,刚接触这门课时,对于这门课感到非常陌生,甚至有些害怕:高中没学过怎么办?专业课这么难怎么办?除了陌生之外,还有些许期待,些许激动:学专业课了!终于脱离语数外的魔爪了!等到了上课,事实是它果然没有让我失望!虽然没有教我深入了解知识,却给了我一个总体的概念,让我知道,四年,我该干什么,我能干什么。也许这也是概论课的目的吧。 通过一阶段的学习,我对电气工程也有了一些浅显的认识和了解,主要有以下一些内容。总的来说,电气工程及其自动化专业有很多方向,本科阶段主要有:电机电器及其控制,电力系统及其自动化,高电压与绝缘技术,工业自动化,电气技术等方向。硕博阶段主要有:电机与电器,电力系统及其自动化,高电压与绝缘技术,电力电子与电力传动,电工理论与新技术等方向。随着科学技术的进步,专业的内涵也要发生变化。电气工程专业也要与时俱进,主要是要和信息科学、自动化科学、计算机科学、电子科学、能源科学、材料科学等其他学科进行交叉融合,以求自身发展。电气工程专业的学生今后要更多地学习自动化和信息技术方面的知识,才能跟上时代的步伐。 知识的创新和发展要求人才不仅具有丰富的科学文化知识,而且还应具有较强的创新精神和创新能力,以及良好的合作精神和组织管理能力,只有这样才能适应时代发展的要求。因此,拓宽专业口径,减少专业课教学时数已经成为大家的共识。 现在的时代是一个“知识爆炸”的时代,知识的产生、更新速度非常之快。几年前学到的新知识,现在可能就已经落伍了。电气工程也是如此,我们不能指望在四年时间内学完电气工程全部的专业知识。但是尽早了解电气工程的概况的确是非常必要的,这可以帮助学生尽早把握电气工程的基本技术脉络,为进一步深入研究本专业打下扎实的基础。因此,如何根据自己的兴趣设计自己的专业生涯,如何根据自己的爱好选择专业及专业方向,如何根据自己的特长选修最合适的专业课,成为刚入学的新生越来越关心的问题,也使他们迫切要求尽快了解专业的概貌。这本《电气工程概论》的课本,就电气工程专业的发展史、专业特点、专业知识结构与应用领域进行全面介绍,对我的专业及专业方向选择和课程选择起到了指导的作用。同时也开阔了我的视野。 以下便是我初步掌握的关于电气工程及其自动化学科的一些基本资料。 电气工程及其自动化专业属于电气工程学科。本专业旨在培养适应社会主义市场经济和电气工程领域的需要、具有从事电气工程领域规划、研究、开发、设计、运营和管理等工作能力的高级复合型应用人才。总之,既来之则安之,不管我们的专业是如何的难学,也不管我们的专业的就业前景是如何之广,更不论考研是何等困难,踏踏实实的学好每一门课,无论基础课还是专业课,学好会用才是王道,才能使我们在复杂的社会就业环境中立于不败之地。当然,在学习中培养动手实际能力、创新能力也是非常重要的一点,社会需要的人才一定是可用的创新性人才,而不是只会考试的书呆。我会坚持自己的理想,以成为电气专业高级工程师为自己终身奋斗目标,为自己的理想,为祖国的电力工业不落后与其他任何国家。

没有题目?,方向很多

集成电路导论论文怎么写

知道了,这个我们有多年经所以可以满足你的需求所以你可以考虑我们

我帮、、、你好、、了

集成电路芯片封装技术浅谈 自从美国Intel公司1971年设计制造出4位微处a理器芯片以来,在20多年时间内,CPU从Intel4004、80286、80386、80486发展到Pentium和PentiumⅡ,数位从4位、8位、16位、32位发展到64位;主频从几兆到今天的400MHz以上,接近GHz;CPU芯片里集成的晶体管数由2000个跃升到500万个以上;半导体制造技术的规模由SSI、MSI、LSI、VLSI达到 ULSI。封装的输入/输出(I/O)引脚从几十根,逐渐增加到几百根,下世纪初可能达2千根。这一切真是一个翻天覆地的变化。 对于CPU,读者已经很熟悉了,286、386、486、Pentium、Pentium Ⅱ、Celeron、K6、K6-2 ……相信您可以如数家珍似地列出一长串。但谈到CPU和其他大规模集成电路的封装,知道的人未必很多。所谓封装是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强电热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁--芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接。因此,封装对CPU和其他LSI集成电路都起着重要的作用。新一代CPU的出现常常伴随着新的封装形式的使用。 芯片的封装技术已经历了好几代的变迁,从DIP、QFP、PGA、BGA到CSP再到MCM,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近于1,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。 下面将对具体的封装形式作详细说明。 一、DIP封装  70年代流行的是双列直插封装,简称DIP(Dual In-line Package)。DIP封装结构具有以下特点: 适合PCB的穿孔安装; 比TO型封装(图1)易于对PCB布线; 操作方便。  DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式),如图2所示。  衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。以采用40根I/O引脚塑料包封双列直插式封装(PDIP)的CPU为例,其芯片面积/封装面积=3×3/24×50=1:86,离1相差很远。不难看出,这种封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。  Intel公司这期间的CPU如8086、80286都采用PDIP封装。 二、芯片载体封装  80年代出现了芯片载体封装,其中有陶瓷无引线芯片载体LCCC(Leadless Ceramic Chip Carrier)、塑料有引线芯片载体PLCC(Plastic Leaded Chip Carrier)、小尺寸封装SOP(Small Outline Package)、塑料四边引出扁平封装PQFP(Plastic Quad Flat Package),封装结构形式如图3、图4和图5所示。  以5mm焊区中心距,208根I/O引脚的QFP封装的CPU为例,外形尺寸28×28mm,芯片尺寸10×10mm,则芯片面积/封装面积=10×10/28×28=1:8,由此可见QFP比DIP的封装尺寸大大减小。QFP的特点是: 适合用SMT表面安装技术在PCB上安装布线; 封装外形尺寸小,寄生参数减小,适合高频应用; 操作方便; 可靠性高。  在这期间,Intel公司的CPU,如Intel 80386就采用塑料四边引出扁平封装PQFP。 三、BGA封装  90年代随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI、VLSI、ULSI相继出现,硅单芯片集成度不断提高,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大。为满足发展的需要,在原有封装品种基础上,又增添了新的品种--球栅阵列封装,简称BGA(Ball Grid Array Package)。如图6所示。  BGA一出现便成为CPU、南北桥等VLSI芯片的高密度、高性能、多功能及高I/O引脚封装的最佳选择。其特点有: I/O引脚数虽然增多,但引脚间距远大于QFP,从而提高了组装成品率; 虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,简称C4焊接,从而可以改善它的电热性能: 厚度比QFP减少1/2以上,重量减轻3/4以上; 寄生参数减小,信号传输延迟小,使用频率大大提高; 组装可用共面焊接,可靠性高; BGA封装仍与QFP、PGA一样,占用基板面积过大;  Intel公司对这种集成度很高(单芯片里达300万只以上晶体管),功耗很大的CPU芯片,如Pentium、Pentium Pro、Pentium Ⅱ采用陶瓷针栅阵列封装CPGA和陶瓷球栅阵列封装CBGA,并在外壳上安装微型排风扇散热,从而达到电路的稳定可靠工作。 四、面向未来的新的封装技术  BGA封装比QFP先进,更比PGA好,但它的芯片面积/封装面积的比值仍很低。 Tessera公司在BGA基础上做了改进,研制出另一种称为μBGA的封装技术,按5mm焊区中心距,芯片面积/封装面积的比为1:4,比BGA前进了一大步。  1994年9月日本三菱电气研究出一种芯片面积/封装面积=1:1的封装结构,其封装外形尺寸只比裸芯片大一点点。也就是说,单个IC芯片有多大,封装尺寸就有多大,从而诞生了一种新的封装形式,命名为芯片尺寸封装,简称CSP(Chip Size Package或Chip Scale Package)。CSP封装具有以下特点: 满足了LSI芯片引出脚不断增加的需要; 解决了IC裸芯片不能进行交流参数测试和老化筛选的问题; 封装面积缩小到BGA的1/4至1/10,延迟时间缩小到极短。  曾有人想,当单芯片一时还达不到多种芯片的集成度时,能否将高集成度、高性能、高可靠的CSP芯片(用LSI或IC)和专用集成电路芯片(ASIC)在高密度多层互联基板上用表面安装技术(SMT)组装成为多种多样电子组件、子系统或系统。由这种想法产生出多芯片组件MCM(Multi Chip Model)。它将对现代化的计算机、自动化、通讯业等领域产生重大影响。MCM的特点有: 封装延迟时间缩小,易于实现组件高速化; 缩小整机/组件封装尺寸和重量,一般体积减小1/4,重量减轻1/3; 可靠性大大提高。  随着LSI设计技术和工艺的进步及深亚微米技术和微细化缩小芯片尺寸等技术的使用,人们产生了将多个LSI芯片组装在一个精密多层布线的外壳内形成MCM产品的想法。进一步又产生另一种想法:把多种芯片的电路集成在一个大圆片上,从而又导致了封装由单个小芯片级转向硅圆片级(wafer level)封装的变革,由此引出系统级芯片SOC(System On Chip)和电脑级芯片PCOC(PC On Chip)。 随着CPU和其他ULSI电路的进步,集成电路的封装形式也将有相应的发展,而封装形式的进步又将反过来促成芯片技术向前发展。

我也是工大的。。。同求啊,话说兄台几班的。。

相关百科